An embedding theorem for ordered groups

Colin D. Fox

Abstract

We show that if the normal closure of an element a, of an orderable group, G, is abelian, then G can be embedded in an orderable group, $G^{\#}$, which contains an n-th root of a for every positive integer, n. Furthermore, every order of G extends to an order of $G^{\#}$.

1. Preliminaries

1.1. A partially ordered group is a group, G, which is a partially ordered set under some partial order relation, \leq, the group operation and order relation being compatible in the sense that $g \leq h$ implies $a g b \leq a h b$ for a, b, g and h in G. If, in addition, (G, \leq) is a fully ordered set, then (G, \leq) is a fully ordered group (o-group). A group, G, is an orderable group (0 -group) if G can be made a fully ordered group. For details of the theory of ordered groups, the reader is referred to Fuchs [5] or Kokorin and Kopytov [8].

Throughout this paper, an ordered group will always be a fully ordered group and an order of a group will always be a full order. All identities of groups will be written, 1 , and generally no notational distinction will be made between orders of different groups. N will denote the set of all strictly positive integers.

If two ordered groups, G and H, are isomorphic and the
Received 13 December 1974. Most of the work in this paper was completed while the author held a Commonwealth Postgraduate Research Award at the Australian National University. The supervision of Professor B.H. Neumann was at all times inspiring, helpful, and readily available.
isomorphism, ϕ, satisfies $g>1$ implies $g \phi>1$ for all g in G, then ϕ is an o-isomorphism. So o-automorphism has the obvious meaning. If a group, G, can be embedded in an 0 -group, H, in such a way that every order of G extends to an order of H, then the embedding is called an 0^{*}-embedding.

A subgroup, B, of a group, G, is isolated if, for g in G and n in N, g^{n} belongs to B implies g belongs to B. The isolated closure of a subgroup, A, of G is the intersection of all isolated subgroups of G containing A and will be denoted by $I_{G}(A)$ (or, simply, $I(A)$ if no confusion arises). G is divisible if, for all g in G and n in N, the equation $x^{n}=g$ has a solution in G. A minimal, divisible extension of a group, G, is called a completion of G.
1.2. Every abelian O-group has a completion which is an abelian O-group (see [5], p. 36). In fact, every locally nilpotent O-group has a unique (ip to o-isomorphism) locally nilpotent, orderable completion (see Mal'cev [10] and [11], and Kokorin and Kopytov [8], p. 58). More recently, Bludov and Medvedev [1] have shown that every metabelian O-group has a metabelian orderable completion. However, this completion is not, in general, unique (see [4]). In view of [1], we can generalize slightly a theorem of Minassian [12] and say that if an O-group, G, has a normal series $G>G_{1}>G_{2}>\ldots$ such that $\bigcap_{i=1} G_{i}=\{1\}$ and G / G_{i}, $i=1,2, \ldots$, is a locally nilpotent O-group or a metabelian O-group, then G has an orderable completion.

No more appears to be known at present about completing 0 -groups in one fell swoop, so to speak. In this paper, we show (53, Corollary 1) that roots can be adjoined to certain elements of an arbitrary O-group, thereby partially answering a question of Neumann (see [5], p. 2ll, Problem 16). Namely, those elements contained in a normal abelian subgroup of the group. §3, Theorem 3, generalizes results of Conrad ([3], Theorem 3) and Kopytov [9]. In fact, the method used in $\$ 2$ is almost identical to that employed by Kopytov [9]. (His theorem appears also in Fuchs [6], p. 83.) In §4, we present some properties of the embedding of Theorem 3.
1.3. We mention a result concerning the abelian completion of an
abelian O-group.
LEMMA 1. Let (A, \leq) be an abelian o-group and let $A^{\#}$ be its abelian completion. Then \leq extends uniquely to an order, $\leq^{\#}$, of $A^{\#}$ and any o-automorphism, ϕ, of (A, \leq) extends uniquely to an o-automorphism, $\phi^{\#}$, of $\left(A^{\#}, \leq^{\#}\right)$.

We omit the proof as this lemma is virtually a restatement of a lema of Conrad ([3], p. 518).
2. Completing a normal, abelian subgroup of an o-group

We begin with a definition. By completing a subgroup, U, of a group, V, we mean that V can be embedded in a group, W, in such a way that W. contains a completion of (the image under the embedding of) U.

Suppose G is an O-group with normal, abelian subgroup, A. We wish to complete A and, for the moment, suppose that A is isolated.

For all g in G, denote by ϕ_{g} the restriction to A of the inner automorphism of G induced by g. (That is, $a \phi_{g}=g^{-1} a g$.) Let $A^{\#}$ be the abelian completion of A and for all a in $A^{\#}$, let $m(a)$ be a positive integer such that $a^{m(a)}$ is in A. Define $\phi_{g}^{\#}: A^{\#} \rightarrow A^{\#}$ by

$$
\begin{equation*}
a \phi_{g}^{\#}=\left(a^{m} \phi_{g}\right)^{1 / m} \text { where } m=m(a) \tag{2.1}
\end{equation*}
$$

$\phi_{g}^{\#}$ is the unique extension of ϕ_{g} to $A^{\#}$. We emphasize that this definition is independent of the choice of m in N such that a^{m} is in A.

We have the following:-
LEMMA 2. (i) For all g and h in $G, \phi_{g h}^{\#}=\phi_{g}^{\#} \phi_{h}^{\#}$.
(ii) For all a in $A, \phi_{a}^{\#}=1$.

Proof. (i) Conrad proves this in his proof of Theorem 3.1 ([3], p. 519, lines ll-12).
(ii) For all a in $A, \phi_{a}=1$; so $b \phi_{a}^{\#}=\left(b m_{a}\right)^{1 / m}=b$ for all b in $A^{\#}$ (where $m=m(b)$). //

Now we are ready to complete A. Let $G^{\#}$ be the (set theoretic) cartesian product, $G \times A^{\#}$, modulo the equivalence (2.2) $(g, a)=(h, b)$ iff $h=g c$ and $b=c^{-1} a$ for some c in A. It is easy to show that (2.2) does define an equivalence relation on $G \times A^{\#}$.

Define multiplication in $G^{\#}$ by

$$
\begin{equation*}
(g, a)(h, b)=\left(g h,\left(a \phi_{h}^{\#}\right) b\right) \tag{2.3}
\end{equation*}
$$

To show that this definition is independent of the choice of g and h in G and a and b in $A^{\#}$, take any c and d in A. Then

$$
\begin{array}{rlrl}
\left(g c, c^{-1} a\right)\left(h d, d^{-1} b\right) & =\left(g c h d,\left(c^{-1} a\right) \phi_{h d^{\#}}^{\#} d^{-1} b\right) & (\text { by (2.3)) } \\
& =\left(g h\left(h^{-1} c h\right) d,\left(c^{-1} \phi_{h}\right)\left(a \phi_{h}^{\#}\right) d^{-1} b\right) & \text { (by Lemma 2) } \\
& =\left(g h d\left(c \phi_{h}\right),\left(c \phi_{h}\right)^{-1} d^{-1}\left(a \phi_{h}^{H}\right) b\right) & \\
& \left(A^{\#} \text { is abelian and } A \text { is normal in } G\right) \\
& =\left(g h,\left(a \phi_{h}^{\#}\right) d\right) & & (\text { by (2.2)) } \\
& =(g, a)(h, d) & & (\text { by (2.3))). }
\end{array}
$$

So the definition of multiplication is satisfactory.
Associativity can be verified directly, (1, 1) is an identity for $G^{\#}$ and an inverse of (g, a) is $\left(g^{-1}, a^{-1} \phi_{g^{\#}}^{-1}\right)$. So $G^{\#}$ is a group. The map $g \mapsto(g, 1)$ embeds G in $G^{\#}$ and, since $(a, 1)=(1, a)$ for all a in A and since, for b in $A^{\#}$, the map $b \mapsto(1, b)$ embeds $A^{\#}$ in $G^{\#}$, we have the following:-

THEOREM 1. The embedding of G into $G^{\#}$ given above completes the
normal, abelian, isolated subgroup, A, of G. Furthermore, $G^{\#} / A^{\#}$ is isomorphic to G / A.

Proof. It remains to prove the latter statement. $A^{\#}$ is normal in $G^{\#}$ because, for all (g, a) and $(1, b)$ in $G^{\#}$,

$$
(g, a)^{-1}(1, b)(g, a)=\left(1, b \phi_{g}^{\#}\right)
$$

We merely observe that the obvious mapping, $(g, a) A^{\#} \mapsto g A$, is the required isomorphism of $G^{\#} / A^{\#}$ onto G / A. //

In order to discard the supposition that A is isolated, we need the following:-

LEMMA 3. Let A be an abelian subgroup of the O-group, G. Then the isolated closure, $I(A)$, of A in G is an abelian subgroup of G. If, in addition, A is normal, then $I(A)$ is normal.

Proof. Let $B=\left\{g \in G: g^{m} \in A\right.$ for some m in $\left.N\right\}$. We show that B is an abelian subgroup of G and that $B=I(A)$. Take g and h in B and let m and n belong to N such that g^{m} and h^{n} are in A. Then $\left[g^{m}, h^{n}\right]=1$, and so $[g, h]=1$ (see $\left.[5], p .38\right)$. Hence, $\left(g h^{-1}\right)^{m n}=g^{m n} h^{-n m}$ which belongs to A. So $g h^{-1}$ is in B and we have shown that B is an abelian subgroup of G.

To show that $B=I(A)$, take g in G such that g^{n} is in B for some n in N. Then there is m in N such that $g^{m n}=\left(g^{n}\right)^{m}$ is in A; so g is in B. That is B is an isolated subgroup of G and, since $A \leq B$, it follows that $I(A) \leq B$. For all g in $G \backslash I(A), g^{n}$ is in $G \backslash I(A)$ and, hence, in $G \backslash A$ for all n in N (because $I(A)$ is isolated and $A \leq I(A)$); so g is in $G \backslash B$ and it follows that $B \leq I(A)$.

Now suppose A is normal. We show that B is normal. Take b in B and g in G, and let b^{m} belong to A for m in N. Then $\left(g^{-1} b g\right)^{m}=g^{-1} b^{m} g$ is in A - so $g^{-1} b g$ is in B and, hence, B is normal. //

We are now in a position to prove:-
THEOREM 2. If G is an O-group with normal, abelian subgroup, A, then A can be completed.

Proof. Take the abelian completion, $I(A)^{\#}$, of $I(A)$ and let $G^{\#}$ be $G \times I(A)^{\#}$ modulo the appropriate equivalence (cf. (2.2)) and with the appropriate multiplication (cf. (2.3)). Then by Theorem 1 , the embedding G into $G^{\#}$ completes $I(A)$ and, hence, completes A. //
[Observe that if A is not isolated, then (in view of our future requirements) $I(A)$ must be used in the construction of $G^{\#}$. Otherwise, there would be g in $G \backslash A, a$ in $A^{\#} \backslash A$ and m in N such that $g^{m}=a^{m}$ is in A. That is, $(g, 1)^{m}=(1, a)^{m}$ while $(g, 1) \neq(1, a)$, an impossible situation in an 0 -group (see [5], p. 37, Proposition 9). Since we want to be able to order $G^{\#}$, such obvious hindrances must be removed.]
3. An order for $G^{\#}$

Take an 0 -group, G, with normal, abelian subgroup, A. By Lemma 3, we suffer no loss of generality by supposing that A is isolated, so embed G in $G^{\#}$ to complete A as in $\S 2$. Now take any order, \leq, of G. For (g, a) in $G^{\#}$, define
(3.1) $(g, a)>1$ if, and only if, $g^{m} a^{m}>1$ in G, where $m=m(a)$.

We must show that this definition is satisfactory in two senses. First, we must show that if a^{m} and a^{n} are in A, then $g^{m} a^{m}>1$ implies $g^{n} a^{n}>1$, and, second, that if $(g, a)>1$, then $\left(g b, b^{-1} a\right)>1$ for all b in A. (There is, of course, another sense in which this definition has to be satisfactory. Namely, that (3.1) makes $G^{\#}$ an o-group. This we show in due course.) We need the following:-

LEMMA 4. Let (V, \leq) be a partially ordered group. Take v and w in V and s in N. Then
(i) $v w \leq u v$ implies $v^{s} w^{s} \leq(v w)^{s} \leq w^{s} v^{s}$,
(ii) $v w>1$ implies $v^{s} w^{s}>1$, and
(iii) if (V, \leq) is fully ordered, then $v^{s} w^{s}>1$ implies $v \omega>1$.

Proof. Straightforward induction proofs give (i) and (ii) while (iii) follows from (i). (Compare (i) with Cheha†a [2], Lemma 9.) In fact, (iii) provides justification for trying a definition like (3.1). //

Now take a in $A^{\#}, g$ in G and m, n in N such that a^{m}, a^{n} are in A. A standard euclidean algorithm argument shows that m and n are multiples of k in N, where k is the smallest positive integer such that a^{k} is in A. Let $m=r k$ and $n=s k$ where r, s are in N. Then

$$
\begin{aligned}
g^{m} a^{m}>1 & \Rightarrow g^{r k_{a} r k}>1 \\
& \Rightarrow g^{k_{a}^{k}>1} \quad \\
& \Rightarrow g^{s k_{a} s k}>1 \quad \text { (by Lemma 4 (iii)) } \\
& \Rightarrow g^{n} a^{n}>1 .
\end{aligned}
$$

Now take $(g, a)>1$ in $G^{\#}$ and any b in A. By (3.1), $\left(g b, b^{-1} a\right)>1$ if, and only if, $(g b)^{m}\left(b^{-1} a\right)^{m}>1$ in G where $m=m\left(b^{-1} a\right)$. Since b is in A, we may choose $m\left(b^{-1} a\right)=m(a)$. So, we must show that $(g b)^{m} b^{-m_{a}^{m}}>1$ (equivalently $b^{-m} a^{m}(g b)^{m}>1$), knowing that $g^{m} a^{m}>1$ (equivalently $a^{m} g^{m}>1$), where $m=m(a)=m\left(b^{-1} a\right)$. Suppose $g b \geq b g$ in G. Then $(g b)^{m} \geq b^{m} g^{m}$ (Lemma 4 (i)). So,

$$
\begin{aligned}
b^{-m} m^{m}(g b)^{m} & \geq b^{-m_{a} m_{b} m_{g}^{m}} \\
& =a^{m} g^{m} \quad(A \quad \text { abelian }) \\
& >1
\end{aligned}
$$

 (3.1) makes sense. To show that (3.1) makes $G^{\#}$ an o-group, we need the following: -

LEMMA 5. For (g, a) in $G^{\#},(g, a)^{-1}>1$ if, and only if, $g^{m} a^{m}<1$ in G, where $m=m(a)$.

Proof. Observe that $\left(a \phi_{g}^{\#}\right)^{m}=a^{m} \phi_{g}$ is in A. So, we can always choose $m\left(a \phi_{g}^{\#}\right)=m(a)$ (and this choice we shall make in the following argument). Since $(g, a)^{-1}=\left(g^{-1}, a^{-1} \phi_{g^{\#}}^{-1}\right)$, it follows (by (3.1)) that $(g, a)^{-1}>1$ if, and only if, $g^{-m}\left(\begin{array}{c}a^{-1} \phi_{\phi^{\#}}^{-1}\end{array}\right)^{m}>1$ in G. Now $g^{-m}\left(a^{-1} \phi_{g^{\#}}^{-1}\right)^{m}=g^{-m} g a^{-m} g^{-1}=g^{-(m-1)}\left(g^{m} a^{m}\right)^{-1} g^{m-1}$; whence, $\quad(g, a)^{-1}>1$ if, and only if, $\left(g^{m} a^{m}\right)^{-1}>1$ in G and the result follows. //

To show that $\left(G^{\#}, \leq\right)$ is an o-group, we show (cf. [5], p. 13) that for all x and y in $G^{\#}$:-
(i) $x>1$ implies $x^{-1} \nmid 1$,
(ii) $x \neq 1$ implies $x>1$ or $x^{-1}>1$,
(iii) $x>1$ and $y>1$ implies $x y>1$, and
(iv) $x>1$ implies $y^{-1} x y>1$.
(i) Take $(g, a)>1$ with $m=m(a)$. So $g^{m} a^{m}>1$ in G; hence $g^{m} a^{m} \nmid 1$, and so $(g, a)^{-1} \ngtr 1$ (by Lemma 5).
(ii) Take any $(g, a) \neq 1$ in $G^{\#}$ with $m=m(a)$. If $g^{m} a^{m}>1$ in G, then $(g, a)>1$. If $g^{m} a^{m}<1$ in G, then $(g, a)^{-1}>1$ (Lenma 5). Now $g^{m} a^{m} \neq 1$ by the following argument:-

$$
\begin{array}{rlrl}
g^{m} a^{m}=1 & \Rightarrow g^{m}=a^{-m} \\
& \Rightarrow g^{m} \in A \\
& \Rightarrow g \in A \quad & & (\text { A isolated in } G) \\
& \Rightarrow g=a^{-1} & & ([5], \text { p. } 57) \\
& \Rightarrow(g, a)=1 & & (\text { by }(2.2)) .
\end{array}
$$

(iii) Take $(g, a)>1$ and $(h, b)>1$ in $G^{\#}$. Since $a^{m(a) m(b)}$ and $b^{m(b) m(a)}$ are in A, we may choose (and shall choose in the following argument) $m=m(a)=m(b)$. By definitions (2.3) and (3.1), we have $(g, a)(h, b)>1$ if, and only if, $(g h)^{m}\left(h^{-1} a^{m} h\right) b^{m}>1$ in G.

Suppose $g h \geq h g$. Then, transforming each side by h, we have $\left(h^{-1} g h\right) h \geq h\left(h^{-1} g h\right)$. So,

$$
(g h)^{m}=\left(h\left(h^{-1} g h\right)\right)^{m} \geq h^{m}\left(h^{-1} g h\right)^{m}=h^{m}\left(h^{-1} g^{m} h\right) .
$$

Hence

$$
\begin{aligned}
(g h)^{m}\left(h^{-1} a m\right) b^{m} & \geq h^{m}\left(h^{-1} g^{m} h\right)\left(h^{-1} a^{m} h\right) b^{m} \\
& =b^{-m}\left[\left(b^{m} h^{m}\right) h^{-1}\left(g^{m} a^{m}\right) h\right] b^{m} \\
& \left.>1 \text { (because } b^{m} h^{m}>1 \text { and } g^{m} a^{m}>1 \text { in } G\right) .
\end{aligned}
$$

Similarly, if $g h<h g$, we have

$$
\begin{aligned}
(g h)^{m}\left(h^{-1} a^{m} h\right) b^{m} & >\left(h^{-1} g^{m} h\right) h^{m} b^{m}\left(h^{-1} a^{m} h\right) \\
& =h^{-1} a^{-m} h\left[h^{-1}\left(a^{m} g^{m}\right) h\left(h^{m} b^{m}\right)\right] h^{-1} a^{m} h \\
& >1 .
\end{aligned}
$$

(iv) Take $(g, a)>1$ and (h, b) in $G^{\#}$. Since $(h, b)=(h, 1)(1, b)$ and since $(u v)^{-1} \omega(u v)=v^{-1}\left(u^{-1} w u\right) v$ is an identity for groups, we may show, separately, that $(h, 1)^{-1}(g, a)(h, 1)>1$ and $(1, b)^{-1}(g, a)(1, b)>1$. Now $(h, 1)^{-1}(g, a)(h, 1)=\left(h^{-1} g h, a \phi_{h}^{\#}\right)$. Setting $m=m(a)=m\left(a \phi_{h}^{\#}\right)$, we have $\left(h^{-1} g h, a \phi_{h}^{\#}\right)>1$ if, and only if, $h^{-1} g^{m} h\left(a^{m} \phi_{h}\right)>1$ in G, where $h^{-1} g^{m} h\left(a^{m} \phi_{h}\right)=h^{-1}\left(g^{m} a^{m}\right) h>1$ in G. So
$(h, 1)^{-1}(g, a)(h, 1)>1$. Now $(1, b)^{-1}(g, a)(1, b)=\left(g,\left(b \phi_{g}^{\#}\right)^{-1} a b\right)$. Setting $m=m(a)=m(b)$, we have $\left(g,\left(b \phi_{g}^{\not \prime \prime}\right)^{-1} a b\right)>1$ if, and only if, $g^{m}\left(g^{-1} b^{-m} g\right) a^{m} b^{m}>1$ in G, the latter being equivalent to $a^{m} g^{m}\left[g, b^{m}\right]>1$ in G. If $\left[g, b^{m}\right] \geq 1$ in G, then $a^{m} g^{m}\left[g, b^{m}\right] \geq a^{m} g^{m}>1$. Suppose $\left[g, b^{m}\right]<1$ in G. Now

$$
\left[g, b^{m}\right]<1 \Rightarrow b^{-m} g b^{m}<g
$$

$$
\Rightarrow b^{-m} g^{m-1} b^{m}=\left(b^{-m} g b^{m}\right)^{m-1} \leq g^{m-1}
$$

$$
\text { (only if } m=1 \text { does equality hold). }
$$

So,

$$
\begin{aligned}
g_{a}^{m} a^{m}>1 & \Rightarrow g^{m}>a^{-m} \\
& \Rightarrow g^{m-1}>a^{-m} g^{-1} \\
& \Rightarrow b^{-m} g^{m-1} b^{m}>b^{-m}\left(a^{-m} g^{-1}\right) b^{m} \\
& \left.\Rightarrow g^{m-1}>b^{-m}\left(a^{-m} b^{-1}\right) b^{m} \quad \text { (since } g^{m-1} \geq b^{-m} g^{m-1} b^{m}\right) \\
& \Rightarrow g^{m}>a^{-m}\left[b^{m}, g\right] \\
& \Rightarrow a^{m} g^{m}\left[g, b^{m}\right]>1 .
\end{aligned}
$$

So, $(1, b)^{-1}(g, a)(1, b)>1$ and, hence, $(h, b)^{-1}(g, a)(h, b)>1$.
So, $\left(G^{\#}, \leq\right)$ is an o-group. Since the order of $G^{\#}$ extends that of G (that is, $(g, 1)>1$ in $G^{\#}$ if, and only if, $g>1$ in G), we have:-

THEOREM 3. Let G be an O-group with normal, abelian subgroup, A. Then A can be completed by 0^{*}-embedding G in an o-group, $G^{\#}$. If $A^{\#}$ is the completion of (the image under the embedding of) A, then $G^{\#} / A^{\#}$ is isomorphic to G/A.

As a corollary, we have the result mentioned in §l.2.
COROLLARY 1. Let G be an o-group, let a be an element of G, and let n be in N. If $\{a\}^{G}$ (the normal closure of $\{a\}$ in G) is
abelian, then G can be o*-embedded in an 0-group, H, in which there is a solution to the equation $x^{n}=a$.

Observe that $\{a\}^{G}$ is abelian if, and only if, $[g, a, a]=1$ for all g in G. (Here $[g, a, a]$ is the commutator $[[g, a], a]$ where $[g, a]=[g, l a]=g^{-1} a^{-1} g a$. More generally, $[g, k a]=[[g,(k-1) a], a]$ for all $k \geq 2$ in N.) So Corollary 1 can be rephrased as:-

COROLLARY 1'. Let G, a and n be as in Corollary 1. If $[g, a, a]=1$ for all g in G, then G can be o^{*}-embedded in an O-group, H, in which there is a solution to the equation $x^{n}=a$.

Corollaries 1 and l^{\prime} suggest the questions:-
(1) What happens if the normal closure of a is
(i) (locally) nilpotent? or
(ii) metabelian?
(2) What happens if, for some $k>2$ in $N,[g, k a]=1$ for all g in G ?

I suspect that the answer to (1) (i) (effectively a question of Kokorin see [7], Question l.61) will be a theorem similar to Corollary l, while the situations described in (1) (ii) and (2) seem less straightforward.
4. Some properties of the embedding $G \rightarrow G^{\#}$
4.1. We begin by showing that our method of completing a normal, abelian subgroup of an 0 -group is, essentially, the only way.

THEOREM 4. Let G be an O-group with normal, abelian, isolated subgroup A. Then there is an 0 -group, H, which
(i) completes A and
(ii) is generated by G and $I_{H}(A)$.

Any O-group, K, satisfying (i) and (ii) is isomorphic to H, the restriction of the isomorphism to G being the identity. Furthermore, given any order of K, the isomorphism can be made an o-isomorphism in a natural manner.

Before proving this theorem, we mention that, in view of a result of Smirnov [13], our Theorem 4 is stronger than the similar theorem of Conrad ([3], Theorem 3). Smi rnov shows that a maximal, normal, abelian subgroup of an O-group, V, need not be convex under any order of V.

Proof of Theorem 4. Clearly, $G^{\#}$ (as constructed in 52) satisfies (i) and (i i). Let $H=G^{\#}$ and write elements of H as formal products, $g a$, with g in G and a in $I_{H}(A)$ (subject, of course, to an equivalence similar to (2.2)). Let K be any O-group satisfying (i) and (ii), and, similarly, write elements of K in the form, $g b$, with g in G and b in $I_{K}(A)$. Since $I_{H}(A)$ and $I_{K}(A)$ are abelian completions of A, there is an isomorphism, X, from $I_{H}(A)$ onto $I_{K}(A)$ satisfying $a X=a$ for all a in A. Define $\psi: H \rightarrow K$ by ($g a) \psi=g(a X)$. It is not difficult to show that ψ is an isomorphism from H onto K, and that the restriction of ψ to G is the identity.

Now take any order of K. This naturally induces an order of G which in turn induces an order of H (cf. (3.1)). Denote all these orders by \leq and take any $g a>1$ in H. That is, $g^{m} a^{m}>1$ in G, where $m=m(a)$. So

$$
1<g^{m} a^{m}=g^{m}\left(a^{m} \chi\right)=g^{m}(a \chi)^{m}
$$

By Lemma 4 ($\left.i i_{i}\right),(g a) \psi=g(a \chi)>1$ in K, and so ψ is an o-isomorphism. //
4.2. For the remainder of this section, let $G, A, G^{\#}$ and $A^{\#}$ be as in 53.

Let $\Omega(G)$ and $\Omega\left(G^{\#}\right)$ denote the set of all full orders of G and $G^{\#}$ respectively. A group is an O^{*}-group if every partial order of the group extends to a full order of the group. A subgroup of an O-group, V, is relatively (respectively absolutely) convex in V if it is convex under at least one full order (respectively all full orders) of V. A normal subgroup, W, of a group, V, is strongly isolated in V if, for $v, v_{1}, v_{2}, \ldots, v_{k}$ in $V, v_{1}^{-1} v v_{1} v_{2}^{-1} v v_{2} \ldots v_{k}^{-1} v v_{k}$ belongs to W implies v belongs to W.

Proofs for the following rather motley theorem can be found in [4], Chapter 2.

THEOREM 5. (i) There is a one-to-one mapping from $\Omega(G)$ onto $\Omega\left(G^{\#}\right)$.
(ii) If A is relatively (respectively absolutely) convex in G, then $A^{\#}$ is relatively (respectively absolutely) convex in $G^{\#}$.
(iii) If A is strongly isolated in G, then $A^{\#}$ is strongly isolated in $G^{\#}$.
(iv) If G is an 0^{*}-group, then $G^{\#}$ is an 0^{*}-group.
4.3. Finally, we turn to the case where G is solvable. Let $G=G^{(0)}>G^{(1)}>\ldots>G^{(2)}=\{1\}$ be the derived series of G. For arbitrary $g_{0}, g_{1}, \ldots, g_{k}$ in G and a in $A^{\#}$, define $\llbracket g_{k}, g_{k-1}, \ldots, g_{0}, a \rrbracket$ in $A^{\#}$ as follows:-
$\llbracket g_{0}, a \rrbracket=\left(a^{-1} \phi_{g_{0}}^{\#}\right) a$, and given that $b=\llbracket g_{k-1}, \cdots, g_{0}, a \rrbracket$ has been defined,

$$
\llbracket g_{k}, g_{k-1}, \ldots, g_{0}, a \rrbracket=\left(b^{-1} \phi_{g_{k}}^{\#}\right) b
$$

Straightforward induction arguments prove the following:-
LEMMA 6. (i) The k-th derived group of $G^{\#}$ can be generated by the set $\left\{\left(x_{k}, 1\right),\left(1, \llbracket x_{k-1}, \ldots, x_{0}, a \rrbracket\right): x_{i} \in G^{(i)}, a \in A^{\#}\right\}$.
(ii) $\llbracket x_{k}, \ldots, x_{0}, a \rrbracket^{n}=\llbracket x_{k}, \ldots, x_{0}, a^{n} \rrbracket$ for all integers, n.
(iii) For all a in A and x_{i} in $G^{(i)}, \llbracket x_{k}, \ldots, x_{0}, a \rrbracket$ is in $G^{(k+1)}$

Wote that this lemma is true for any O-group, G.
Now we can prove our final theorem.

THEOREM 6. If G is solvable of length z, then $G^{\#}$ is solvable of length 2 .

Proof. It is sufficient to show that any two generators of the (2-1)-th derived group of $G^{\#}$ commute. By Lemma $6(i)$, and remembering that $G^{(2-1)}$ is abelian, we must show that, for all $x_{\eta-1}$ in $G^{(\eta-1)}$ and $b=\llbracket x_{z-2}, \ldots, x_{0}, a \rrbracket\left(x_{i}\right.$ is in $G^{(i)}$ and a is in $A^{\#}$ with a^{m} in $A),\left(x_{1-1}, 1\right)$ and $(1, b)$ commute. Now $\left[\left(x_{l_{-1}}, 1\right),(1, b)\right]=(1, c)$ where $c=\left[\llbracket x_{\eta_{-1}}, \ldots, x_{0}, a\right]$. Since $c^{m}=\left[\left[x_{\imath_{-1}}, \ldots, x_{0}, a^{m}\right]\right.$ is in $G^{(2)}=\{1\}$ (Lemma $6(i i)$ and (iii)), and since 0 -groups are torsion-free, it follows that $c=I$ and the proof is complete. //

References

[1] В.В. Блудов, Н.Я. Медведев [B.B. Bludov, N.Ja. Medvedev], "О пополнении упорядочиваемых метабелевых групп" [On the completion of an orderable metabelian group], Algebra i Logika 13 (1974), 369-373.
[2] C.G. Chehata, "On a theorem on ordered groups", Proc. Glasgow Math. Assoc. 4 (1958), 16-21.
[3] Paul Conrad, "Extensions of ordered groups", Proc. Amer. Math. Soc. 6 (1955), 516-528.
[4] Colin D. Fox, "The problem of adjoining roots to ordered groups", (PhD thesis, Australian National University, Canberra, 1974). See also Abstract: Bull. Austral. Math. Soc. 11 (1974), 157-158.
[5] L. Fuchs, Partially ordered algebraic systems (Pergamon, oxford, London, New York, Paris, 1963).
[6] László Fuchs, Teilweise geordnete algebraische Strukturen (Akadémiai Kiadó, Budapest, 1966).
[7] М.И. Каргаполов, Ю.И. Мерэляков, В.Н. Ремесленников [М.І. Kargapolov, Yu.l. Merzljakov, V.N. Remeslennikov], Ноуровская тетрадь (Нерешеные задачи теории групп) [Kourov notebook. Unsolved problems in the theory of groups, 3rd edition, supplemented] (Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1969).
[8] А.И. Конорин, В.М. Копытов, Линейно упорядоченные группы (Nauka, Moscow, 1972).
A.I. Kokorin and V.M. Kopytov, Fully ordered groups (translated by D. Louvish. John Wiley \& Sons, New York, Toronto; Israel Program for Scientific translations, Jerusalem, London, 1974).
[9] В.M. Нопытов [V.M. Kopytov], "О пополнении центра упорғдоченной группы" [On the completion of the centre of an ordered group], UraZ. Gos. Univ. Mat. Zap. 4 (1963), 20-24.
[10] А.Н. Мальцев [A.I. Mal'cev], "Ннльпотентные группы без нручения" [Nilpotent torsion-free groups], Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 201-212.
[11] А.И. Мальцев [A.I. Mal'cev], "О доупорядочении групп" [On the completion of group order], Trudy Mat. Inst. Steklov. 38 (1951), 173-175.
[12] Donald P. Minassian, "An embedding theorem for ordered groups", Canad. J. Math. 24 (1972), 944-946.
[13] Д.М. Смирнов [D.M. Smirnov], "Правоупорядоченные группы" [Rightordered groups], Algebra i Logika 5 (6) (1966), 41-59.

Department of Mathematics, La Trobe University, Bundoora, victoria.

