BULL. AUSTRAL. MATH. SOC. VOL. 12 (1975), 321-335.

An embedding theorem for ordered groups

Colin D. Fox

We show that if the normal closure of an element a, of an orderable group, G, is abelian, then G can be embedded in an orderable group, $G^{\#}$, which contains an *n*-th root of a for every positive integer, n. Furthermore, every order of G extends to an order of $G^{\#}$.

1. Preliminaries

1.1. A partially ordered group is a group, G, which is a partially ordered set under some partial order relation, \leq , the group operation and order relation being compatible in the sense that $g \leq h$ implies $agb \leq ahb$ for a, b, g and h in G. If, in addition, (G, \leq) is a fully ordered set, then (G, \leq) is a fully ordered group (o-group). A group, G, is an orderable group (0-group) if G can be made a fully ordered group. For details of the theory of ordered groups, the reader is referred to Fuchs [5] or Kokorin and Kopytov [8].

Throughout this paper, an *ordered group* will always be a fully ordered group and an *order of a group* will always be a full order. All identities of groups will be written, 1, and generally no notational distinction will be made between orders of different groups. N will denote the set of all strictly positive integers.

If two ordered groups, G and H, are isomorphic and the

Received 13 December 1974. Most of the work in this paper was completed while the author held a Commonwealth Postgraduate Research Award at the Australian National University. The supervision of Professor B.H. Neumann was at all times inspiring, helpful, and readily available.

isomorphism, ϕ , satisfies g > 1 implies $g\phi > 1$ for all g in G, then ϕ is an *o-isomorphism*. So *o-automorphism* has the obvious meaning. If a group, G, can be embedded in an *O*-group, H, in such a way that every order of G extends to an order of H, then the embedding is called an *o*-embedding*.

A subgroup, B, of a group, G, is *isolated* if, for g in G and n in N, g^n belongs to B implies g belongs to B. The *isolated closure* of a subgroup, A, of G is the intersection of all isolated subgroups of G containing A and will be denoted by $I_G(A)$ (or, simply, I(A) if no confusion arises). G is *divisible* if, for all g in G and n in N, the equation $x^n = g$ has a solution in G. A minimal, divisible extension of a group, G, is called a *completion of* G.

1.2. Every abelian O-group has a completion which is an abelian O-group (see [5], p. 36). In fact, every locally nilpotent O-group has a unique (up to o-isomorphism) locally nilpotent, orderable completion (see Mal'cev [10] and [11], and Kokorin and Kopytov [8], p. 58). More recently, Bludov and Medvedev [1] have shown that every metabelian O-group has a metabelian orderable completion. However, this completion is not, in general, unique (see [4]). In view of [1], we can generalize slightly a theorem of Minassian [12] and say that if an O-group, G, has a normal

series $G > G_1 > G_2 > \dots$ such that $\bigcap_{i=1}^{\infty} G_i = \{1\}$ and G/G_i ,

i = 1, 2, ..., is a locally nilpotent 0-group or a metabelian 0-group, then G has an orderable completion.

No more appears to be known at present about completing O-groups in one fell swoop, so to speak. In this paper, we show (§3, Corollary 1) that roots can be adjoined to certain elements of an arbitrary O-group, thereby partially answering a question of Neumann (see [5], p. 211, Problem 16). Namely, those elements contained in a normal abelian subgroup of the group. §3, Theorem 3, generalizes results of Conrad ([3], Theorem 3) and Kopytov [9]. In fact, the method used in §2 is almost identical to that employed by Kopytov [9]. (His theorem appears also in Fuchs [6], p. 83.) In §4, we present some properties of the embedding of Theorem 3.

1.3. We mention a result concerning the abelian completion of an

322

abelian 0-group.

LEMMA 1. Let (A, \leq) be an abelian o-group and let $A^{\#}$ be its abelian completion. Then \leq extends uniquely to an order, $\leq^{\#}$, of $A^{\#}$ and any o-automorphism, ϕ , of (A, \leq) extends uniquely to an o-automorphism, $\phi^{\#}$, of $(A^{\#}, \leq^{\#})$.

We omit the proof as this lemma is virtually a restatement of a lemma of Conrad ([3], p. 518).

2. Completing a normal, abelian subgroup of an O-group

We begin with a definition. By completing a subgroup, U, of a group, V, we mean that V can be embedded in a group, W, in such a way that W contains a completion of (the image under the embedding of) U.

Suppose G is an O-group with normal, abelian subgroup, A. We wish to complete A and, for the moment, suppose that A is isolated.

For all g in G, denote by ϕ_g the restriction to A of the inner automorphism of G induced by g. (That is, $a\phi_g = g^{-1}ag$.) Let $A^{\#}$ be the abelian completion of A and for all a in $A^{\#}$, let m(a) be a positive integer such that $a^{m(a)}$ is in A. Define $\phi_g^{\#}: A^{\#} \to A^{\#}$ by

(2.1)
$$a\phi_g^{\#} = \left(a^m \phi_g\right)^{1/m}$$
 where $m = m(a)$.

 $\phi_g^{\#}$ is the unique extension of ϕ_g to $A^{\#}$. We emphasize that this definition is independent of the choice of m in N such that a^m is in A .

We have the following:-

LEMMA 2. (i) For all g and h in G, $\phi_{gh}^{\#} = \phi_{g}^{\#} \phi_{h}^{\#}$.

(ii) For all a in A, $\phi_a^{\#} = 1$.

Proof. (i) Conrad proves this in his proof of Theorem 3.1 ([3], p. 519, lines 11-12).

(*ii*) For all a in A, $\phi_a = 1$; so $b\phi_a^{\#} = \left(b^m \phi_a\right)^{1/m} = b$ for all b in $A^{\#}$ (where m = m(b)). //

Now we are ready to complete A. Let $G^{\#}$ be the (set theoretic) cartesian product, $G \times A^{\#}$, modulo the equivalence (2.2) (g, a) = (h, b) iff h = gc and $b = c^{-1}a$ for some c in A. It is easy to show that (2.2) *does* define an equivalence relation on $G \times A^{\#}$.

Define multiplication in $G^{\#}$ by (2.3) $(g, a)(h, b) = \left[gh, \left[a\phi_{h}^{\#}\right]b\right]$.

To show that this definition is independent of the choice of g and h in G and a and b in $A^{\#}$, take any c and d in A. Then

$$(gc, c^{-1}a)(hd, d^{-1}b) = \left[gchd, (c^{-1}a)\phi_{hd}^{\#}d^{-1}b\right] \qquad (by (2.3))$$

$$= \left[gh(h^{-1}ch)d, (c^{-1}\phi_{h})\left[a\phi_{h}^{\#}\right]d^{-1}b\right] \qquad (by \text{ Lemma } 2)$$

$$= \left[ghd(c\phi_{h}), (c\phi_{h})^{-1}d^{-1}\left[a\phi_{h}^{\#}\right]b\right]$$

$$(A^{\#} \text{ is abelian and } A \text{ is normal in } G)$$

$$= \left[gh, \left[a\phi_{h}^{\#}\right]d\right] \qquad (by (2.2))$$

$$= (g, a)(h, d) \qquad (by (2.3)).$$

So the definition of multiplication is satisfactory.

Associativity can be verified directly, (1, 1) is an identity for $G^{\#}$ and an inverse of (g, a) is $\left(g^{-1}, a^{-1}\phi_{g^{-1}}^{\#}\right)$. So $G^{\#}$ is a group. The map $g \mapsto (g, 1)$ embeds G in $G^{\#}$ and, since (a, 1) = (1, a) for all a in A and since, for b in $A^{\#}$, the map $b \mapsto (1, b)$ embeds $A^{\#}$ in $G^{\#}$, we have the following:-

THEOREM 1. The embedding of G into $G^{\#}$ given above completes the

normal, abelian, isolated subgroup, A , of G . Furthermore, $G^{\#}/A^{\#}$ is isomorphic to G/A .

Proof. It remains to prove the latter statement. $A^{\#}$ is normal in $G^{\#}$ because, for all (g, a) and (1, b) in $G^{\#}$,

$$(g, a)^{-1}(1, b)(g, a) = \left(1, b\phi_g^{\#}\right)$$
.

We merely observe that the obvious mapping, $(g, a)A^{\#} \mapsto gA$, is the required isomorphism of $G^{\#}/A^{\#}$ onto G/A. //

In order to discard the supposition that A is isolated, we need the following:-

LEMMA 3. Let A be an abelian subgroup of the O-group, G. Then the isolated closure, I(A), of A in G is an abelian subgroup of G. If, in addition, A is normal, then I(A) is normal.

Proof. Let $B = \{g \in G : g^m \in A \text{ for some } m \text{ in } N\}$. We show that *B* is an abelian subgroup of *G* and that B = I(A). Take *g* and *h* in *B* and let *m* and *n* belong to *N* such that g^m and h^n are in *A*. Then $[g^m, h^n] = 1$, and so [g, h] = 1 (see [5], p. 38). Hence, $(gh^{-1})^{mn} = g^{mn}h^{-nm}$ which belongs to *A*. So gh^{-1} is in *B* and we have shown that *B* is an abelian subgroup of *G*.

To show that B = I(A), take g in G such that g^n is in B for some n in N. Then there is m in N such that $g^{mn} = (g^n)^m$ is in A; so g is in B. That is B is an isolated subgroup of G and, since $A \leq B$, it follows that $I(A) \leq B$. For all g in $G \setminus I(A)$, g^n is in $G \setminus I(A)$ and, hence, in $G \setminus A$ for all n in N (because I(A) is isolated and $A \leq I(A)$); so g is in $G \setminus B$ and it follows that $B \leq I(A)$.

Now suppose A is normal. We show that B is normal. Take b in B and g in G, and let b^m belong to A for m in N. Then $(g^{-1}bg)^m = g^{-1}b^mg$ is in A - so $g^{-1}bg$ is in B and, hence, B is normal. // We are now in a position to prove:-

THEOREM 2. If G is an O-group with normal, abelian subgroup, A, then A can be completed.

Proof. Take the abelian completion, $I(A)^{\#}$, of I(A) and let $G^{\#}$ be $G \times I(A)^{\#}$ modulo the appropriate equivalence (cf. (2.2)) and with the appropriate multiplication (cf. (2.3)). Then by Theorem 1, the embedding G into $G^{\#}$ completes I(A) and, hence, completes A. //

[Observe that if A is not isolated, then (in view of our future requirements) I(A) must be used in the construction of $G^{\#}$. Otherwise, there would be g in $G \lor A$, a in $A^{\#} \lor A$ and m in N such that $g^{m} = a^{m}$ is in A. That is, $(g, 1)^{m} = (1, a)^{m}$ while $(g, 1) \neq (1, a)$, an impossible situation in an O-group (see [5], p. 37, Proposition 9). Since we want to be able to order $G^{\#}$, such obvious hindrances must be removed.]

3. An order for $g^{\#}$

Take an O-group, G, with normal, abelian subgroup, A. By Lemma 3, we suffer no loss of generality by supposing that A is isolated, so embed G in $G^{\#}$ to complete A as in §2. Now take any order, \leq , of G. For (g, a) in $G^{\#}$, define

(3.1) (g, a) > 1 if, and only if, $g^m a^m > 1$ in G, where m = m(a).

We must show that this definition is satisfactory in two senses. First, we must show that if a^m and a^n are in A, then $g^m a^m > 1$ implies $g^n a^n > 1$, and, second, that if (g, a) > 1, then $(gb, b^{-1}a) > 1$ for all b in A. (There is, of course, another sense in which this definition has to be satisfactory. Namely, that (3.1) makes $G^{\#}$ an o-group. This we show in due course.) We need the following:-

LEMMA 4. Let (V, \leq) be a partially ordered group. Take v and w in V and s in N. Then

326

(i)
$$v\omega \leq wv$$
 implies $v^{\delta}w^{\delta} \leq (v\omega)^{\delta} \leq w^{\delta}v^{\delta}$,

(ii)
$$vw > 1$$
 implies $v^{s}w^{s} > 1$, and

(iii) if (V, \leq) is fully ordered, then $v^{s}w^{s} > 1$ implies vw > 1.

Proof. Straightforward induction proofs give (i) and (ii) while (iii) follows from (i). (Compare (i) with Chehata [2], Lemma 9.) In fact, (iii) provides justification for trying a definition like (3.1). //

Now take a in $A^{\#}$, g in G and m, n in N such that a^{m} , a^{n} are in A. A standard euclidean algorithm argument shows that m and n are multiples of k in N, where k is the smallest positive integer such that a^{k} is in A. Let m = rk and n = sk where r, s are in N. Then

$$g^{m}a^{m} > 1 \Rightarrow g^{rk}a^{rk} > 1$$

$$\Rightarrow g^{k}a^{k} > 1 \qquad (by Lemma 4 (iii))$$

$$\Rightarrow g^{sk}a^{sk} > 1 \qquad (by Lemma 4 (iii)).$$

$$\Rightarrow g^{n}a^{n} > 1 .$$

Now take (g, a) > 1 in $G^{\#}$ and any b in A. By (3.1), $(gb, b^{-1}a) > 1$ if, and only if, $(gb)^{m}(b^{-1}a)^{m} > 1$ in G where $m = m(b^{-1}a)$. Since b is in A, we may choose $m(b^{-1}a) = m(a)$. So, we must show that $(gb)^{m}b^{-m}a^{m} > 1$ (equivalently $b^{-m}a^{m}(gb)^{m} > 1$), knowing that $g^{m}a^{m} > 1$ (equivalently $a^{m}g^{m} > 1$), where $m = m(a) = m(b^{-1}a)$. Suppose $gb \ge bg$ in G. Then $(gb)^{m} \ge b^{m}g^{m}$ (Lemma 4 (i)). So,

$$b^{-m}a^{m}_{.}(gb)^{m} \ge b^{-m}a^{m}b^{m}g^{m}$$
$$= a^{m}g^{m} \quad (A \text{ abelian})$$
$$> 1 .$$

Similarly, if gb < bg in G, then $(gb)^m b^{-m} a^m > 1$. Hence, definition (3.1) makes sense. To show that (3.1) makes $G^{\#}$ an *o*-group, we need the following:-

LEMMA 5. For (g, a) in $G^{\#}$, $(g, a)^{-1} > 1$ if, and only if, $g^{m}a^{m} < 1$ in G, where m = m(a).

Proof. Observe that $\left[a\phi_{g}^{\#}\right]^{m} = a^{m}\phi_{g}$ is in A. So, we can always choose $m\left[a\phi_{g}^{\#}\right] = m(a)$ (and this choice we shall make in the following argument). Since $(g, a)^{-1} = \left[g^{-1}, a^{-1}\phi_{g}^{\#}\right]$, it follows (by (3.1)) that $(g, a)^{-1} > 1$ if, and only if, $g^{-m}\left[a^{-1}\phi_{g}^{\#}\right]^{m} > 1$ in G. Now $g^{-m}\left[a^{-1}\phi_{g}^{\#}\right]^{m} = g^{-m}ga^{-m}g^{-1} = g^{-(m-1)}(g^{m}a^{m})^{-1}g^{m-1}$; whence, $(g, a)^{-1} > 1$ if, and only if, $(g^{m}a^{m})^{-1}g^{m-1}$; whence, $(g, a)^{-1} > 1$ if, and only if, $(g^{m}a^{m})^{-1} > 1$ in G and the result follows. //

To show that $(G^{\#}, \leq)$ is an *o*-group, we show (cf. [5], p. 13) that for all x and y in $G^{\#}$:-

(i) x > 1 implies $x^{-1} \neq 1$, (ii) $x \neq 1$ implies x > 1 or $x^{-1} > 1$, (iii) x > 1 and y > 1 implies xy > 1, and (iv) x > 1 implies $y^{-1}xy > 1$.

(i) Take (g, a) > 1 with m = m(a). So $g^m a^m > 1$ in G; hence $g^m a^m \not = 1$, and so $(g, a)^{-1} \not = 1$ (by Lemma 5).

(ii) Take any $(g, a) \neq 1$ in $G^{\#}$ with m = m(a). If $g^{m}a^{m} > 1$ in G, then (g, a) > 1. If $g^{m}a^{m} < 1$ in G, then $(g, a)^{-1} > 1$ (Lemma 5). Now $g^{m}a^{m} \neq 1$ by the following argument:-

$$g^{m}a^{m} = 1 \Rightarrow g^{m} = a^{-m}$$

$$\Rightarrow g^{m} \in A$$

$$\Rightarrow g \in A \qquad (A \text{ isolated in } G)$$

$$\Rightarrow g = a^{-1} \qquad ([5], p. 57)$$

$$\Rightarrow (g, a) = 1 \qquad (by (2.2)).$$

(iii) Take (g, a) > 1 and (h, b) > 1 in $G^{\#}$. Since $a^{m(a)m(b)}$ and $b^{m(b)m(a)}$ are in A, we may choose (and shall choose in the following argument) m = m(a) = m(b). By definitions (2.3) and (3.1), we have (g, a)(h, b) > 1 if, and only if, $(gh)^{m}(h^{-1}a^{m}h)b^{m} > 1$ in G.

Suppose $gh \ge hg$. Then, transforming each side by h, we have $(h^{-1}gh)h \ge h(h^{-1}gh)$. So, $(gh)^m = (h(h^{-1}gh))^m \ge h^m(h^{-1}gh)^m = h^m(h^{-1}g^mh)$.

Henc e

$$(gh)^{m} (h^{-1}a^{m}h) b^{m} \ge h^{m} (h^{-1}g^{m}h) (h^{-1}a^{m}h) b^{m}$$

$$= b^{-m} [(b^{m}h^{m}) h^{-1} (g^{m}a^{m}) h] b^{m}$$

$$> 1 \quad (\text{because} \quad b^{m}h^{m} > 1 \quad \text{and} \quad g^{m}a^{m} > 1 \quad \text{in} \quad G).$$

Similarly, if gh < hg, we have

$$(gh)^{m}(h^{-1}a^{m}h)b^{m} > (h^{-1}g^{m}h)h^{m}b^{m}(h^{-1}a^{m}h)$$

= $h^{-1}a^{-m}h[h^{-1}(a^{m}g^{m})h(h^{m}b^{m})]h^{-1}a^{m}h$
> 1.

(iv) Take (g, a) > 1 and (h, b) in $G^{\#}$. Since (h, b) = (h, 1)(1, b) and since $(uv)^{-1}w(uv) = v^{-1}(u^{-1}wu)v$ is an identity for groups, we may show, separately, that $(h, 1)^{-1}(g, a)(h, 1) > 1$ and $(1, b)^{-1}(g, a)(1, b) > 1$. Now $(h, 1)^{-1}(g, a)(h, 1) = \left[h^{-1}gh, a\phi_{h}^{\#}\right]$. Setting $m = m(a) = m\left[a\phi_{h}^{\#}\right]$, we have $\left[h^{-1}gh, a\phi_{h}^{\#}\right] > 1$ if, and only if, $h^{-1}g^{m}h\left[a^{m}\phi_{h}\right] > 1$ in G, where $h^{-1}g^{m}h\left[a^{m}\phi_{h}\right] = h^{-1}(g^{m}a^{m})h > 1$ in G. So

$$(h, 1)^{-1}(g, a)(h, 1) \ge 1 . \text{ Now } (1, b)^{-1}(g, a)(1, b) = \left(g, \left(b\phi_g^{\#}\right)^{-1}ab\right) .$$
Setting $m = m(a) = m(b)$, we have $\left(g, \left(b\phi_g^{\#}\right)^{-1}ab\right) \ge 1$ if, and only if,
 $g^m(g^{-1}b^{-m}g)a^mb^m \ge 1$ in G , the latter being equivalent to
 $a^mg^m[g, b^m] \ge 1$ in G . If $[g, b^m] \ge 1$ in G , then
 $a^mg^m[g, b^m] \ge a^mg^m \ge 1$. Suppose $[g, b^m] < 1$ in G . Now
 $[g, b^m] < 1 \Rightarrow b^{-m}gb^m < g$
 $\Rightarrow b^{-m}g^{m-1}b^m = (b^{-m}gb^m)^{m-1} \le g^{m-1}$
(only if $m = 1$ does equality hold)

So,

$$g^{m}a^{m} > 1 \Rightarrow g^{m} > a^{-m}$$

$$\Rightarrow g^{m-1} > a^{-m}g^{-1}$$

$$\Rightarrow b^{-m}g^{m-1}b^{m} > b^{-m}(a^{-m}g^{-1})b^{m}$$

$$\Rightarrow g^{m-1} > b^{-m}(a^{-m}b^{-1})b^{m} \text{ (since } g^{m-1} \ge b^{-m}g^{m-1}b^{m})$$

$$\Rightarrow g^{m} > a^{-m}[b^{m}, g]$$

$$\Rightarrow a^{m}g^{m}[g, b^{m}] > 1 .$$

So, $(1, b)^{-1}(g, a)(1, b) > 1$ and, hence, $(h, b)^{-1}(g, a)(h, b) > 1$.

So, $(G^{\#}, \leq)$ is an *o*-group. Since the order of $G^{\#}$ extends that of *G* (that is, (g, 1) > 1 in $G^{\#}$ if, and only if, g > 1 in *G*), we have:-

THEOREM 3. Let G be an O-group with normal, abelian subgroup, A. Then A can be completed by o*-embedding G in an O-group, $G^{\#}$. If $A^{\#}$ is the completion of (the image under the embedding of) A, then $G^{\#}/A^{\#}$ is isomorphic to G/A.

As a corollary, we have the result mentioned in §1.2.

COROLLARY 1. Let G be an O-group, let a be an element of G, and let n be in N. If $\{a\}^G$ (the normal closure of $\{a\}$ in G) is abelian, then G can be o^* -embedded in an O-group, H , in which there is a solution to the equation $x^n = a$.

Observe that $\{a\}^G$ is abelian if, and only if, [g, a, a] = 1 for all g in G. (Here [g, a, a] is the commutator [[g, a], a] where $[g, a] = [g, 1a] = g^{-1}a^{-1}ga$. More generally, [g, ka] = [[g, (k-1)a], a]for all $k \ge 2$ in N.) So Corollary 1 can be rephrased as:-

COROLLARY 1'. Let G, a and n be as in Corollary 1. If [g, a, a] = 1 for all g in G, then G can be o*-embedded in an O-group, H, in which there is a solution to the equation $x^n = a$.

Corollaries 1 and 1' suggest the questions:-

(1) What happens if the normal closure of a is

- (i) (locally) nilpotent? or
- (ii) metabelian?
- (2) What happens if, for some k > 2 in N, [g, ka] = 1 for all g in G?

I suspect that the answer to (1) (i) (effectively a question of Kokorin see [7], Question 1.61) will be a theorem similar to Corollary 1, while the situations described in (1) (ii) and (2) seem less straightforward.

4. Some properties of the embedding $G \rightarrow G^{\#}$

4.1. We begin by showing that our method of completing a normal, abelian subgroup of an O-group is, essentially, the only way.

THEOREM 4. Let G be an O-group with normal, abelian, isolated subgroup A. Then there is an O-group, H, which

- (i) completes A and
- (ii) is generated by G and $I_{\mu}(A)$.

Any 0-group, K, satisfying (i) and (ii) is isomorphic to H, the restriction of the isomorphism to G being the identity. Furthermore, given any order of K, the isomorphism can be made an o-isomorphism in a natural manner.

Before proving this theorem, we mention that, in view of a result of Smirnov [13], our Theorem 4 is stronger than the similar theorem of Conrad ([3], Theorem 3). Smirnov shows that a maximal, normal, abelian subgroup of an O-group, V, need not be convex under any order of V.

Proof of Theorem 4. Clearly, $G^{\#}$ (as constructed in §2) satisfies (*i*) and (*ii*). Let $H = G^{\#}$ and write elements of H as formal products, ga, with g in G and a in $I_{H}(A)$ (subject, of course, to an equivalence similar to (2.2)). Let K be any O-group satisfying (*i*) and (*ii*), and, similarly, write elements of K in the form, gb, with g in G and b in $I_{K}(A)$. Since $I_{H}(A)$ and $I_{K}(A)$ are abelian completions of A, there is an isomorphism, χ , from $I_{H}(A)$ onto $I_{K}(A)$ satisfying $a\chi = a$ for all a in A. Define $\psi : H \neq K$ by $(ga)\psi = g(a\chi)$. It is not difficult to show that ψ is an isomorphism from H onto K, and that the restriction of ψ to G is the identity.

Now take any order of K. This naturally induces an order of G which in turn induces an order of H (cf. (3.1)). Denote all these orders by \leq and take any ga > 1 in H. That is, $g^m a^m > 1$ in G, where m = m(a). So

$$1 < g^{m} a^{m} = g^{m} (a^{m} \chi) = g^{m} (a \chi)^{m}$$
.

By Lemma 4 (*iii*), $(ga)\psi = g(a\chi) > 1$ in K, and so ψ is an o-isomorphism. //

4.2. For the remainder of this section, let G, A, $G^{\#}$ and $A^{\#}$ be as in §3.

Let $\Omega(G)$ and $\Omega(G^{\#})$ denote the set of all full orders of G and $G^{\#}$ respectively. A group is an 0^* -group if every partial order of the group extends to a full order of the group. A subgroup of an 0-group, V, is relatively (respectively absolutely) convex in V if it is convex under at least one full order (respectively all full orders) of V. A normal subgroup, W, of a group, V, is strongly isolated in V if, for v, v_1, v_2, \ldots, v_k in $V, v_1^{-1}vv_1v_2^{-1}vv_2 \ldots v_k^{-1}vv_k$ belongs to W implies v belongs to W.

Proofs for the following rather motley theorem can be found in [4], Chapter 2.

THEOREM 5. (i) There is a one-to-one mapping from $\Omega(G)$ onto $\Omega(G^{\#})$.

(ii) If A is relatively (respectively absolutely) convex in G, then $A^{\#}$ is relatively (respectively absolutely) convex in $G^{\#}$.

(iii) If A is strongly isolated in G , then $A^{\#}$ is strongly isolated in $G^{\#}$.

(iv) If G is an 0^* -group, then $G^{\#}$ is an 0^* -group.

4.3. Finally, we turn to the case where *G* is solvable. Let $G = G^{(0)} > G^{(1)} > \ldots > G^{(l)} = \{1\}$ be the derived series of *G*. For arbitrary g_0, g_1, \ldots, g_k in *G* and *a* in $A^{\#}$, define $[g_k, g_{k-1}, \ldots, g_0, a]$ in $A^{\#}$ as follows:-

 $[\![g_0, a]\!] = \left(a^{-1}\phi_{g_0}^{\#}\right)a$, and given that $b = [\![g_{k-1}, \ldots, g_0, a]\!]$ has been defined,

$$\llbracket g_k, g_{k-1}, \ldots, g_0, a \rrbracket = \left(b^{-1} \phi_{g_k}^{\#} \right) b .$$

Straightforward induction arguments prove the following:-

LEMMA 6. (i) The k-th derived group of $G^{\#}$ can be generated by the set $\{(x_k, 1), (1, [x_{k-1}, ..., x_0, a]]\} : x_i \in G^{(i)}, a \in A^{\#}\}$. (ii) $[x_k, ..., x_0, a]^n = [x_k, ..., x_0, a^n]$ for all integers, n. (iii) For all a in A and x_i in $G^{(i)}$, $[x_k, ..., x_0, a]$ is in $G^{(k+1)}$.

Note that this lemma is true for any O-group, G. Now we can prove our final theorem. THEOREM 6. If G is solvable of length 1, then $G^{\#}$ is solvable of length 1.

Proof. It is sufficient to show that any two generators of the (l-1)-th derived group of $G^{\#}$ commute. By Lemma 6 (*i*), and remembering that $G^{(l-1)}$ is abelian, we must show that, for all x_{l-1} in $G^{(l-1)}$ and $b = [x_{l-2}, \ldots, x_0, a]$ (x_i is in $G^{(i)}$ and a is in $A^{\#}$ with $a^{\#}$ in A), (x_{l-1} , 1) and (1, b) commute. Now $[(x_{l-1}, 1), (1, b)] = (1, c)$ where $c = [x_{l-1}, \ldots, x_0, a]$. Since $c^{\#} = [x_{l-1}, \ldots, x_0, a^{\#}]$ is in $G^{(l)} = \{1\}$ (Lemma 6 (*ii*) and (*iii*), and since 0-groups are torsion-free, it follows that c = 1 and the proof is complete. //

References

- [1] В.В. Блудов, Н.Я. Медведев [В.В. Bludov, N.Ja. Medvedev], "О пополнении упорядочиваетых метабелевых групп" [On the completion of an orderable metabelian group], Algebra i Logika 13 (1974), 369-373.
- [2] C.G. Chehata, "On a theorem on ordered groups", Proc. Glasgow Math. Assoc. 4 (1958), 16-21.
- [3] Paul Conrad, "Extensions of ordered groups", Proc. Amer. Math. Soc.
 6 (1955), 516-528.
- [4] Colin D. Fox, "The problem of adjoining roots to ordered groups", (PhD thesis, Australian National University, Canberra, 1974). See also Abstract: Bull. Austral. Math. Soc. 11 (1974), 157-158.
- [5] L. Fuchs, Partially ordered algebraic systems (Pergamon, Oxford, London, New York, Paris, 1963).
- [6] László Fuchs, Teilweise geordnete algebraische Strukturen (Akadémiai Kiadó, Budapest, 1966).

- [7] М.И. Наргаполов, Ю.И. Мерэлянов, В.Н. Ремесленников [М.I. Kargapolov, Yu.I. Merzljakov, V.N. Remeslennikov], Ноуровская тетрадь (Нерешенные задачи теории групп) [Kourov notebook. Unsolved problems in the theory of groups, 3rd edition, supplemented] (Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1969).
- [8] А.И. Кокорин, В.М. Копытов, Линейно упорядоченные группы (Nauka, Moscow, 1972).
 - A.I. Kokorin and V.M. Kopytov, Fully ordered groups (translated by D. Louvish. John Wiley & Sons, New York, Toronto; Israel Program for Scientific translations, Jerusalem, London, 1974).
- [9] В.М. Копытов [V.M. Kopytov], "О пополнении центра упорядоченной группы" [On the completion of the centre of an ordered group], Ural. Gos. Univ. Mat. Zap. 4 (1963), 20-24.
- [10] А.И. Мальцев [А.I. Mal'cev], "Нильпотентные группы без кручения" [Nilpotent torsion-free groups], *Izv. Akad. Nauk SSSR Ser. Mat.* 13 (1949), 201-212.
- [11] А.И. Мальцев [A.I. Mal'cev], "О доупорядочении групп" [On the completion of group order], Trudy Mat. Inst. Steklov. 38 (1951), 173-175.
- [12] Donald P. Minassian, "An embedding theorem for ordered groups", Canad. J. Math. 24 (1972), 944-946.
- [13] Д.М. Смирнов [D.M. Smirnov], "Правоупорядоченные группы" [Rightordered groups], *Algebra i Logika* 5 (6) (1966), 41-59.

Department of Mathematics, La Trobe University, Bundoora, Victoria.