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An embedding theorem

for ordered groups

Colin D. Fox

We show that if the normal closure of an element a , of an

orderable group, G , is abelian, then G can be embedded in an

orderable group, G# , which contains an n-th root of a- for

every positive integer, =z . Furthermore, every order of &

extends to an order of G# .

1. Preliminaries

1.1. A partially ordered group is a group, G , which is a partially
ordered set under some partial order relation, =< , the group operation and
order relation being compatible in the sense that g < h implies
agb <ahb for a, b, g and h in G . If, in addition, (G, =) is a
fully ordered set, then (G, <) 1is a fully ordered group (o-group). A
group, G , is an orderable group (0O-group) if G can be made a fully
ordered group. For details of the theory of ordered groups, the reader is

referred to Fuchs [ 5] or Kokorin and Kopytov [8].

Throughout this paper, an ordered group will always be a fully ordered
group and an order of a group will always be a full order. All identities
of groups will be written, 1 , and generally no notational distinction
will be made between orders of different groups. N will denote the set of

all strictly positive integers.
If two ordered groups, G and H , are isomorphic and the
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isomorphism, ¢ , satisfies g > 1 implies g >1 for all g in G ,
then ¢ is an o-isomorphism. So o-automorphism has the obvious meaning.
If a group, G , can be embedded in an O-group, H , in such a way that
every order of (G extends to an order of H , then the embedding is called

an o*-embedding.
A subgroup, B , of a group, G , is isolated if, for g in G and

n in N, gn belongs to B implies g Dbelongs to B . The isolated
closure of a subgroup, 4 , of G is the intersection of all isolated

subgroups of (G containing A4 and will be denoted by IG(A) (or, simply,
I(A) if no confusion arises). G is divisible if, for all g in G and

n in N , the equation " = g has a solution in G . A minimal,

divisible extension of a group, G , is called a completion of G .

1.2. Every abelian O-group has a completion which is an abelian
O-group (see [5], p. 36). 1In fact, every locally nilpotent O-group has
a unique {ip to o-isomorphism) locally nilpotent, orderable completion
(see Mal'cev [10] and [11], and Kokorin and Kopytov [8], p. 58). More
recently, Bludov and Medvedev [1] have shown that every metabelian O-group
has a metabelian orderable completion. However, this completion is not, in
general, unique (see [4]). In view of [!], we can generalize slightly a

theorem of Minassian [12] and say that if an O-group, G , has a normal
[+ ]

i > . = .
series G > G, > G, > ... such that in G, {1} and G/G$ >

2=1,2, ... , is a locally nilpotent O-group or a metabelian O-group,

then G has an orderable completion.

No more appears to be known at present about completing O—groups\in
one fell swoop, so to speak. In this paper, we show (§3, Corollary 1) that
roots can be adjoined to certain elements of an arbitrary O-group, thereby
partially answering a question of Neumann (see [5], p. 211, Problem 16).
Namely, those elements contained in a normal abelian subgroup of the group.
§3, Theorem 3, generalizes results of Conrad ([3], Theorem 3) and Kopytov
[9]. 1In fact, the method used in §2 is almost identical to that employed
by Kopytov [9]. (His theorem appears also in Fuchs [6], p. 83.) 1In §4, we

present some properties of the embedding of Theorem 3.

1.3. We mention a result concerning the abelian completion of an
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abelian O-group.

LEMMA 1. Let (4, =) be an abelian o-group and let 4" be its

abelian completion., Then <= extends uniquely to an order, 5# s of a?

and any o-automorphism, ¢ , of (4, =) extends uniquely to an

o-automorphism, ¢# > of (A#, S#)

We omit the proof as this lemma is virtually a restatement of a lemma

of Conrad ([3], p. 518).

2. Completing a normal, abelian subgroup of an O-group

We begin with a definition. By completing a subgroup, U , of a
group, V , we mean that V can be embedded in a group, ¥ , in such a way

that W _contains a completion of (the image under the embedding of) U .

Suppose G is an O-group with normal, abelian subgroup, A4 . We

wish to complete A and, for the moment, suppose that A 1is isolated.
For all g in G , denote by ¢g the restriction to 4 of the inner

automorphism of G induced by g . (That is, a¢g = g-lag ) Let a? ve

the abelian completion of A4 and for all a in A# , let m(a) bve a

positive integer such that am(a) is in A . Define ¢§ : A# > A# by
# m L/m

(2.1) a¢g = [a ¢g) where m = m(a)

¢§ is the unique extension of ¢g to A# . We emphasize that this

definition is independent of the choice of m in N such that am is in
A .

We have the following:-

LEMMA 2. (i) Forall g and h in G, ¢§h=¢§¢z.
g . #
(i) For all a in 4, ¢a =1.

Proof. (7Z) Conrad proves this in his proof of Theorem 3.1 ([31],
p. 519, lines 11-12).
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. = b for all

4 m 1/m
(iZ) For all a in 4, ¢ =1; so b¢a=[b¢a]

b in A" (vhere m=m(b) ).  //

Now we are ready to- complete 4 . Let G# be the (set theoretic)
#

cartesian product, G X A" , modulo the equivalence

(2.2) (g, a) =(h, b) iff h=ge and b = eYa for some ¢ in A .
It is easy to show that (2.2) does define an equivalence relation on

GXA#.

Define multiplication in G# by

(2.3) (g, @)k, ) = [gn, [aeh]o) -

To show that this definition is independent of the choice of g and h in

G and a@ and b in # , takeany ¢ and d in 4 . Then

(ge, c-la] (nd, d-lb]

gehd, | ¢hdd ) (by (2.3))

A
[gh h_lch)d [c-l(bh] [atbfl] d_lb) (by Lemma 2)
[ghd c¢h) e¢h) “1g71 [ad)fl)b]

[A# is abelian and A 1is normal in G )
[gh, [a«bﬁd] (by (2.2))

(g, a)(h, d) (by (2.3))

So the definition of multiplication is satisfactory.

1

Associativity can be verified directly, (1, 1) 1is an identity for

#

G" and an inverse of (g, a) is [g—l, a_l(b#_l] . So G# is a group.

The map g+ (g, 1) embeds G in G# and, since (a, 1) = (1, a) for

# #

all a in A and since, for b in A" , themap b+ (1, b) embeds 4

in G# , we have the following:-

THEQREM 1. 7The embedding of G into G# given above completes the
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normal, abelian, isolated subgroup, A , of G . Furthermore, G#/A# i8
isomorphic to G/A .
Proof. It remains to prove the latter statement. A# is normal in

(,'# because, for all (g, a) and (1, b) in G’# .

(g, )21, b)g, a) = [1, b¢g] .

We merely observe that the obvious mapping, (g, a)A# — g4 , is the
required isomorphism of Gﬂ/A# onto G/4 . //

In order to discard the supposition that A 1is isolated, we need the
following: -

LEMMA 3. Let A be an abelian subgroup of the O-group, G . Then
the isolated closure, I(A) , of A in G is an abelian subgroup of G .

If, in addition, A 1is normal, them I(A) 1is normal.

Proof. let B={g €G:g" €A for some m in N} . We show that

B is an abelian subgroup of G and that B = I(4) . Take g and h in
B and let m and #n belong to N such that gm and H* are in 4 .
Then [gm, hn] =1, and so [g, h]l =1 (see [5], p. 38). Hence,

(gh_l)mn = gmnh-nm vwhich belongs to A . So gh"l is in B and we have

shown that B 1is an abelian subgroup of G .
To show that B = I(4) , take g in G such that gn is in B for

some 7 in N . Then there is m in N such that g = (gn)m is in

A3 so g is in B . That is B 1is an isolated subgroup of (G and,

since A < B , it follows that I(4) <B . For all g in G\I(4) , 4"
is in G\M(4) and, hence, in G\ for all n in N (because I(4) is
isolated and 4 < I(4) }); so g is in G\B and it follows that

B = I(4) .

Now suppose A 1is normal. We show that B is normal. Take b in
B and g in G , and let " belong to A for m in N . Then

(g'lbg)m=g—lbmg isin A4 - so g_lbg is in B and, hence, B is
normal. //

https://doi.org/10.1017/50004972700023972 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700023972

326 Colin D. Fox

We are now in a position to prove:-

THEOREM 2. If G is an O-group with normal, abelian subgrouwp, A ,
then A can be completed.

Proof. Take the abelian completion, I(A)# , of I(A) and let G#

be G % I(A)# modulo the appropriate equivalence (cf. (2.2)] and with the
appropriate multiplication (cf. (2.3)). Then by Theorem 1, the embedding
G into G# completes JI(A) and, hence, completes A4 . //

[bbserve that if A is not isolated, then (in view of our future
requirements) I(A) must be used in the construction of G# . Othervise,
there would be g in GM , a in A#\A and m in N such that
g" =d" isin A . That is, (g, 1)" = (1, a)" while (g, 1) # (1, a) ,

an impossible situation in an O-group (see [5], p. 37, Proposition 9).

Since we want to be able to order G# , such obvious hindrances must be

removed.]

3. An order for G#

Take an O-group, G , with normal, abelian subgroup, A . By

Lemma 3, we suffer no loss of generality by supposing that A is isolated,
so embed G in G# to complete 4 as in §2. Now take any order, =< , of

G . For (g, a) in G# , define

(3.1) (g, a) >1 if, and only if, gmam >1 din G , where m = m{a)
We must show that this definition is satisfactory in two senses.
. . m n . m m
First, we must show that if a and a are in 4 , then ga > 1

implies g'a™ > 1 , and, second, that if (g, a) >1 , then (gb, b™a) > 1
for all b in 4 . (There is, of course, another sense in which this
definition has to be satisfactory. Namely, that (3.1) makes G# an

o-group. This we show in due course.] We need the following:-

LEMMA 4. et (V, =) be a partially ordered group. Take v and w

»

in V and 8 in N . Then
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, . 5 8 s _ 88
(i) v = wv implies vw = (w)” =wv ,

(ii) ww > 1 implies v°w° > 1, and
(iii) if (V, <) is fully ordeved, then v°w° > 1 implies
vw > 1.

Proof. Straightforward induction proofs give (Z) and (Z%) while (Zi%)
follows from (7). (Compare (Z) with Chehata (2], Lemma 9.) 1In fact, (i1%)
provides justification for trying a definition like (3.1). //

Now take a in A? , g in G and m, n in N such that 4", d”
are in A . A standard euclidean algorithm argument shows that m and n

are multiples of k in N , where Xk 1is the smallest positive integer

such that ak isin A . Let m=2rk and n = sk where »r, s are in

N . Then

gmam 51 = grkark > 1

= gkak >1 (by Lemma b4 (i4%))
= QSkaSk >1 (by Lemma 4 (4i))-
= gnan >1 .

Now take (g, a) >1 in (1‘# and any b in A . By (3.1),
(gb, b—la) >1 if, and only if, (gb)m[b—la)m >1 in G where
m= m(b—la] . Since b 1is in A , we may choose m[b—la] =m(a) . So, we
must show that (gb)mb-mam >1 (equivalently b_mam(gb)m >1 ), knoving
that g'a" > 1 (equivalently d’g" > 1), where m = m(a) = m(b_la)

Suppose gb = bg in G . Then (gb)’”z bmgm (Lemma & (2)). So,

p7dM(gb)" = b_mambmgm
= amgm (4 abelian)
>1.

Similarly, if gb < bg in G , then (gb)™b™"a” > 1 . Hence, definition

(3.1) makes sense. To show that (3.1) makes Gﬂ an o-group, we need the
following:-
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-1

LEMMA 5. For (g, a) in & . (g, @)™ >1 if, and only if,

gmam <1 in G, where m = mla) .

m
Proof. Observe that [ad)g] = am¢g is in A . ©So, we can always

choose m{atbg] = m(a) (and this choice we shall make in the following

#

-1

] , it follows (by (3.1)) that
g

argument). Since (g, a)'l = [g'l, a_l¢

m
(g, cz)-:L >1 if, and only if, g'm[a-l(b#_l] >1 in G . Now
g

m
g_m[a—lq’#—l] = g7ga g™t = g MG whence, (g, @)t > 1

if, and only if, (g'a") "1 >1 in G and the result follows. //

To show that (G‘#, <) is an o-group, we show (c¢f. [5], p. 13) that

for all x and y in G# -

(i) z>1 implies a - }1,

(ii) x #1 implies z > 1 or x-l>l,

(iii) 2 >1 and y > 1 implies a2y > 1 , and
. . . -1
(iv) 2 > 1 implies y ay > 1

(i) Teke (g, a) > 1 with m=m(a) . So gmam >1 in G ; hence
gmam * 1, and so (g, a)-l lf 1 (by Lemma S).

(ii) Take any (g, a) # 1 in ¢ with m= m(a) . If gmam >1 in
G , then (g, a)>1 . If g’”a’" <1 in G , then (g, a)'l >1 (Lemma

5). Now gmam # 1 by the following argument:-
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=g €4 (A isolated in G)

~g=al (051, p. 57)
= (g, a) =1 (bvy (2.2)).

(1i1) Take (g, @) >1 and (h, b) >1 in &' . Since

am(a)m(b) and bm(b)m(a)

the following argument) m = m(a) = m(b) . By definitions (2.3) and (3.1),

are in 4 , we may choose (and shall choose in

we have (g, a)(h, b) > 1 1if, and only if, (gh)m(h_lamh)bm >1 in G .

Suppose gh = hg . Then, transforming each side by h , we have
(nYgn)n = w(nigh) . so,
m -1 m me, =1 m me, =1 m
(gh)" = (h(r ™ gh))" =2 K" (hgn)" = W' (h" g n) .
Hence
(gh)" ("W B = WM (7 ) (Rt R B
[ WA (4 n] "

> 1 (pecause B"H" > 1 and gd" >1 in G).

v

Similarly, if gh < hg , we have

v

(gh)" ("R > (Wi ) W (i)
e A P AT e R ) P
>1.

(iv) Take (g, a) >1 and (h, b) in G# . Since

(h, b) = (h, 1)(1, b} and since (uv)_lw(uv) = v-l(u-lwu)v is an identity
for groups, we may show, separately, that (h, 1)-1(g, a)(h, 1) >1 and

(1 0 Mg, @)1, B) > 1 - Now (h, 1) Hg, @)k, 1) = [5gh, aof]
Setting m = m(a) = m[a¢z] , we have [k'lgh, a¢Z] >1 if, and only if,

h-lgmh[amcbh] >1 in G , where h_lgmh [amd)h] =nt (gmam)h >1 in G . So

https://doi.org/10.1017/50004972700023972 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700023972

330 Colin D. Fox

. =1
(h, 1) Mg, a)(h, 1) > 1 . ow (1, b)"Xg, a)(1, ) = [g, [bq»g} )

-1
Setting m = m(a) = m(b) , we have [g, [bd):] ab] >1 if, and only if,

gmtg-lb-mg)ambm >1 in G , the latter being equivalent to
d"g"[g, ¥"] >1 in ¢ . If [g, 5] 21 in G, then
a'g"[g, b"] 2 d"¢" >1 . Suppose [g, p™ <1 in G . Tow
[9, B <1 =p7"gp" < g
- b-mgm-lbm - (b-mgbm) m-1 < gm-l
(only if m =1 does equality hold).
So,
S s = g s g
= gm—l N a-mg-l
= b-mgm-lbm > b'm(a'mg'l) M
o b_m(a'mb_l)bm (since gm-l > p"1pM)
=g >a’' ", g]
=d"d"[g, b"] > 1 .
so, (1, b)Y(g, a)(1, B) > 1 and, hence, (h, b)™ (g, a)(h, b) > 1 .

So, (G#, 5) is an o-group. Since the order of G# extends that of

G (that is, (g, 1) >1 in ¢ if, andonly if, g>1 in G ), we
have: -

THEOREM 3. Let G be an O-group with normal, abelian subgroup,
A . Then A can be completed by o*-embedding G in an O-group, e
1f 4" is the completion of (the image wnder the embedding of) A , then
G#/A# i8 isomorphic to G/A . /

As a corollary, we have the result mentioned in §1.2.

COROLLARY 1. Let G be an O-group, let a be an element of G,

and let n bein N . If {a}G {(the normal closure of {a} in G ) s
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abelian, then G can be o*-embedded in an O-growp, H , in which there

18 a solution to the equation 2 =a.
Observe that {a}G is abelian if, and only if, {g, a, a]l =1 for
all g in G . [Here [gs, a, a]l 1is the commutator [[g, al, a] where

lg, al = [g, 1la] = g-la_lga . More generally, l[g, kal] = [[g, (k-1)al, a]
for a1l k=2 in N ) So Corollary 1 can be rephrased as:-

COROLLARY 1'. Let G, a and n be as in Corollary 1. If
(g asal =1 forall g in G, then G can be o*-embedded in an
O-group, H , in which there is a solution to the equation ' =a.
Corollaries 1 and 1' suggest the questions:-
(1) What happens if the normal closure of a is
(i) (locally) nilpotent? or

(ii) metabelian?

(2) What happens if, for some k >2 in N, [g, kal =1 for
all g in G ?

I suspect that the answer to (1) (i) {effectively a question of Kokorin -
see [7], Question 1.61) will be a theorem similar to Corollary 1, while the

situations described in (1) (ii) and (2) seem less straightforward.

4., Some properties of the embedding ¢ - G#

4.1. Ve begin by showing that our method of completing a normal,
abelian subgroup of an O-group is, essentially, the only way.

THEOREM 4. Let G be an O-group with normal, abelian, isolated
subgroup A . Then there is an O-growp, H , which

(1) completes A and

(ii) 1s generated by G and IH(A) .
Any O-group, K , satisfying (i) and (ii) is isomorphic to H , the
restriction of the isomorphism to G being the identity. Furthermore,

given any order of K , the isomorphism can be made an o-isomorphism in a

natural manner.
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Before proving this theorem, we mention that, in view of a result of
Smirnov [13], our Theorem 4 is stronger than the similar theorem of Conrad
(C3], Theorem 3). Smirnov shows that a maximal, normal, abelian subgroup

of an O-group, V , need not be convex under any order of V .

Proof of Theorem 4. C(Clearly, G# (as constructed in §2) satisfies

(Z) and (Z1). let H = G# and write elements of H as formal products,

ga , with g in G and a in IH(A) (sub,ject, of course, to an

equivalence similar to (2.2)). Let K be any O-group satisfying (i) and
(i), and, similarly, write elements of X in the form, gb , with g in

G and b in IK(A) . Since IH(A) and IK(A) are .abelian completions
of A , there is an isomorphism, ¥ , from IH(A) onto IK(A) satisfying

ax =a for all a in A ., Define ¥ : H+ K by (ga)y =glay) . It is
not difficult to show that ¢ is an isomorphism from H onto K , and
that the restriction of Y to G is the identity.

Now take any order of K . This naturally induces an order of @

which in turn induces an order of H (ef. (3.1)). Denote all these orders

by = and take any ga >1 in H . That is, gmam>1 in G , where
m=m(a) . So

1< gmam - gm[amx) = gm(ax)m ]

By Lemma 4 (Z27), (ga)¥ = glax) >1 in K, and so ¢ is an

o-isomorphism. //

4.2, For the remainder of this section, let &, 4, G# and A# be as
in §3.

Let Q(G) and Q(G#) denote the set of all full orders of G and

G# respectively. A group is an O*-group if every partial order of the
group extends to a full order of the group. A subgroup of an O-group,
V , is relatively (respectively absolutely) convex in V if it is convex
under at least one full order (respectively all full orders) of V . A
normal subgroup, W , of a group, V , is stromgly isolated in V if, for

: -1 -1 -1
v, vl, v2, cees vk in vV, vl vvlu2 vv2 vk vvk belongs to W

implies v Dbelongs to W .
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Proofs for the following rather motley theorem can be found in [4],

Chapter 2.

THEOREM 5. (%) There is a one-to-one mapping from QUG) onto
o(d") .

(i1) If A <is relatively (respectively absolutely) conmvex in G,
then PLAES relatively (respectively absolutely) convex in ¢ .

(1ii) If A <& strongly isolated in G , then A# is strongly
igolated in Gﬂ .

(tv) If G 1is an O*_group, then G# is an O*-group.

4.3. Finally, we turn to the case where G is solvable. Let
G = G(o) > G(l) > .02 G(Z) = {1} be the derived series of G . For

arbitrary 9o> 91> ++o» 9y in 6 and a in A# , define

[rgks gk—l’ seey go, a]] in A# as follows:-

[IgO, al = [a-ld>§ }a , and given that b = ﬂ-‘qk-l’ cevs oo all has
0

been defined,
o> 9gqs --+» 99 A = {b'lngk]b .
Straightforward induction arguments prove the following:-
LEMMA 6. (i) The k-th derived group of G' can be gemerated by
the set {(:ck, 1), (, [[xk-l’ ees T al) : z, € G(i), a € A#} .
(ii) [[xk, cees Tys a” = [[:ck, cees T an]] for all integers, n .

(iii) For all a in A and x, in G(t) R [[:ck, cees T all is in

G(k+l) ]

Note that this lemma is true for any O-group, G .

Now we can prove our final theorem.
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THEOREM 6. If G 4is solvable of length 1, then ¢ 4s solvable
of length 1 .

Proof. It is sufficient to show that any two generators of the

(1-1)-th derived group of G# commute. By Lemma 6 (Z), and remembering

(z-1)

that G is abelian, we must show that, for all z, in G(l_l) and

b= ﬂkl-2’ e s aj (xi is in G(i) and a isin 4% with o7 in

4], (xz_l, 1) and (1, b) commute. Now [(xl—l’ 1), (1, )] = (1, e)

. m mi ..
where ¢ = Ekl-l’ cees Tys all . Since ¢ = ﬂ%l—l’ cees Tys @ ﬂ is in
G(Z) = {1} (Lemma 6 (ZZ) and (Zii)), and since O-groups are torsion-free,

it follows that ¢ =1 and the proof is complete. //
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