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We aimed to explore the mechanism of the linoleic acid metabolism in metabolic syndrome (MetS). RNA-seq data for 16 samples
with or without MetS from the GSE145412 dataset were collected. Gene set variation analysis (GSVA), gene set enrichment analysis
(GSEA), and gene diferential expression analysis were performed. Expression data of diferentially expressed genes (DEGs) involved
in the linoleic acid metabolism pathway were mapped to the pathway by using Pathview for visualization. Tere were 19 and 10
diferentially expressed biological processes in the disease group and healthy group, respectively. 9 KEGG pathways were dif-
ferentially expressed in the disease group. Linoleic acid metabolism was the only diferentially expressed pathway in the healthy
group.TeGSVA enrichment score of the linoleic acidmetabolism pathway in the disease groupwasmarkedly lower than that in the
healthy group. Te GSEA result showed that the linoleic acid metabolism pathway was signifcantly downregulated in the disease
group. JMJD7-PLA2G4B, PLA2G1B, PLA2G2D, CYP2C8, and CYP2J2 involved in the pathway were signifcantly downregulated in
the disease group. Tis study may provide novel insight into MetS from the point of linoleic acid metabolism dysregulation.

1. Introduction

Metabolic syndrome (MetS) is a common complex entity
characterized by a set of metabolic abnormalities that serve
as risk factors for the development of cardiovascular disease
(CVD) and type 2 diabetes mellitus (T2DM) [1]. MetS
doubles the risk of CVD and increases the risk of diabetes
fve-fold [2, 3]. Te main characteristic components of MetS
include central obesity, hypertension, hyperglycemia,
hypertriglyceridemia, and a low level of high-density lipo-
protein cholesterol (HDL-C) [1]. Te existence of any three
or more of these traits constitutes a clinical diagnosis of
MetS. Te prevalence of MetS ranges from 10% to 40% and
keeps rising with the increasing rate of obesity worldwide
[4]. Te complicated pathogenesis of MetS results from the
interaction of multiple biological processes (BPs) and
pathways, as well as genetic variations and environmental
and nutritional factors; however, the exact underlying
mechanisms have not been fully understood [5].

As an essential nutrient, linoleic acid is the most
abundant n-6 polyunsaturated fatty acid (PUFA) in the

human diet [6]. PUFAs are the basic components of cellular
membranes and serve as cellular signaling molecules.
Linoleic acid usually plays an active role in human health.
Linoleic acid is correlated with a reduced incidence of CVD
and T2DM, which may be attributed to its action on risk
factors for diseases, for instance, linoleic acid’s reduction of
blood cholesterol levels and its impact on insulin and glucose
metabolisms [7]. Terefore, linoleic acid may be associated
with MetS.

Gene set enrichment methods focus on gene sets in
the analysis of gene expression data. Gene set variation
analysis (GSVA) calculates gene set enrichment scores for
each sample and assesses the variation of gene set en-
richment over the samples. It identifes the diferential
pathway activity in an unsupervised manner [8]. Gene set
enrichment analysis (GSEA) utilizes the predefned gene
sets and ranks of genes to determine the signifcant
pathways that are related to the phenotypic distinction
[9]. Compared with single-gene analysis, gene set en-
richment methods have several benefts, including di-
mensionality reduction and interpretability [10]. In the
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present study, we performed GSVA, GSEA, and gene
diferential expression analysis on RNA-seq data of 16
samples from the GSE145412 expression profle [11]. 16
samples were divided into four groups according to their
metabolic health status and body mass index (BMI),
including lean (BMI < 25) with the MetS group (MetS
lean) and obese (BMI > 30) with the MetS group (MetS
obese), the healthy obese group, and the healthy lean
group [11]. We found that the enrichment score of the
linoleic acid metabolism pathway in the MetS samples
was markedly lower than that in the healthy controls,
suggesting the dysregulation of the linoleic acid meta-
bolism pathway in MetS, and JMJD7-PLA2G4B,
PLA2G1B, PLA2G2D, CYP2C8, and CYP2J2 involved in
the pathway were signifcantly downregulated. Tis study
may provide novel insight into MetS from the point of
linoleic acid metabolism dysregulation.

2. Materials and Methods

2.1. Data Collection and Preprocessing. Raw data from the
GSE145412 dataset [11] were downloaded from the Se-
quence Read Archive (SRA). FASTX-Toolkit was used to
trim of the low-quality bases of the raw reads. After quality
control by FastQC, clean reads were mapped to the reference
genome via TopHat2 (Homo sapiens, GRCh38, version 23).
Single-mapped reads were utilized to calculate the read
count and TPM for each gene. TPM normalization was
performed by the normalizeBetweenArrays function of the
limma package [12].

2.2. GSVA and GSEA. Gene sets in Homo sapiens grouped
by KEGG pathways and gene ontology BPs were down-
loaded from the Molecular Signatures Database (MSigDB)
[13] by using the msigdbr R package. Te enrichment
scores of each sample on gene sets were computed by the
GSVA R package. Diferentially expressed gene sets were
identifed by the limma package. Te thresholds of dif-
ferentially expressed BPs were set as |log2FC| > 0.5 and
p< 0.05, while those of diferentially expressed pathways
were set as |log2FC| > 0.1 and p< 0.05. Signifcantly
enriched pathways were identifed by the GSEA method
with the cutof values of NOM p value <0.05 and FDR q
value <0.25.

2.3. Identifcation of Diferentially Expressed Genes (DEGs).
Te gene set related to the linoleic acid metabolism pathway
was extracted from MSigDB to construct a protein-protein
interaction (PPI) network by using STRING, in which genes
with the top 10 highest degrees were regarded as hub genes
[14]. DEGs between groups were identifed by using the
Wilcoxon rank sum test with the threshold as p< 0.05.
Expression data of DEGs were mapped to the linoleic acid
metabolism pathway for visualization by using Pathview
[15], and proteins encoded by DEGs were colored in the
graph to display their roles in the linoleic acid metabolism
pathway.

2.4. Statistical Analysis. All the statistical analyses were
performed by R Statistical Software (version 4.1.2). Te
Wilcoxon rank sum test was applied to compare the dif-
ferences between groups. p< 0.05 was statistically
signifcant.

3. Results

3.1. Signifcantly Downregulated Linoleic Acid Metabolism
Pathway inMetS. 16 samples were divided into four groups,
including MetS lean, MetS obese, healthy obese, and healthy
lean. Diferentially expressed gene sets are shown in
Figure S1. Tere were 19 diferentially expressed BPs in the
disease group, including regulation of nodal signaling
pathways involved in asymmetry, copper ion transmem-
brane transport, Purkinje myocyte to ventricular cardiac
muscle cell signaling, Toll-like receptor 2 signaling pathway,
regulation of metanephros development, negative regulation
of translational elongation, regulation of endosome size,
protein repair, sialic acid transport, the neutrophil-mediated
killing of gram-negative bacteria, acylglycerol transport,
fructose 2,6-bisphosphate metabolic process, negative reg-
ulation of endoplasmic reticulum stress, cellular response to
bacterial lipoprotein, sphingomyelin biosynthetic process,
response to diacyl bacterial lipopeptide, nucleotide-binding
oligomerization domain signaling pathway, regulation of
barbed end actin flament capping, and regulation of
branching morphogenesis of a nerve (Figure 1(a)). In the
healthy group, there were 10 diferentially expressed BPs,
including lipid hydroxylation, anterior head development,
trigeminal nerve development, the somatostatin receptor
signaling pathway, histone H3 H4 dimethylation, double-
strand break repair involved in meiotic recombination, viral
translational termination reinitiation, PML body organiza-
tion, DNA methylation on cytosine, and epithelial cell
proliferation involved in wound healing (Figure 1(a)). On
the other hand, diferentially expressed pathways in the
disease group involved pantothenate and coA biosynthesis,
biosynthesis of unsaturated fatty acids, amyotrophic lateral
sclerosis, the Toll-like receptor signaling pathway, the P53
signaling pathway, apoptosis, snare interactions in vesicular
transport, the TGF beta signaling pathway, and the NOD-
like receptor signaling pathway, while in the healthy group,
linoleic acid metabolism was the only diferentially
expressed pathway (Figure 1(b)). Te GSVA enrichment
score of the linoleic acid metabolism pathway was markedly
lower in the disease group than that in the healthy group
(Figure 1(c)). Te GSEA result revealed that the linoleic acid
metabolism pathway was signifcantly downregulated in the
disease group (Figure 1(d)).

We next examined the diferences in the GSVA en-
richment score of the linoleic acid metabolism pathway
between obese and lean samples in the disease group and the
healthy group. As depicted in Figure 2, there was no sig-
nifcant diference in the GSVA enrichment score of the
linoleic acid metabolism pathway between obese and lean
samples in both groups, suggesting that linoleic acid
metabolism dysregulation was not signifcantly associated
with obesity.
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29 genes involved in the linoleic acid metabolism
pathway were obtained, and the PPI network is shown in
Figure S2A. Te hub genes with the top 10 highest degrees
were ALOX15, CYP2J2, CYP2C8, CYP3A4, CYP2C9,
CYP1A2, CYP2C19, PLA2G3, PLA2G12A, and CYP2E1
(Figure S2B). Several genes were found to be signifcantly
downregulated in the linoleic acid metabolism pathway,
including JMJD7-PLA2G4B, PLA2G1B, PLA2G2D,
CYP2C8, and CYP2J2 (Figure 3(a)), and DEG-encoded
proteins participated in the linoleic acid metabolism path-
way as enzymes (Figure 3(b)).

4. Discussion

MetS has become a global health concern currently. Except
for heart disease and diabetes, MetS also has a link with
cancer [16]. Te complex interplay of multiple causative
factors makes it hard to treat MetS [17]. A healthy lifestyle
(including diet and physical activity), weight loss, and
control of comorbidities are the therapeutic targets of MetS,
and long-term goals include reducing the risks of CVD,
T2DM, and other MetS-related conditions [18]. Te en-
hancement of knowledge on mechanisms of MetS
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Figure 1: Gene set enrichment analysis. (a) Diferentially expressed BPs in the disease group and the healthy group. (b) Diferentially
expressed pathways in the disease group and the healthy group. (c) Comparison of the GSVA enrichment score of the linoleic acid
metabolism pathway between the disease group and the healthy group. (d) GSEA result of the linoleic acid metabolism pathway in the
disease group and the healthy group.
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contributes to improving interventions and treatments for
MetS. Fatty acids are a major source of energy. As mediators
for cell signaling, they play a role in the etiology of MetS [19].

In the present study, we applied GSVA and GSEA to the
RNA-seq data from patients with or withoutMetS and found
that the enrichment score of the linoleic acid metabolism
pathway was signifcantly lower in MetS patients, suggesting
the dysregulation of the linoleic acid metabolism pathway in
MetS. Trough integrated proteomics and metabolomics
analysis, Chen et al. also revealed that the linoleic acid
metabolism pathway was signifcantly perturbed in the MetS
rat model [20]. Szczuko et al. observed a signifcant decrease
in the content of linoleic acid in MetS compared with the
healthy control [21]. Linoleic acid has a correlation with
metabolic diseases [22]. Previous studies have revealed that
lower linoleic acid content is associated with an increased
risk for CVD and T2DM [23, 24]. Yary et al. found that
higher linoleic acid concentrations were associated with a
lower risk of developing MetS [25].

We also found that several genes involved in the linoleic
acid metabolism pathway were signifcantly downregulated
in MetS patients, including JMJD7-PLA2G4B, PLA2G1B,
PLA2G2D, CYP2C8, and CYP2J2. PLA2G4B, PLA2G1B,
and PLA2G2D encode members of the phospholipase A2
family that generally hydrolyze the sn-2 acyl bond in
phospholipids to release fatty acids and lysophospholipids.
In the linoleic acid metabolism pathway, lecithin in the cell
membrane is converted by phospholipase A2 enzymes to
linoleate. PLA2G4B was associated with age-related changes
in phospholipids and decreased energy metabolism in
monocytes [26]. PLA2G2D increased energy expenditure
and thermogenesis by promoting adipocyte browning,
thereby improving diet-induced metabolic disorders [27].
PLA2G1B defciency or inactivation gave protection from
diet-induced obesity, insulin resistance, hyperglycemia,

hyperlipidemia, and atherosclerosis [28–30], and PLA2G1B
inhibitors suppressed diet-induced obesity and diabetes
efectively in mice [31], implying that PLA2G1B inhibition
may be a viable therapeutic option for metabolic diseases.

CYP2C8 and CYP2J2 encode members of the cyto-
chrome P450 (CYP) superfamily of enzymes. CYP mono-
oxygenases participate in the metabolism of various
endogenous substrates, including PUFAs. In a CYP-de-
pendent manner, linoleic acid is metabolized to produce
9,10-epoxyoctadecenoic acid (9,10-EpOME) and 12,13-
epoxyoctadecenoic acid (12,13-EpOME) [32]. CYP2C8 and
CYP2J2 are two of the main CYP isoforms that catalyze this
conversion. Subsequently, these epoxides are hydrolyzed by
soluble epoxide hydrolase (sEH) to yield 9,10-dihydrox-
yoctadecenoic acid (9,10-DiHOME) and 12,13-dihydrox-
yoctadecenoic acid (12,13-DiHOME) [32]. Tese
metabolites of CYP produced from linoleic acid are asso-
ciated with health and disease in many ways [33]. 9,10-
EpOME and 9,10-DiHOME induce oxidative stress under
90 μM concentration by activating NF-κB and AP-1 tran-
scription factors that mediate infammation [34]. EpOMEs
and DiHOMEs exhibited cardiotoxicity [35, 36], while sEH
inhibitors showed a cardioprotective efect [37–39]. In ad-
dition, the application of sEH inhibitors in MetS treatment
has been explored. In a diet-induced MetS rat model, oral
treatment with an sEH inhibitor alleviated the symptoms of
MetS, indicating that sEH inhibitors have therapeutic po-
tential for MetS [40].

Te study has several limitations. First, the sample size
was small. Second, the bioinformatic analysis was restricted
to the RNA-seq data of MetS, while proteomics and
metabonomics may provide novel insight into the under-
lying mechanisms of MetS. Tird, there is a lack of exper-
iments to detect the linoleic acid metabolism pathway’s
activity. Terefore, future studies should be conducted with
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Figure 2: Comparison of the GSVA enrichment score of the linoleic acid metabolism pathway between obese and lean samples in the disease
group (a) and the healthy group (b).
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a larger sample size and in a more comprehensive way,
combining multidimensional omics data analysis and ex-
perimental verifcation to enhance the understanding of
MetS.

5. Conclusion

In conclusion, we found the dysregulation of the linoleic acid
metabolism pathway in MetS, and JMJD7-PLA2G4B,
PLA2G1B, PLA2G2D, CYP2C8, and CYP2J2 involved in the
linoleic acid metabolism pathway were signifcantly
downregulated.
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