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Laminar forced convection
at low Peclet number. II

A.S. Jones

In this paper, the problem of heat transfer to laminar

Poiseuille flow in a circular tube is discussed for the case of

an insulated tube with a ring source of heat on the boundary.

The solution is developed analytically for low values of the

Peclet number, and formulae for calculating the eigenvalues and

coefficients have been obtained. The temperature distributions

in the neighbourhood of the source have been calculated for two

values of the Peclet number. The extension to the case of

arbitrary wall flux has also been discussed.

1. Introduction

The problem of heat transfer to fully developed laminar flow with

prescribed wall heat flux was first considered by Sellars, Tribus and Klein

[5] in 1956. Their method was to build up solutions from the known

solutions of the classical Graetz problem. Siegel, Sparrow and Ha IIman [6]

tackled the same problem for circular tubes in a direct manner, as did Cess

and Shaffer [J], [2] for the case of a flat duct. In each case the basic

problem studied was a wall flux uniform on a semi-infinite section of the

duct, axial heat conduction was ignored and the incoming fluid was at a

uniform temperature. Chia-Jung Hsu [3] extended the solution for the

circular tube by including the effects of axial conduction but still

ignoring pre-heating of the fluid.

In this paper the wall heat flux is taken to be a delta function, and

the solution is obtained including the effects of both axial conduction and
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pre-heating of the fluid. The extension to an arbitrary heat flux follows

from the linearity of the problem and the well-known properties of the

delta function.

2. Governing equations and their solution

For the case of Poiseuille flow in a circular tube of radius a , the

axi-symmetric conduction-convection equation is

where

T is the fluid temperature,

M is the mean fluid velocity,

p* is the fluid density,

a is the specific heat of the fluid, and

K is the thermal conductivity of the fluid.

The variables r, x are the usual radial and axial variables in

cylindrical polar co-ordinates, and the angular variable disappears because

of the symmetry of the problem.

The boundary conditions imposed on equation 2.1 are

7 + To ; x ->--",

(2.2) fj= «6(x) ; v = a .

The equation and boundary conditions are made non-dimensional by putting

p = r/a , 5 = x/a , 6 = {T-TQ)Q.a ,

giving

with boundary conditions

9 + 0 ; £,-*-"

P=

https://doi.org/10.1017/S0004972700044300 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044300


Forced convection I I 97

where Pe is the non-dimensional Peclet number u p*c a/< .

As in the author's earlier paper [4], equation 2.3 is solved formally

by using the double-sided Laplace transform, giving

» 3 £ /(p;B ,Pe]
(2.5) 6«, p) = I e M S f g > 0

n=0

Here f{p; p, Pe) is the solution of

i2))/ = 0 ,

(2.6) f(0; p, Pe) = 1 ,

and 0 < a0 < (Xj < ... are the positive zeros of g*- (l; p, Pe) and

0 = 3g > Bi > ... are the non-positive zeros.

3. Determination of the eigenvalues and coefficients

In [4], the author derived the form

(3.1) f(Pi p, Pe) =

where <(>+(P) = (p-P3/3) /£! .

Differentiating with respect to P and collecting terms, we obtain

(3.2) |£ (Pi P. p^ = I (P«)\(P. P) .
n=(T

where

(3.3) Fn(p, p) = p

and
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Direct calculation gives

(3.5) <500 = 1

6l0 = " \ . 6

030 - -

while in general

with

(3.6)

Rearranging the order of summation in 3.2 and 3.3, and using Lommel's

expansion

U

, _ 1 r _ 1

632 - 755- , 633 - — ,

b
t0

(3.7)

we obtain

(3-8) | f

where

(3.9)

Since

m=0

I
S=0

y2 = p2p2 - 2pPe(p2-pV3) .

(•|) ln\ and is 0{y 2) as y -*• °° , th is series

converges rapidly. Also

J . ' Jo
with z/2 = p2 - i pPe

- 4 * )

The dominant term in 3.8 is — yJ Ay) , which
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takes the value (p2 - -j pPe)^J ((p2 - \ pPeY2) when p = 1 . Writing

d for the rc-th positive zero of Ji(a;) , we see that

(3.11) a , g ^ ± d [l+(2Pe/3d ).2)2 + 2Pe/3 ,

and this value can be used as a starting value to determine a , (3 by

Newton's method using the expansion 3.8 and 3.10.

For smaller values of n it is also possible to substitute

a = a + a Pe + a Pe2 + ... in 3.2, 3-3 to obtain

a = d ,
n0 n

_ 2
3

(3.12)

with similar but more complicated expressions for the following terms. In

Table 1, the values of a and a for n = 1, ..., 8 have been
"2 "3

listed. The equivalent expansion for & is

(3.13) 6 = - d + - Pe - a Pe2 + a Pe3 - ... .

The case n = 0 is slightly more complicated. Reverting to equation

2.6, we can expand / in a power series in p . Rearranging this series

in powers of p , we obtain

(3.1^) f(p; p, Pe) =

1 + plWo
2 - 5£i + £i

36 6U

Hence

32f Pe
One root is obviously p = 0 for which „ i. - -r- , while the other root

dp dp el

is obtained by substituting p = £ a Pe to obtain

(3.16) a0 = Pe - |jp+ 0(Pe
5) ,
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for which

These values can also be improved numerically by using 3.8 and 3.10 with

J (y)/y replaced by I {z)/z , with z1 = i pPe - p2 . Once the

eigenvalues have been calculated, it is a simple procedure to evaluate the

f l

eigenfunctions and I p(l-P2)/dp numerically by solving the integral
J0

equation

rP
(3.18) f (p) = 1 - j s log(p/e)(p2-2pPe(l-e2))/(s)ds ,

which is equivalent to the equation 2.6.

The eigenvalues and some of the coefficients thus calculated for

Pe = 1 and Pe = .5 are listed in Tables 2 and 3.

The temperature field in the neighbourhood of the origin is then

obtained from 2.5, and some of these values are listed in Tables h and 5.

The values given for C = 0 were obtained by using Fejer summation because

of the slowness of convergence at this point.

4. Generalizations

If the heat flux at p = 1 is changed from 6(5) to /(£) , we can

determine the resulting temperature field by using the formula

(U.I) c
The temperature field iK£, P) resulting from f is therefore given by

(U.2) iKC, P)

= I e(t, p)f(Z-t)dt

0 & &.»̂ ) °
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provided the integrals converge. This is assured provided /(C) •* 0 a s

C -* -» and e~Pe?/(C) * 0 as 5 * •»" .

In conclusion, it should be noted that the mean mixed temperature is

2 —PeE
pe > s o 'tha't f o r small values of the

Peclet number the preheating is significant.

T a b l e 1 . C o e f f i c i e n t s i n t h e e x p a n s i o n a = a + - P e + a P e 2 +

1

2

3

1»

5

6

7

8

a
n2

.086185

.0U071U

.027098

.020U09

.016399

.013718

.011796

.0103W

a
n3

.0071*92

.001101

.0001*25

.00021*1

.000166

.000128

.000106

.000092
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Table 2. Eigenvalues and associated values for Pe = 1

92

0

1

2

3

1*

5
6

7
8

0

1

2

3

1*

5
6

7
8

.9761*1*1*

1*. 599192

7.725007
10.86801*1

lU.011195
17.153958
20.2961*20

23.1*38673
26.580782

0 . 0

-3.21*8102

-6.389522

-9-533755
-12.677305
-15.820260

-18.962828

-22.1051^7
-25.21*7299

/ ( I .

-.5221*99
1.76722
2.2221*6

2.63160

2.98701*

3.301*90

3.5951*1*

3.8631*1*

1*. 111*01*

• 5

1.1*6838

2.02160

2.1*61*79

2.81*126

3.1lh6k

3.1*7528

3.75190

1*. 00950

1.130201*

- . 367M*3

.285927

-.21*1590

.212951

-.ll*25l*O

.177056

-.161*971*

.15^773

1.0

-.1*33917

.31^9
-.257921*

.223871

-.2001*92

.183178

-.169693

.158809

1:pd-p2)/(p,

.266027

.071025

-.009920

.001*183

-.002191*

.001317

-.000863

.000602

-.0001*39

.250000

.01*1103

-.013073

.005371*

-.002722

.001583

-.001012

.000692

-.0001*97
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Table 3. Eigenvalues and associated values for Pe = .5

n

0

1

2

3

It

5

6

7

8

0

1

2

3

It

5

6

7

8

P

.U9696U

1*. 189290

7.359W6

10.513719

13.662200

16.808107

19.952650

23.096386

26.239607

0 .0

-3.520312

-6.692551

-9-8U6931*

-12.9951*61*

-l6.ll*139l*

-19.285951

-22.1*29695

-25.572922

9 2/
9p8p

-.252658

1.63066

-2.15969

2.581*05

-2.9^696

3.2701*7

-3.56350

3.831*07

-1*. O8669

.25

-1.1*9256

2.05956

-2.50077

2.871*11*

-3.201*95

3.5031*6

-3.77832

1*. 031* 1*1*

/ ( I , p)

1.031577
-.381*859

.293000

-.21*561*1

.215659

-.19^513

.178576

-.166012

.155777

1.0

-.1*191*1*5

.307236

-.253820

.221122

-.1981*91

.181638

-.1681*61

.157795

[ p(l-p2)/(p, p)dp

.253931

.062720

-.011268

.001+511

-.002327

.001382

-.OOO899

.000623

-.0001*53

.250000

.01(7622

-.012776

.005115

-.002593

.001516

-.000971*

.000668

-.0001*82
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Table 4. Temperature distribution for Pe = 1

5 6(5, 0) 6(5, .5) 6(5, 1) 6m

-2.0 .271 .287 .307 .289

-1.0 .751 .759 .817 .765

-0 .5 1.126 1.217 1.352 1.233

-0.25 1.367 1.502 1.789 1.51*1

-0.125 1.1*89 1.61*1 2.131 1.703

0.0 1.6 1.8 °° 1.81*5

0.125 1.695 1.81*8 2.333 1.910

0.25 1.771 1.907 2.178 1.91*1*

0.5 1.883 I.966 2.066 1.977

1.0 1.971* 1.991* 2.012 1.996

2.0 1.999 2.000 2.000 2.000

Table 5. Temperature distribution for Pe = .5

5

-2.0

-1.0

-0.5

-0.25

-0.125

0 . 0

0.125

0.25

0 . 5

1 .0

2 . 0

6(5, 0)

1.1*65

2.399

3.022

3.331*

3.1*79

3.6

3.709

3.789

3.899

3.981

3.999

6(5, -5)

1.1*85

2.1*38

3.102

3.1*56

3.616

3.8

3.81*5

3.907

3.967

3.995

l*.000

6(5, 1)

1.5H

2.1*88

3.218

3.721

1*.O85
0 0

l*.308

1*.158

l*.05l*

l».009

lt.000

e
m

1.1*88

2.1*33

3.116

3.1*92

3.676

3.832

3.901*

3.91*!

3-977

3.996

1*.000
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