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An embedding theorem

for ordered groups

Colin D. Fox

We show that if the norm a], closure of an element a , of an

orderable group, G , is abelian, then G can be embedded in an

orderable group, u , which contains an n-th root of a for

every positive integer, n . Furthermore, every order of G

extends to an order of u .

1. Preliminaries

1.1. A partially ordered group is a group, G , which is a partially

ordered set under some partial order relation, - , the group operation and

order relation being compatible in the sense that g S h implies

agb 5 ahb for a, b, g and h in G . If, in addition, (G, 5) is a

fully ordered set, then (G, S) is a fully ordered group (.o-group). A

group, G , is an orderable group (O-group) if G can be made a fully

ordered group. For details of the theory of ordered groups, the reader is

referred to Fuchs [5] or Kokorin and Kopytov [S].

Throughout this paper, an ordered group will always be a fully ordered

group and an order of a group will always be a full order. All identities

of groups will be written, 1 , and generally no notational distinction

will be made between orders of different groups. M will denote the set of

all strictly positive integers.

If two ordered groups, G and H , are isomorphic and the
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322 Col in D. Fox

isomorphism, (f> , s a t i s f i e s g > 1 implies g§ > 1 for a l l g in G ,

then <f> i s an o-isomorphism. So o-automorphism has the obvious meaning.

If a group, G , can be embedded in an O-group, H , in such a way that

every order of G extends to an order of H , then the embedding i s called

an o*-embedding.

A subgroup, B , of a group, G , is isolated if, for g in G and

M in N , g belongs to B implies g belongs to B . The isolated

closure of a subgroup, A , of G i s the intersection of a l l isolated

subgroups of G containing A and wil l be denoted by I~(A) (or, simply,

I(A) i f no confusion a r i s e s ) . G i s divisible if, for a l l g in G and

n in W , the equation x = g has a solution in G . A minimal,

d iv i s ib l e extension of a group, G , i s called a completion of G .

1.2. Every abelian O-group has a completion which is an abelian

O-group (see [ 5 ] , p . 36). In fact, every local ly nilpotent O-group has

a unique (up to o-isomorphism) locally ni lpotent , orderable completion

(see Mal'cev [JO] and [ / / ] , and Kokorin and Kopytov [S] , p. 58). More

recen t ly , Bludov and Medvedev [7] have shown that every metabelian O-group

has a metabelian orderable completion. However, th i s completion is not, in

general , unique (see [4 ] ) . In viev of [ / ] , we can generalize s l ight ly a

theorem of Minassian [7 2] and say that if an O-group, G , has a normal
00

se r ies G > G > Go > . . . such that 0 G. = {1} and G/G. ,
1 2 i=l v %

i = 1, 2, ... , i s a local ly nilpotent O-group or a metabelian O-group,

then G has an orderable completion.

No more appears to be known at present about completing O-groups in

one f e l l swoop, so to speak. In th is paper, we show (§3, Corollary l ) that

roots can be adjoined to cer ta in elements of an arbi t rary O-group, thereby

p a r t i a l l y answering a question of Neumann (see [5 ] , p . 211, Problem 16).

Namely, those elements contained in a normal abelian subgroup of the group.

§3, Theorem 3 , generalizes resu l t s of Conrad ( [3 ] , Theorem 3) and Kopytov

[ 9 ] . In fact , the method used in §2 i s almost identical to that employed

by Kopytov [ 9 ] . (His theorem appears also in Fuchs [6 ] , p . 83.) In §4, we

present some properties of the embedding of Theorem 3.

1.3. We mention a resu l t concerning the abelian completion of an
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abelian 0-group.

u
LEMMA 1. Let (A, 5) be an abelian o-group and let A be its

# #
abelian completion. Then 5 extends uniquely to an order, 5 , of A
and any o-automorphism, <(> , of {A, 5) extends uniquely to an

M U M

o-automorphism, <j> , of [A , 5 ) .

We omit the proof as this lemma i s virtually a restatement of a lemma

of Conrad ( [3] , p . 518).

2. Completing a normal, abel ian subgroup of an O-group

We begin with a definition. By completing a subgroup, U , of a

group, V , we mean that V can be embedded in a group, W , in such a way

that W contains a completion of (the image under the embedding of) U .

Suppose G is an O-group with normal, abelian subgroup, A . We

wish to complete A and, for the moment, suppose that A i s isolated.

For a l l g in G , denote by (j> the res t r ic t ion to A of the inner

-1 u

automorphism of G induced by g . (That i s , a<f> = g~ ag .) Let A be
u

the abelian completion of A and for a l l a in A , l e t m{a) be a

positive integer such that a is in A . Define <f> : A •* A by

M 1 -\l/m
(2.1) a<t> = a <f> where m = m(a) .

& \ •&)

§ #
<{> is the unique extension of i) to A . We emphasize that this

definition is independent of the choice of m in W such that a" i s in

A .

We have the following:-

LEMMA 2 . ( i ) F o r a l l g a n d h i n G , 4 > * = « ? <£ .
y y

If
(ii) For all a in A , $ = 1 .

Proof, (i) Conrad proves this in his proof of Theorem 3.1 ( [3] ,

p. 519, lines 11-12).
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# ( m I1/"*
(ii) For a l l a i n A , (f> = 1 ; so £><j> = \b <j> = b for a l la a { a)

b i n PL* (vhere m = m(Z>) ) . / /

Now ve are ready to- complete A . Let (f be the (set theoretic)

cartesian product, G x A , modulo the equivalence

(2.2) (g, a) = (h, b) iff h = go and b = e~ a for some c in A .

I t i s easy to show that (2.2) does define an equivalence relation on

G x A# .

Define multiplication in (̂  by

(2.3) (g, a)(h, b) = \gh, [a<))j]zp] .

To show that th is definition i s independent of the choice of g and h in

G and a and b in A , take any e and d in A . Then

(by (2.3))

= \gh{}TXch)d, ( * ~ \ ) (a^jcT'-fc) (by Lemma 2)

[A is abelian and A is normal in G )

= \gh, (a«*]i) (by (2.2))

= fa, a)( / i , i ) (by (2.3)) .

So the definition of multiplication is satisfactory.

Associativity can be verified directly, ( l , l) is an identity for

G and an inverse of (g, a) is \g , a <$> _, • So Cf is a group.
1 9 J

The map g *—+ {g, l) embeds C in f and, since (a, l) = (l, a) for
ft ft

all a in 4 and since, for b in A , the map 2) i—*• (l, fc) embeds A

in t , we have the following:-

THEOREM 1. The embedding of G into CF given above completes the
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normal, abelian, isolated subgroup, A , of G . Furthermore, Cr/A is

isomorphio to G/A .

Proof. I t remains to prove the l a t t e r statement. A i s normal in

G because, for a l l (g, a) and ( l , b) in Cf ,

(g, a)~Hu b)(g, a) = (l, b<j/] .

We merely observe that the obvious mapping, {g, a)A i—• gA , is the

required isomorphism of u IA onto G/A . //

In order to discard the supposition that A is isolated, we need the

following:-

LEMMA 3. Let A be an abelian subgroup of the O-group, G . Then

the isolated closure, I{A) , of A in G is an abelian subgroup of G .

If, in addition, A is normal, then I(A) is normal.

Proof. Let B = {g 6 G : gm € A for some m in N} . We show that

B is an abelian subgroup of G and that B = I(A) . Take g and h in

B and let m and n belong to N such that gm and h are in A .

Then [g , h ] = 1 , and so [g, h] = 1 (see [5], p. 38). Hence,

[gh ) = g h which belongs to A . So gh~ is in B and we have

shown that B is an abelian subgroup of G .

To show that B = I(A) , take g in G such that gn is in S for

some n in N . Then there is m in W such that g = [g ) is in

A ; so g is in B . That is B is an isolated subgroup of G and,

since A < B , it follows that I(A) £ B . For all g in CYZ"U) , gn

is in G\JU) and, hence, in G\A for all n in M (because I{A) is

isolated and 4 £ J(i4) ); so # is in G\B and it follows that

B 5

Now suppose A is normal. We show that B is normal. Take b in

£ and g in G , and let £> belong to A for w in N . Then

[g bg) = g b g is in A - so g bg is in B and, hence, S is

normal. //
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We are now in a position to prove:-

THEOREM 2. If G is an O-group with normal, abelian subgroup, A ,

then A oan be completed.

Proof. Take the abelian completion, J (4 ) # , of I(A) and l e t G*

be G x I(A) modulo the appropriate equivalence [of. (2.2)) and with the

appropriate mult ipl icat ion [cf. (2 .3)) . Then by Theorem 1, the embedding

G into u completes I(A) and, hence, completes A . //

[Observe that i f A i s not isolated, then (in view of our future

requirements) I(A) must be used in the construction of G . Otherwise,

there would be g in G\A , a in A \A and m in N such that

gm = am i s in A . That i s , (g, l)m = ( l , af while (g, l ) * ( 1 , a) ,

an impossible s i tuat ion in an O-group (see [5] , p. 37, Proposition 9)-

Since we want to be able to order U , such obvious hindrances must be

removed.]

M

3. An order for G
Take an O-group, G , with normal, abelian subgroup, A . By

Lemma 3, we suffer no loss of generality by supposing that A is isolated,

so embed G in u to complete A as in §2. Now take any order, 5 , of

G . For {g, a) in tf , define

(3.1) {g, a) > 1 if, and only if, g a > 1 in G , where m = m(a) .

We must show that this definition is satisfactory in two senses.

First, we must show that if a and a are in A , then g a > 1

implies gnan > 1 , and, second, that if {g, a) > 1 , then [gb, b~ a] > 1

for all b in A . (There is, of course, another sense in which this

definition has to be satisfactory. Namely, that (3.1) makes G an

o-group. This we show in due course.) We need the following:-

LEMMA 4. Let (V, <) be a partially ordered group. Take v and w

in V and e in M . Then
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(i) vw £ wv implies v w 5 (vu>) 5 u u ,

(ii) vw > 1 implies v w > 1 , and

(iii) if (V, £) is fully ordered, then vsws > 1 implies

vw > 1 .

Proof. Straightforward induction proofs give (i) and (ii) while (iii)

follows from (i). (Compare (i) with Chehata [2], Lemma 9.) In fact, (iii)

provides justification for trying a definition like (3-1)• //

Now take a in A , g in G and m , n in N such that a , a

are in A . A standard euclidean algorithm argument shows that m and n

are multiples of k in W , where k is the smallest positive integer

such that a is in A . Let m = rk and n = sk where r, s are in

N . Then

j a > 1 * J a > 1

=* g a > 1 (by Lemma h (iii))

** g a > 1 (by Lemma h (ii))~

- gnan > i .

Now take (g, a) > 1 in </ and any b in A . By (3.1),

foi, fc^o) > 1 if, and only if, (gb)m[b~Xa)m > 1 in G where

m = m[b~ a) . Since b is in A , we may choose m[b~ a) = m(a) . So, we

must show that (gb) b a > 1 (equivalently b a (gb) > 1 ) , knowing

that g a > 1 (equivalently a g > 1 ) , where m = m(a) = m[b~ a] .

Suppose gb > bg in G . Then {gb) i bmg (Lemma h (i)). So,

, —ffl 777, , %77f . ., -JH m - , m 777

b a .(gb) > b a b g
TTI m / . ., . v

= a g (A a b e l i a n )
> 1 .

Similarly, if gb < bg in G , then (gb) b a > 1 . Hence, definition

(3.1) makes sense. To show that (3.1) makes Gr an o-group, we need the

following:-
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LEMMA 5. For (g, a) in (f , • (g, a)" 1 > 1 if, and only if,

m mg a < 1 in G , where m = m{a) .

( §\m m
acj) = a 4> is in A . So, we can always

y) y

choose m\a§ I = m(a) (and this choice we shall make in the following
K y)

argument). Since {g, a)'1 = U"1, a~X^ , i t follows (t>y (3.1)) that
*• 3~ '

{g, a ) " 1 > 1 if, and only if, g~™\a~H*_A > 1 in G . Now

-m[ -IJt 1 -m -m - 1 - (m- l ) f m m\-l m-1 , >-l
g \a <p \ = g ga g = g \g a ) 9 i whence, (g, a) > 1

1 g~±}

if, and only if, [g™^]'1 > 1 in G and the result follows. / /

To show that {<?, -) is an o-group, we show (of. [5], p. 13) that

for all x and y in G : -

(i) x > 1 implies x~ ^ 1 ,

(ii) x + 1 implies x > 1 or x~ > 1 ,

(iii) x > 1 and y > 1 implies xy > 1 , and

(iv) x > 1 implies y~ xy > 1 .

(i) Take (g, a) > 1 with m = m(a) . So g a > 1 in G ; hence

g a *f 1 , and so (#•, a) } 1 (by Lemma 5)-

(ii) Take any (<y, a) t- 1 in G with m = m(a) . If g a > 1 in

G , then (<?, a) > 1 . If gma < 1 in G , then {g, a)~ > 1 (Lemma

5). Now g a t 1 by the following argument: -
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mm _* m —
g a = 1 °» g = a

=* g « A
=» g € A (A isolated in G)

• g = a"1 ( [ 5 ] , p . 57)

=» (g, a) = 1 (by (2.2)) .

( I i i ) Take (g, a) > 1 and (ft, b) > 1 in </ . Since
m(a)m(b) . ,m(b)m(a) , , , , . , .

a ' and b are in A , we may choose (and shall choose in

the following argument) m = m{a) = m{b) . By definitions (2.3) and (3-1) ,

we have (g, a)(ft, b) > 1 if, and only if, {gh)m[h~1dnh)bm > 1 in G .

Suppose gh 2 hg . Then, transforming each side by ft , we have

^ ) • So.
(ghf =

Hence

-11a mh)bm

> 1 (because fcV > 1 and / a m > 1 in G ) .

Similarly, if gh < hg , we have

> 1 .

(iv) Take (g, a) > 1 and (ft, fc) in </ . Since

(ft, 2>) = (ft, l)(l, fc) and since (uv)~ w(uv) = v~ (u~ wu)v is an identity

for groups, we may show, separately, that (ft, 1)~ {g, a)(ft, l) > 1 and

( 1 , b)-X(g, a ) ( l , i ) > 1 . Now (ft, l ) " 3 ^ , a)(ft, 1) = [f t"1^, a<

C #} ( •, ,«•)

Setting m = m(a) = m\a<i>̂ \ , we have ft gh, a$,\ > 1 if, and only if,

> 1 in C , where ft"1 A [ a \ ] = h^ifa^h > 1 in C . So
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(h, l)"1(g', a)(h, 1) > 1 . Now ( l , b)~\g, a ) ( l , b) - [<?, [z>*j] ab] .

S e t t i n g m = m{a) = m(£>) , we have \g, \b$ ab\ > 1 i f , and only i f ,
v i. yj )

gm[g~ b~mg]dnbm > 1 in G , the l a t t e r being equivalent to

angm\g. bm] > 1 in G . If [<?, b™] > 1 in C , then

a " W &*] = A m > 1 • Suppose [>, b"] < 1 in C . Now

(only i f 771 = 1 does equality hold) .

So,

gmam >l~gm > a^

^ m-1 . ,-mf -w,-l-\,m /• . m-1 ^ ,-m m-l,w>
^ g >i> [a b )b (^since g 5 b g b )
-* 771 . -m r,m i
•* g > a \b , g]

^ m 771 r ,771-1 . n

So, ( 1 , b)~X{g, a ) ( l , b) > 1 and, hence, (A, i ) " 1 ( ^ , a)(fe, Z>) > 1 .

So, [u , s) i s an o-group. Since the order of CT extends that of

G (that i s , (#, 1) > 1 in G* if , and only if , g > 1 in G ) , we

have: -

THEOREM 3. Let G be an 0-group with normil, abelian subgroup,

A . Then A can be completed by o*-e7rbedding G in an 0-group3 G .
u

If A is the aoTirpletion of (the iTnage under the eTrbedding of) A , then

u/A is isomorphio to G/A .

As a corol lary , we have the resul t mentioned in §1.2.

COROLLARY 1. Let G be an 0-group, let a be an element of G „

and let n be in N . If {a} (the normal closure of {a] in G ) is
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abelian, then G can be o*-embedded in an O-group, H , in which there

is a solution to the equation x = a .

SI

Observe t h a t {a} i s abe l i an i f , and only i f , [g, a, a] = 1 for

a l l g in G . (Here [g, a, a] i s the commutator [[g, a], a~\ where

[g, a] = [g, la] = g^a^ga . More generally, [g, ka] = \[g, (k-l)a], a]

for al l k > 2 in N .) So Corollary 1 can be rephrased as : -

COROLLARY 1 ' . Let G, a and n be as in Corollary 1. If
[g, a, a] = 1 for all g in G , then G can be o*-embedded in an

O-group, U 3 in which there is a solution to the equation x = a .

Corollaries 1 and I 1 suggest the questions:-

(1) What happens if the normal closure of a is

(i) (locally) nilpotent? or

(i i) metabelian?

(2) What happens if, for some k > 2 in W , [g, ka] = 1 for

al l g in G 1

I suspect that the answer to (l) (i) (effectively a question of Kokorin -

see [7], Question 1.6l) will be a theorem similar to Corollary 1, while the

situations described in (1) ( i i ) and (2) seem less straightforward.

4. Some proper t ies of the embedding G •*• G

4.1. We begin by showing that our method of completing a normal,

abelian subgroup of an O-group i s , essentially, the only way.

THEOREM 4. Let G be an O-group with normal, abelian, isolated
subgroup A . Then there is an O-group, H , which

(i) completes A and

(ii) is generated by G and -̂ nĈ ) •

Any O-group, K , satisfying (i) and (ii) is isomorphic to H , the
restriction of the isomorphism to G being the identity. Furthermore,
given any order of K , the isomorphism can be made an o-isomorphism in a
natural manner.
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Before proving this theorem, we mention that, in view of a result of

Smirnov [73], our Theorem h i s stronger than the similar theorem of Conrad

([3] , Theorem 3). Smirnov shows that a maximal, normal, abelian subgroup

of an O-group, V , need not be convex under any order of V .

Proof of Theorem 4. Clearly, (f (as constructed in §2) satisfies

(i) and (ii). Let H = Gr and write elements of H as formal products,

ga , with g in G and a in Ig(A) (subject, of course, to an

equivalence similar to (2.2)). Let K be any O-group satisfying (i) and

(ii), and, similarly, write elements of K in the form, gb , with g in

G and b in IV(A) . Since IU(A) and ISA) are abelian completions
A 12 Ji

of A , there is an isomorphism, Y > from IU(A) onto IV{A) satisfying
ii A

aX = & for a l l a in A . Define \j> : H •* K by {ga)\\> = g{ax) . It is

not difficult to show that ty is an isomorphism from H onto K , and

that the restriction of ty to G is the identity.

Now take any order of K . This naturally induces an order of G

which in turn induces an order of H [of- (3.1)) • Denote al l these orders

by 5 and take any ga > 1 in B . That i s , g a > 1 in G , where

m = m{a) . So

_ 771 TTl 771 ( T7i \ 771/ y77l

1 < g a = g [a X) = 3 (ax) •

By Lemma 1* (Hi), (ga)\p = g(ax) > 1 in K , and so i|> i s an

o-isomorphism. / /

4.2. For the remainder of this section, let G, A, Cr and A be as

in §3.

Let Sl(G) and Sl[Cr) denote the set of al l full orders of G and

u respectively. A group is an 0*-groiqp if every partial order of the

group extends to a full order of the group. A subgroup of an O-group,

V , is relatively (respectively absolutely) convex in V if i t is convex

under at least one full order (respectively al l full orders) of V . A

normal subgroup, W , of a group, V , is strongly isolated in V if, for

v, vx, v2, . . . , v^ in V , v~ w^u" vv^ ... u~ uufe belongs to W

implies v belongs to W .
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Proofs for the following rather motley theorem can be found in [4],

Chapter 2.

THEOREM 5. (i) There is a one-to-one map-ping from Q(G) onto

(ii) If A is relatively (respeotively absolutely) convex in G ,

then A is relatively (respeotively absolutely) convex in CT .

(iii) If A is strongly isolated in G > then A is strongly

isolated in tf .

(iv) If G is an 0*-group, then & is an 0*-group.

4 . 3 . F i n a l l y , we t u r n t o t h e case where G i s s o l v a b l e . Let

G = G^0' > G^1' > . . . > G" ' = { l} be the der ived s e r i e s of G . For

a r b i t r a r y g , g , . . . , g* i n G and a in A , def ine

Rgk, Sfc.-L' •••> a
Q> a]] i n A as f o l l o w s : -

f - 1 # 1
ttffr,. al ~ \a~ <t>̂  a ' a n d 8 i v e n t h a t b = $9j, T •••> 9n' a 3 h a s

u (_ gQ) K-L u
been defined,

Straightforward induction arguments prove the following:-

LEMMA 6. (i) The k-th derived group of u can be generated by

the set {(*k, l ) , ( l , lxk_x, ..., xQ, aj) : z . € G{i), a € }

fla:., . . . , x , aj = \\x,, . . . , x , a for all integers, n .

Tiiij Fcr a l l a in A and x. in G > Hxj,, , x 9 aj is in

Note that th is lemma i s true for any O-group, G •

Now we can prove our final theorem.
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THEOREM 6. If G is solvable of length I s then G# is solvable

of length I .

Proof. I t i s sufficient to show that any two generators of the

(Z—l)-th derived group of (f commute. By Lemma 6 (i), and remembering

tha t G i s abelian, we must show tha t , for a l l x1 in G and

b = 1̂ 7 o , •••> xn» aj («• i s in G^' and a i s in A* with <zm in

4 ) , (x£_i> 1 ) a n d ^1> fc) commute. Now [ ( x j ^ , l ) , ( l , fe)] = ( l , c)

where a = EJCj^. •••> ^ Q . «J • Since cW = \xi_x> • • • . x
0> aH i s in

G = {l} (Lemma 6 CiiJ and (Hi)), and since 0-groups are torsion-free,

i t follows that a = 1 and the proof i s complete. / /
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