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ATOMICITY AND NILPOTENCE 

KEITH A. KEARNES 

1. Introduction. There is a body of results for lattices known as "Decom­
position Theory" which is aimed at proving certain existence and uniqueness 
theorems concerning irredundant representations of elements of a compactly gen­
erated lattice. The motivation for these results is certainly the quest for sufficient 
conditions on congruence lattices to insure irredundant subdirect representations 
of algebras. These theorems usually include some kind of modularity or distribu­
t i v e hypothesis (for uniqueness) and some atomicity hypothesis (for existence); 
the precise details can be found in [3]. The atomicity condition is usually the 
hypothesis that the lattice in question is strongly atomic or at least atomic. Now, 
it is well-known that every algebra has a weakly atomic congruence lattice. That 
is, if a, (3 G Con A and a < /?, then we can always find a', f3' G Con A such 
that a ^ a7 -< /?' ^ f3. But, in general, congruence lattices of algebras need 
not be atomic. We will show that the assumption that the congruence lattices 
of all algebras in a variety are atomic is a very strong one. The additional as­
sumption that all congruence lattices are modular seems natural, considering our 
motivation, and with it we can completely characterize which varieties consist 
of algebras with atomic congruence lattices. 

Our notation and language for algebras and varieties follows [1] and for 
commutator theory follows [4]. 

2. Atomicity. 

Definition 2.1. A lattice L is atomic if whenever (3 G L and 0 < (3 there 
exists f3' G L such that 0 -< (31 ^ 0. L is strongly atomic if whenever a, (3 G L 
and a < (3 there exists (3' G L such that a < f3' Û (3. 

LEMMA 2.2. Let V be a variety. The following are equivalent: 
(a) Con A is strongly atomic for all A G V. 
(b) Con A is atomic for all A G V. 

If V is congruence modular, then (a) and (b) are also equivalent to: 
(c) For all A G V, each a G Con A has a cover. 
(d) For all A G V, Con A has an atom. 

Proof. The equivalence of (a) and (b) and of (c) and (d) follows from the 
fact that V is closed under homomorphisms. Certainly (b) is stronger than (d), 
so we will be done if we show that (c) implies (b) when V is congruence 
modular. Given A G V and (3 G Con A choose an atom a G Con A. If a < f3 
we are done, so assume that a <£ (3. Then a • /3 — 0, and we may extend a to a 
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congruence 7 maximal with respect to 7 • (3 = 0. 7 has a cover 7' and we have 
0 -< (5 • 7 ; ^ /3. Since A and /? were arbitrary, (b) holds. 

We will say that a variety is congruence atomic if all algebras in the variety 
have atomic congruence lattices. Theorem 6.4 of [3] implies that every algebra 
in a congruence atomic variety has an irredundant representation as a subdirect 
product of subdirectly irreducible algebras. Theorems 6.3 and 7.6 of [3] imply 
that a congruence modular variety is congruence atomic if and only if every 
algebra has replaceable irredundant subdirect representations. 

THEOREM 2.3. Assume that V is congruence atomic and that A is in V. If 
a G Con A is an atom, then a is a central congruence. 

Proof. Let T be a boolean space with no isolated points. (A boolean space 
is a compact, Hausdorff, totally disconnected topological space.) Giving A the 
discrete topology, let B = A* [T] be the algebra of continuous functions from 
T to A with operations defined pointwise. Let à G Con B be the congruence 
defined by the rule (f,g) G à & (f(i),g(i)) G a for all / G T. Assume 
that (a,b) G â \ 0 and that 9 = Cgn(a,b) is a minimal congruence. Since a 
continuous function from a compact, Hausdorff space to a discrete space assumes 
only finitely many distinct values, we can partition T into finitely many disjoint 
clopen sets Xo,... ,Xn such that a and b are constant on each X; and a(i) ^ b(i) 
when / G Xo. Let c = a(i) ^ b(i) = d for / G Xo. Xo is infinite since T contains 
no isolated points. Therefore, we may partition Xo into two nonempty disjoint 
clopen sets Y and Z. 

Suppose that C(a,l; 0) fails. This means that there is an (n + l)-ary term p 
and «-tuples M, v G An such that 

pA(c, ÏÏ) = /7A(c, v) but pA(d, ÏÏ) ^ pA(d, v) 

or else that the same condition holds with c and d interchanged. Here we are 
using the fact that a = CgA(c, d), which is true since a is a minimal congruence 
and c and d are distinct a-related elements of A. Now, let y, z G B be the 
(continuous) functions 

y(i) = u and z(i) = \ ^ 
y I v i f / G F . 

Evaluating functions at each / G T, we find that 

e = pB(b,y)0pB(a,y) = pB(a,z)0pB(b,z) = / , 

so (e,f) G 0. Now, e(i) = / ( / ) if and only if / ^ Y. One consequence of this is 
that CgB(e,/) > 0. Further, every pair (r,5) G Cg B 0 , / ) satisfies r(/) = 5(0 for 
/ G Z, so (a, b) £ CgB(e,/). This contradicts our assumption that 0 is a minimal 
congruence on B. We conclude that C(a, 1; 0) holds. 
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We will call a variety V centerfull if every nontrivial member of V has 
a nonzero center. For an algebra A we will use the notation £A to denote the 
center of A. We prove two lemmas to show that the center is a well-behaved 
congruence. We will follow [4] in our notation for congruences on (sub)direct 
products. In particular, if m is a coordinate projection and 6 is a congruence on 
the ith factor algebra, A/, then we will write 0/ for the congruence ir^~l(9). The 
only exception to this is when 9 = 0; we will write rji for TT~1(0). 

LEMMA 2.4. Given a set of algebras A/ G V, i G /, we have: 

cnA, = n(A, 

That is, the center of the product is a product congruence equal to the product 
of the centers. 

Proof Assume that (a,b) G n<f'', i.e., (ahbi) G ÇAi for all / G / . Now, for 
any (n + l)-ary term p and any «-tuples û, v G (Yliei ^iY such that 

pnA>(a1ù)=pUA>(a,v) 

we must show that 

pUA>(b,ù)=pUAl(b,v). 

However, pUAl(a, ÏÏ) = pUAl(a, v) means that in each coordinate p^ia^Ui) = 
/7A,'(a/,v/), so /?A/(&/,«/) = /7A,(/?/,v/) in each coordinate. Thus, pUAl{b, ÏÏ) = 
pnAi(b,v) as desired. 

Now suppose that (a, 6) g n^ ' . Then in some coordinate j G / we must have 
(#/, bj) & ÇAj. We can find an (m+ l)-ary term q and m-tuples ry, Sj G (Aj)m such 
that 

but 

Let x, j G (IXG/ ^i)m be any pair of m-tuples such that Xj = Fj, yj = Sj and x, = 
yi whenever / ̂  j . Now, 

^nA '(a,x) = ^n A ' (a, j) 

but 

qUA>(b,x)^qnA'(b,y) 

SO ((3,Z7)^C n A ' -
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LEMMA 2.5. If A is a subalgebra ofB G V, then 

C B U ^ C A -

Proof. Saying that (a,b) G ( B |A is equivalent to saying that for every choice 
of n, an (n + l)-ary term p, and «-tuples w, v G #'7 we have 

/7 % , a) = pB(û, V) & /7B(/7, S) = p\b, v). 

If this is so, then the same implication holds when u and v are restricted to lie 
in An. This is precisely what it means for (a, b) to be a member of (A . 

The next result generalizes the well-known exercise in group theory which 
asks the student to prove that every nontrivial normal subgroup of a ( finite) 
nilpotent group has a nontrivial intersection with the center. 

THEOREM 2.6. A variety V is centerfull if and only if whenever A G V and 
a is a nonzero congruence on A we have a • £A > 0. 

Proof. If whenever a is a nonzero congruence on A G V we always have 
a • (A > 0, then certainly we have £A > 0. Therefore this condition is sufficient 
to imply that V is centerfull. To show that this condition is also necessary, 
suppose that a is a nonzero congruence on A G V and that a • £A = 0. We 
will show that this assumption leads to the conclusion that V is not centerfull. 
Let (J be an extension of £A that is maximal with respect to the condition that 
a '(' - 0. We claim that AjCj has zero center. To show this, it will be useful to 
introduce the notation for residuation. If h and 9 are congruences on the algebra 
X, then (8 : 6) denotes the largest congruence 7 on X such that C(7, 0; 6) holds. 
Notice that in a centerfull variety, if 8 ̂  1 then 6 < (6 : 1) since (6 : \)/6 is the 
center of X/6. 

Since a • £' = 0, the natural map from A to B = A/a x A/£' is an embedding. 
By Lemma 2.4, (B is a product congruence equal to ((a : l)/a)o • (((' : l)/(')i-
Using this and Lemma 2.5 we obtain 

( a : l ) . ( C ' : l ) = C B | A ^ C A ^ < ' . 

Now a ^ (a : 1), so with a • ( ( B |A ) ^ a • £' = 0 we get 0 = a • (£' : 1). By the 
maximality of £' we have (£' : 1) = £'. In other words, A/£' has zero center. 

COROLLARY 2.7. A variety V is congruence atomic if and only if for all non-
trivial A G f the interval /[0,£A] is nontrivial and atomic. 

Proof. One direction is clear. We have seen that any congruence atomic va­
riety is centerfull and, since /[0,Ç] is an interval in an atomic lattice, /[0,£] is 
atomic. Our goal is to prove the other direction: if /[0, £A] is nontrivial and 
atomic for any A G V, then the variety is congruence atomic. 
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Suppose that V is a variety with this property. The nontriviality of / [ 0 , ( A ] 
for any A G ^ proves that V is centerfull. Now suppose that A is in V and 
that (3 G Con A. By Theorem 2.6, (3 • ( A > 0. But we can find an atom below 
(3 • £A since / [0 ,£ A ] is atomic. Hence, we can produce an atomic congruence 
below (3. Since (3 and A were arbitrary we are done. 

The last corollary reduces the problem of determining which varieties are 
congruence atomic to a study of the center. Unfortunately, we do not understand 
the center very well in arbitrary varieties. However, one of the successes of mod­
ular commutator theory is an essentially complete understanding of the center 
in congruence modular varieties. Therefore, let us impose the hypothesis of 
congruence modularity and give a more explicit characterization of congruence 
atomicity. 

3. Congruence modular varieties. In this section we will make use of com­
mutator theory to characterize the congruence modular varieties that are con­
gruence atomic. We adopt the custom that the ring of an abelian variety acts on 
the left. 

THEOREM 3.1. Let V be a congruence modular variety. V is congruence 
atomic if and only if: 

(a) V is centerfull and 
(b) The abelian subvariety Si Ç V is congruence atomic. 

Proof. The forward direction follows from Theorem 2.3. Now suppose that (a) 
and (b) hold and that A e ^ . Since (a) holds, the interval / [0 ,£ A ] is nontrivial. 
We now proceed to argue that this interval is atomic. 

Let A(CA) denote the subalgebra of A2 consisting of {(a,b) G A2 \a(,Ab}. 
Let A = A<̂ i be the congruence on A(£A) that is generated by the set of pairs 
{(Qc,x),(y,y))\x,y eA}. 

The fact that [1,CA] = 0 implies that r/0 • A = 0. Hence, 

l / A \ T f o / 0 / 0 7 o + *7i)A7i-

But 770 + 771 = Ci- Hence the interval /[A, 1] is isomorphic to the interval /[r7i,Ci]-
Of course, the latter interval is isomorphic to / [ 0 , ( A ] in Con A. The former 
interval is just Con A(£A)/A. Condition (b) guarantees that Con A(£A)/A is 
atomic. By Corollary 2.7, V is congruence atomic. 

Definition 3.2. An associative, unital ring R is a left Loewy ring if and only 
if every left R-module has a minimal submodule. 

LEMMA 3.2. The following conditions are equivalent: 
(a) R is a left Loewy ring. 
(b) The variety of left R-modules is congruence atomic. 
(c) The lattice of left ideals of R is strongly atomic. 

https://doi.org/10.4153/CJM-1990-020-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-020-1


370 KEITH A. KEARNES 

Proof. The equivalence of (a) and (b) follows from the definitions and the fact 
that the congruence lattice of a module is isomorphic to its lattice of submodules. 
Now, assuming (b), it follows from Lemma 2.2 that any left R-module has a 
strongly atomic lattice of submodules. Hence, RR has a strongly atomic lattice 
of submodules. But this lattice is just the left ideal lattice of R. Thus, (c) holds. 
We will be done if we show that (c) implies (a). Notice that to prove (a) it 
suffices to show that every nonzero cyclic module in the variety RM of left 
R-modules has a minimal nonzero submodule. This is because if M G RM is 
nontrivial, then M contains a nontrivial cyclic submodule N. If we can show 
that N has a minimal nonzero submodule, this submodule will be minimal in 
M, too. Since N is cyclic there is a left ideal I in R such that N is isomorphic 
to R/I. By (c), there is an ideal J covering I in the lattice of left ideals of R. 
Clearly, JN is a minimal nonzero submodule of N. 

Any left Artinian ring is left Loewy, but there are left Loewy rings which are 
not left Artinian. The term "left semi-Artinian" has been used synonymously 
with the term "left Loewy". Although not all left Loewy rings are left Artinian 
it is known that left Loewy rings satisfy DCC on primitive ideals (see [2] for a 
proof of this). 

Because of the relationship between abelian varieties and varieties of modules 
spelled out by Theorem 9.16 of [4], we can rewrite Theorem 3.1 as: 

THEOREM 3.4. Let V be a congruence modular variety and let A Ç 'V be 
the abelian subvariety. V is congruence atomic if and only if: 

(a) V is centerfull and 
(b) R(A ) is left Loewy. 

COROLLARY 3.5. If A is a finite algebra which generates a modular variety, 
then V - V (A) is congruence atomic if and only if A is nilpotent. 

Proof. Any finite algebra in centerfull variety is nilpotent so the forward 
direction is easy. Since V is congruence modular, if A is &-step nilpotent then 
it satisfies equations defining &-step nilpotency. Hence V consists of £-step 
nilpotent algebras. This shows that V is centerfull. V, and therefore A, is 
locally finite so the ring R(A ) is finite. Any finite ring is left Loewy so we are 
done. 

THEOREM 3.6. If V is a centerfull, congruence modular variety, then V is 
congruence permutable, congruence uniform and congruence regular. 

Proof. First we prove that V is congruence permutable. Suppose that A e ^ 
and a G Con A. Let {f3i G Con A | / G / } be any collection of congruences that 
form a chain in Con A. Assume that a permutes with any congruence in the set 
{ip G Con A | xjj ^ fa for some / }. Now, (J/G/ /?,- is a congruence; assume that 
6 ^ \JieI /3i. We claim that a permutes with 6. Since 

e = en(\Jp^ = \J(enpl\ 
\ e / ' iei 
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we may replace /?/ by 0 Pi /?/ without violating any of our hypotheses. In this 
way we may assume that 0 = \JieI /?/. Now, 

ao6 = ao ((J/?/) = U ( a o # ) = U ( # o û r ) 

\ e / ' iei iei 

= (U# ) °<* = 0°a, 

so a permutes with 0. 
Suppose that (3 G Con A is an arbitrary congruence. By the result of the 

previous paragraph, we may apply Zorn's Lemma to find a congruence 7 which 
is maximal among congruences in the following set: 

S = {0 G Con A | 0 ^ /? and every congruence ^ 0 permutes with a }. 

(S is non-empty since the zero congruence belongs to S.) Our goal is to prove 
that 7 = /?. 

Assume that (5 > 7. Applying Theorem 2.6 in A/7, we obtain that S = 
(3 • (7 : 1) > 7 in Con A. Now [0,0] Û [1,6] ^ 7 for any 0 ^ 6, so [0,0] 
permutes with a for all 0 ^ S. By Theorem 6.3 of [4], a permutes with any 
such 0. But this means that è G S which contradicts the maximality of 7. We 
conclude that 7 = /?. Since /? was arbitrary, a permutes with any congruence of A. 
Both A and a were chosen arbitrarily as well, so V is congruence permutable. 
For the rest of the proof we will let p(x,y, z) be a Mal'cev term for *V. 

Now let {/?/ G ConA | / G /} be any collection of uniform congruences that 
form a chain in Con A. Let (3 = U,-E/ /3/. If a, b G >4, then \a//3\ = sup/G/ |a//3/| 
= sup/e/ |£//?/| = |&//3|, so f3 is uniform. This shows that if a is an arbitrary 
congruence on A then we may apply Zorn's Lemma to find a congruence 7 
which is maximal among the uniform congruences ^ a. If a is not uniform, 
then 7 < oc\ in fact, 7 < (7 : 1) • or = £. By the maximality condition on 7, 
b is not uniform on A; further, the central congruence 0 = 5/7 is not uniform 
on B = A/7. Hence there are elements w, v G B such that |w/0| > |v/t/>|. The 
unary polynomial pB(x, w, v) maps w/0 to v/V>; suppose that a, b G W/Î/> and 
that /?B(tf, w, v) = pB(b, u, v). Since (a, b) E I/J and the 1,0-term condition holds, 

« = /?B(tf, M, w) = /?B(b, w, u) = b. 

Thus, p(jc, w, v) is one to one. This contradicts the possibility that \u/\j)\ > |v/0|, 
or equivalently, the possibility that 5 is not uniform. The assumption that led 
to this contradiction was that a was not uniform. Since a and A G V were 
arbitrary, V is congruence uniform. 

To finish, we observe that every congruence uniform variety is congruence 
regular. For if V fails to be congruence regular, then we can find distinct 
congruences a and /3 on an algebra A that agree on at least one congruence 
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class. By replacing one of them by their meet and relabeling if necessary we 
may assume that a < /?. In A/a the congruence (3/a is not uniform, since it 
has some nontrivial congruence classes and at least one trivial congruence class; 
thus 1/ is not congruence uniform. 

Definition 3.7. We say that a variety 1/ has (first-order) definable centers if 
there is a first-order formula Z(x,y) in the language of 1/ such that, for all A 
G 1/ and all a, b G A, 

(a, b) G CA if and only if A |= Z(a, b). 

In [6], R. McKenzie studies the first-order definability of a certain 4-ary 
"centralizer" relation C(jt,;y,z, «) for modular varieties. This relation is defined 
so that A |= C(A, fe,c, J) if and only if [CgA(<2, /?),CgA(c,d)] = 0. Certainly 
if the centralizer relation is definable for a variety then the variety must have 
definable centers. We simply choose Z(x,y) to be the formula Vz, u C(JC, j , z, w). 

THEOREM 3.8. //* 1/ is congruence modular and has definable centers then 
there is an m, an n and n pairs of m + 2-ary terms (pj(x,y,z),qt(x,y,z)) such 
that: 

Z(x,y) = Vzu...,zml/\pi(Xiy1zu...,zm)ttql(x,y,zu...1zm)J 

defines the center. 

Proof. Assume that Z\x,y) is any first-order sentence that defines the center 
for V and that X is a set of equations that define V. Expand the language of 
V to include two new constant symbols a and b and let V * be the variety of 
this expanded type that is axiomatized by Z. Let W be the subclass of V* 
that is axiomatized by X U {Z'(a, b)}. The algebras in W are precisely the 
algebras of V with a and b interpreted as centrally related elements. Lemmas 
2.4 and 2.5 imply that <W is closed under the formation of direct products and 
subalgebras. The homomorphism property of the commutator implies that W 
is even a subvariety of 1/*. W is defined by the equations of V* and a single 
first-order formula, so there exist finitely many equations in the language of V * 
that define 14? as a subvariety of 1/*. But an equation of 1/* is of the form 

p(a,b,z)&q(a,b,z) 

where p and q are terms of 1/. Hence, £ and a sentence of the form 

Vz f f\pt{a, b, z) « qi(a, b, z) \ 
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defines W. Therefore, if A (= Z, i.e., A G V, then c, d £ A are centrally 
related if and only if A |= Vz(/\i<nPi(c, d, z) œ ^-(c, d, z)). Thus, 

defines the center for algebras in I/*. 

Theorem 3.8 gives a sufficiently nice form for Z(x,y) for our needs. However, 
more can be said about sentences that define the center for a modular variety. 
The next results show explicitly how to construct a sentence that defines the 
center for any 2-finite, modular variety of finite type. 

THEOREM 3.9. ([4], Theorem 14.1) If V is congruence modular and A G V , 
then (a, b) G £A if and only if for all basic operations f, all c = (c\,..., cn) G An, 
and all binary terms r and rt we have 

(1) f(d(r\(a, b), rx(b, b), c\),..., d(rn(a, b), rn(b, b), cn)) 

= d(f(ri(a, * ) , . . . , rn(a, b)\f(rx(b, * ) , . . . , rn(b, b)),f{c)) 

and 

(2) d(r(a, b), rib, b\ rib, b)) = r(a, b). 

where d is a modular difference term for V. 

COROLLARY 3.10. Suppose that V is a congruence modular variety of finite 
type and that F ^ (2) is finite. Then V has definable centers. 

Proof. We will call two binary terms r(x,y) and s(x,y) V -equivalent if V 
satisfies the equation r(x,y) œ s(x,y). Since F^ (2 ) is finite, we can find a finite 
set B of binary terms which represent all the V -equivalence classes of binary 
terms. For each choice of a single n-ary basic operation / and n binary terms 
chosen from B, n , . . . , r„, we define a pair of terms (/?/, qï) by 

Pi(x,y,z) =f(d(r\(x,y),ri(y,y),zi ) , . . . , d(rn(x,y),rn(y,y),zn)) 

qi(x,y,z) = d(f(rx(x,y),.. .,rn(x,y)),f(ri(y,y),.. . , r„(y,y)), /(z)) . 

From our hypotheses there are only finitely many such pairs. Assume that they 
are indexed by the members of the finite set / . Now, for each binary term r G B 
define 

PM,y,z) = d(r(x,y),r(y,y),r(y,y)) 

qj(x,y,z) = r(x,y). 

These pairs may be indexed by the finite set B and we may assume that B is 
disjoint from / . It is clear from Theorem 3.9 that the formula 

Z(x,y) = \/z( / \ Pi(x,y,z)tosqi(x,y,z)) 
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defines the center in V. 

We remark that in a permutable variety one may choose a Mal'cev term for 
d and then 3.9 (2) holds trivially. 

THEOREM 3.11. If V is a centerfull, congruence modular variety with definable 
centers, then V is nilpotent. 

Proof. In this proof we will use the notation 

f 0 if A = 0 
£A = ) (CA-I : 1) if A is a successor ordinal 

I V^<A Cs otherwise. 

Note that C,\ is just the center. For an algebra C the sequence (J ^ <̂  ^ • • • is 
the ascending central series of C. 

To prove this theorem we will argue by contradiction. Assume that V satisfies 
the hypotheses of the theorem but is not nilpotent. The assumption that V is not 
nilpotent means precisely that V satisfies no congruence equation of the form 
Ci œ 1, n < to. That is, there is no finite bound on the lengths of the ascending 
central series of algebras in <]/. If A is a generic algebra, then A^=conÇj ~ 1 
for any finite n. Let B = Yli<UJ A. It is an immediate consequence of Lemma 2.4 
and induction that cjf = ni<UJC^ for finite values of n. However, 6 = (^ < Y\l<u;C^ 
= -0. For example, any element (a,b) G B2 for which (tfz,/?/) G C^+i \ Cf *s a 

member of 0 \ 0. 
By applying Theorem 2.6 in B/0 we find that ip • (0 : 1) > 9. Choose (c, d) G 

ijj • (6 : 1) \ 6. There is a function/ : uo —> LU such that/(/) equals the positive 
natural number r if (cn dj) G C \C —l and equals 0 if c{ = d\.f is defined for each 
/ since (c, J) G 0- That (c, d) §t 6 is equivalent to the fact / is not a bounded 
function. 

Assume that the formula 

Z(x, y) = Vz(f\Pj{x,y,z) « %iv,y,z) j 

defines the center for algebras in V. For any / for which /( /) = /* > 1 we have 

A h Ve(/\pf(cndne)£-itf(cndne)) 

but 

A\f=Vë (/\pf(Cn dh ey^_2qf(chdh ë)\ . 

Thus, for each i for which/(/) > 1 there is ay = j(i) and a tuple ë = (ë)/ G A™ 
such that 

{pf(chdh(e)i\qf(chdh(e)i)) €<£_, \Cf-2-
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Note that (£)/ has been defined for those values of / for which / ( / ) > 1. Let 
g € Bm be an m-tuple whose tuple of ith components equals (<?)/ when/(z) > 1 
and is an arbitrary element of Am when / ( / ) ^ 1. Since (c\d) G (6 : 1) and 
Z(*,y) defines the center in B/0, we must have 

B |= Vz (f\pf(c, d, z)0qf(c, d, z)\ . 

This means that for all j < n, 

(pf(c,d,g),qf(c,d,g))eO=\/$. 
i<uj 

This is a statement about only finitely many pairs in 0, so there is a k < LU such 
that for all j < n we have 

(pf(c,d,g),qf{c,d,g))e$ = n$. 

B u t / is an unbounded function. There is some value of / for which/( /) ^ k + 2. 
For this / and for j - /(/') we have 

(p^chdh^)i),qf(chdh(g)i))^^ 

which contradicts the previous displayed equation. 

COROLLARY 3.12. Assume that V is congruence modular and has definable 
centers. V is congruence atomic if and only if V is nilpotent and the ring of 
the abelian subvariety is left Loewy. In particular, if V is congruence modular 
of finite type and F ^ (2) is finite, then V is congruence atomic if and only if 
V is nilpotent. 

Proof. The first statement follows from Theorem 3.4 and Theorem 3.11. For 
the second statement, notice that when Fa ;(2) is finite, then so is the ring of 
the abelian subvariety. The second statement follows from this fact, the first 
statement and Corollary 3.10. 

In a variety which has an equationally definable constant we can say a bit 
more than is proven by the combination of 3.10 and 3.11. If we take 0 for the 
constant symbol, then one can prove an analogue of Corollary 3.10 giving a 
formula which defines the congruence class 0/£ using only the hypothesis that 
V is of finite type and that F ^ ( l ) is finite. This result and the congruence 
uniformity of V can be used in place of 3.10 to prove an analogue of Theorem 
3.11. Hence, if V is a 1-finite modular variety of finite type and V has an 
equationally definable constant, then V is congruence atomic if and only if V 
is nilpotent. 

It turns out that the congruence atomic varieties of groups (or rings) can be 
neatly characterized as precisely those varieties generated by a finite nilpotent 
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group (or ring). To prove this, we require Lemmas 3.13 and 3.16 which are of 
interest themselves. In our arguments for groups we will require the notion of 
a simple commutator which is a group element of the form [jto,... ,xn-\,xn] = 
[[xo,... ,x„_i],xn] where [x,y] = x~xy~xxy is the usual commutator operation 
of group theory. Also, for a group G we will write 

Ti(G) = G and I\+1(G) = [^(G), G] to denote the members of the lower 
central series for G. G is £-step nilpotent if and only if r*+i(G) = {1}. 

LEMMA 3.13. If Q is a variety of k-step nilpotent groups, then Q = 
HSV(F cm-

Proof. The varieties of abelian groups are determined by their exponent, 
hence this lemma is true when k equals 1. Assume that the lemma is false 
and that k is the least positive integer (greater than 1) for which it fails. We will 
argue to a contradiction. 

The claim that Q = HSP(F^(&)) is equivalent to the assertion that, for all 
positive integers m, the elements of F^ (m) can be separated by homomorphisms 
into ^-generated members of Ç. As we are assuming the negation of this as­
sertion, there is an m and a p G F = F^(xo,... ,*m_i) such that p ^ lp but 
whenever h : F —• L is a homomorphism into a ^-generated group L G Q, we 
have hip) - 11- (Necessarily, m is greater than k.) We will focus on contradicting 
the existence of such an m and such a p. 

Let !H be the subvariety of Q consisting of (k — l)-step nilpotent groups. 
Our minimality hypothesis on k guarantees that, for all n, the elements of F # (n) 
can be separated by homomorphisms into (k — l)-generated groups in 9-(. But 
F?{(m) = F/r*(F). Since the elements of F/r*(F) can be separated by homo­
morphisms into (k — l)-generated groups in 9{ Ç Q, and p cannot be sepa­
rated from IF by homomorphisms into ^-generated groups in Ç, it follows that 
P e r*(F). 

Now we apply Theorem 10.2.3 of [5]: 

THEOREM 3.14. If a group F is generated by elements XQ1 . . . ,xm_i, then the 
group r^(F)/r^+i(F) is generated by the simple commutators [>'o,...,yk-\] mod 
r*+i, where the y's are chosen from jto,... ,xw and are not necessarily distinct. 

In our case, T̂ +i = {1}. This theorem tells us that p may be expressed 
as a product of integer powers of simple commutators that each depend on 
k variables. We fix an expression p = cç>c\ •••cw where each a is a simple 
commutator of length k or the inverse of a simple commutator of length k. 
We may assume that we have chosen the Q'S such that this expression has the 
smallest number of factors. Now, for / = 0,. . . , n, let Sz denote the subset of 
{xo, • • • 5*m-i} °f those JC/S that occur in our fixed expression for c,-. Since Fk 

is central, these simple commutators commute with each other, therefore we 
may arrange them in any convenient order. We choose an order which groups 
together the simple commutators that depend on the same set of variables. That 
is, we assume that the simple commutators are ordered so that if / ^ j ^ I and 
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Si = Si, then Sj = S/. Further, we assume that SQ is minimal under inclusion 
among the S/'s. 

For some u Ik n we have that So = Si = • • • = Sw, but 5/ $ So for any / > u. 
Let e : F —> F be the endomorphism of F determined by: 

' U l ) ~ \ 1 F if i £ S0. 

Of course, So contains no more than k elements. Thus, the image of e is contained 
in the ^-generated subgroup of F that is generated by So. Hence, 1 = e(p) = 
CQC\ • • • cu by our assumption on p. If u = n, then 1 = e(p) = /?, a contradiction. 
Otherwise, p = cu+\ • • -cn which contradicts the fact that we chose the Q'S SO 
that their product was the shortest way to represent p as a product of simple 
commutators. Either way, we have contradicted the existence of p for any value 
of m and this finishes the proof. 

PROPOSITION 3.15. The congruence atomic varieties of groups are precisely 
the varieties of groups generated by a finite nilpotent group. 

Proof. Certainly a finite nilpotent group generates a congruence atomic vari­
ety as Corollary 3.5 shows. We need to prove the other direction. 

Any variety of groups has definable centers; a suitable formula is: 

Z ( X , J ) = V Z ( Z ( X J - 1 ) ^ ( X J - 1 ) Z ) . 

If Q is congruence atomic, then Ç is &-step nilpotent for some finite k. Lemma 
3.13 shows that Q = HSP(F^(^)). We can finish this argument by showing that 
F = F£(£) is finite. 

The group F^(l) is a cyclic group with an atomic congruence lattice. The 
congruence lattice of the group of integers has no atoms, so F^(l) is not iso­
morphic to this group. Hence F^(l), and therefore Q, satisfies an equation of 
the form xn & 1. This means that F is of exponent «, of nilpotency degree 
k and generated by k elements. This is enough to imply that F is finite. For 
r/(F)/r /+i(F) is an abelian group of exponent n generated by the simple com­
mutators of length / and there are only finitely many simple commutators of 
length /. (This is by Theorem 3.14: F is generated by k elements so there are 
no more than kl distinct simple commutators of length /.) Hence, the cardinality 
of r /(F)/r /+i(F) is no more than nk'. This yields: 

k k 

\F\ = f ] |r,(F)/r,+1(F)| ^ J7 nk\ 
/ • = 1 / = 1 

so F is finite. This proves the proposition. 

In contrast to this result, Ralph Freese has pointed out to me that Example 
1 of [7] contains a locally finite, congruence atomic variety of loops which is 
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not generated by a finite loop. In this example, M. R. Vaughan-Lee constructs 
a variety of 3-step nilpotent loops in which every finitely generated member 
has order 2k for some finite k. This variety is locally finite, so the ring of the 
abelian subvariety is finite and therefore left Loewy. Theorem 3.4 shows that 
this variety is congruence atomic. Next, Vaughan-Lee shows that this variety has 
no finite basis for its equations. However, Theorem 7.5 of the same paper shows 
that if a congruence modular variety V has an equationally-definable constant 
and is generated by a finite nilpotent algebra of prime-power cardinality, then 
the variety must have a finite basis for its equations. It follows that Vaughan-
Lee's variety of loops is not finitely generated. This means that Lemma 3.13 
and Proposition 3.15 do not have analogues for varieties of loops. 

Our next two results concern varieties of rings. For these results rings will 
mean associative but not necessarily unital rings. No variety of unital rings is 
congruence atomic or even centerfull since simple unital rings have a trivial 
center. 

We mention that a ring is /:-step nilpotent in the sense of modular commutator 
theory if and only if it is £-step nilpotent in the usual sense: all £+l-fold products 
are equal to zero. In analogy with Lemma 3.13 we will use the notation Ti(R) 
= R and r*+1(R) = [r*(R),R] = r*(R) R + R r*(R). Clearly, Vk(R) is the 
ideal of R generated by all of the £-fold products. R is &-step nilpotent if and 
only if r*+,(R) = {0}. 

LEMMA 3.16. If$t is a variety of k-step nilpotent rings, then %^ = HSP(F^(A')). 

Proof. This lemma will proceed along the same lines as Lemma 3.13. First, 
if k - 1 then ^ is a variety of zero-rings. This means that ^ is term-equivalent 
to a variety of abelian groups. (By ignoring the multiplication of a zero-ring we 
obtain an abelian group. The ring can be recovered from this group by defining 
the multiplication by x • y - 0.) We have observed that varieties of abelian groups 
are generated by their 1 -generated free member, so the same is true for varieties 
of zero-rings. 

Now assume that this lemma is false and that k is the least positive integer 
greater than 1 for which it fails. Since the lemma fails, there is an m > k and a 
p G F = F^(A'O, . . . ,A'm_0 such that whenever h : F —» L is a homomorphism 
into a ^-generated ring LG ^ we have h(p) - 0L-

Arguing as we did in Lemma 3.13 we see that the minimality assumption on 
k guarantees that p G r^-(F). That is, p is in the ideal generated by the k-fo\d 
products of the generators of F. Since all (k+ l)-fold products are zero in F, we 
may find (and fix) an expression: 

n 

i=0 

where each m{ is a A-fold product of generators of F. We may assume that n 
is the least positive integer for which such an expression exists. As before, we 
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define 5/ to be the subset of {^o,... , Jtw-i} of those x/s that occur in our fixed 
expression for ra,, / = 0,..., n. We may group together the m/ that depend on 
the same set of variables, and assume that So is minimal under inclusion among 
the Si's. Since mo is a &-fold product of not necessarily distinct generators, the 
set So has no more than k elements. 

For some u ^ n we have that So - S\ - • • • = Su, but Si ç£ So for any / > u. 
Let e : F —> F be the endomorphism of F determined by: 

The image of e is contained in the ^-generated subring of F that is generated 
by SQ. Hence, 0 = e(p) - Y^i=o m<- lî u = n, then 0 = e(p) - p, a contradiction. 
Otherwise, p - XX=w+i m< which contradicts the fact that we chose n so that it 
was minimal. This contradiction finishes the proof. 

PROPOSITION 3.17. The congruence atomic varieties of rings are precisely the 
varieties of rings generated by a finite nilpotent ring. 

Proof. Corollary 3.5 shows that every finite nilpotent ring generates a con­
gruence atomic variety. We must show that if %, is a congruence atomic variety 
of rings then %^ is generated by a finite nilpotent member. 

Any variety of rings has definable centers; a formula is: 

Z(JC, y) = Vz((z(x - y) w 0) A «x - y)z « 0)). 

If ^ is congruence atomic, then by Theorem 3.11 %, is £-step nilpotent for 
some finite k. Lemma 3.16 shows that ^ = HSP(F^ (£)). We will prove that 
F = F ^ (k) is finite. 

Let A denote the abelian subvariety of ^ . A is term equivalent to a congru­
ence atomic variety of abelian groups. This means that A \= n • x & 0 for some 
positive integer n. 

Products of finitely generated ideals are again finitely generated, so it is 
clear that the ideals r,(F) are finitely generated for all /. This means that 
1/ = r /(F)/r /+1(F) is a finitely generated ideal of the ring F, = F/r /+1(F). 
But 1/ annihilates F,. It follows that 1/ is even finitely generated as an abelian 
group. The ring I,- G A so, as an abelian group, 1/ is finitely generated and 
of finite exponent. Hence, 1/ = r/(F)/r,-+i(F) is finite. It follows that |F| = 
n l i |rf-(F)/r/+1(F)| is finite. 

The condition that R(A) is left Loewy in Theorem 3.4 may be considered 
to be a finiteness condition on R(^) , hence on Fy(2) from which R(A) is 
computed (see Definition 9.3 and Theorem 9.12 of [4]). In light of Theorem 
3.10 and Corollary 3.12 we are led to pose the following problem: 

Problem 1. Is there a congruence modular variety of finite type which is 
congruence atomic but fails to be nilpotent? 
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4. Related results. When I first wondered, "Which varieties consist of al­
gebras with atomic congruence lattices?" only two kinds of examples came to 
mind at first: varieties of vector spaces and of sets. Any congruence majorizes 
a principal congruence and principal congruences are atomic congruences for 
vector spaces or sets. Hence, these varieties are congruence atomic. At this point, 
it was reasonable to ask which other varieties have this property that principal 
congruences on algebras are atomic congruences. It turns out that a locally finite 
or congruence modular variety with this property must be polynomially equiva­
lent to a variety of sets or vector spaces, so the property is too restrictive to be 
very interesting. In this section we investigate weaker forms of this property. 

Definition 4.1. If a is an element of a {lower) bounded lattice, then we will 
call a an Artin element if the interval / [0, a] satisfies the descending chain 
condition (DCC). We will call a a Noether element if / [0 , a] satisfies ACC. 

If every element in the lattice L is the (possibly infinite) join of Artin elements, 
then the lattice is atomic. 

Definition 4.2. V is Artinian (Noetherian) if, for every A G V , the compact 
elements of Con A are Artin (Noether) elements. 

Varieties of sets or vector spaces are both Artinian and Noetherian. Any 
locally finite variety that is essentially unary is both Artinian and Noetherian. 
The line before Definition 4.2 shows that every Artinian variety is congruence 
atomic; however, the converse of this is not true as we will soon see. Noetherian 
varieties need not be congruence atomic, e.g., the variety of all abelian groups 
is Noetherian but not congruence atomic. 

THEOREM 4.3. An Artinian or Noetherian variety consists of abelian algebras. 

Proof. Assume that the term condition fails in some algebra A. That is, sup­
pose that a, b E A and that there is an (n + l)-ary term p and /7-tuples w, v G An 

such that 

p\a, u) = p\a, v) but pA(b, ÏÏ) ^ p\b, v). 

We will prove that A belongs to no Artinian or Noetherian variety. 
Let X be an infinite set and let c, d G Ax be the constant tuples defined by 

Cj = a and dt = b. Let 7 = CgeCf, d) where B = A x . For any subset Y Ç X we 
will write r\y to denote 

{(*,>') eB2\.Xj =y, for all / G Y }; 

T\Y is a congruence on B. 

CLAIM. / / Y (£ Z, then r\z • 1 $ m • 7. 

Poof of Claim. Suppose that j £Y\Z. Define ëj G Bn as follows: 

, 7 f w if / ^ / 
et = u and f = { _ .ç / . 

[v \fi=j. 

https://doi.org/10.4153/CJM-1990-020-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-020-1


ATOMICITY AND NILPOTENCE 381 

Now, g = pB(d,ë) 7 pB(c,ë) = pB(cJ) 7 pB(dJ) = h and (g, h) G T?Z, SO 
(g,h) E rjz - 7. However, (g, /z) 0 r/y since g, ^ hr 

Suppose that XQ C X\ C • • • is any infinite, properly ascending chain of 
subsets of X. The claim proves that Ï]X{) -7 > r]Xl -7 > • • • is an infinite properly 
descending chain of congruences in / [0 ,7 ] . Similarly, if X0 D Xi D • • • is an 
infinite, properly descending chain of subsets of X, then r\X() -7 < rjXl -7 < • • • is 
an infinite properly ascending chain of congruences in / [0 ,7 ] . Hence 7 is neither 
an Artin element nor a Noether element of Con B. 7 is a compact congruence, 
so A and B = Ax belong to no Artinian or Noetherian variety. 

THEOREM 4.4. Assume that V is congruence modular. V is Artinian if and 
only if V is affine and R ( ^ ) is left Artinian. V is Noetherian if and only if V 
is affine and R ( ^ ; ) is left Noetherian. 

Proof. Theorem 4.3 is enough to prove that Artinian or Noetherian modular 
varieties are affine. We will prove that an affine variety is Artinian if and only 
if R(^) is left Artinian. The proof for Noetherian varieties is similar. 

Assume that 1/ is affine and that R = R ( ^ ; ) . The class of congruence lattices 
of algebras in V is the same as class of congruence lattices of left R-modules, 
so V is Artinian if and only if the variety of left R-modules is. We may assume 
that <]/ is the variety of left R-modules. 

Suppose that V is Artinian and let A = RR. Since R is unital, 1A is a 
compact congruence. This shows that Con A has DCC; equivalently, that R is 
left Artinian. 

Now suppose that R is left Artinian. If A G V and a is a compact congruence 
on A then B = 0/a is the universe of a finitely generated submodule of A which 
has the property that Con B = /[0, a]. If we can show that finitely generated 
(left) modules over a left Artinian ring have DCC on congruences, then we 
will be done. For this it suffices to consider finitely generated free modules. 
However, a finitely generated free module is isomorphic to a finite direct power 
of R R and this module has DCC. Now, it is very easy to prove that, in a modular 
variety, a finite direct product of algebras has DCC (or ACC) on congruences if 
and only if each factor does. 

COROLLARY 4.5. A locally finite, congruence modular variety is affine if and 
only if it is Artinian if and only if it is Noetherian. 

There are a number of papers investigating properties of locally finite varieties 
consisting of abelian algebras. The most significant open problem in this area 
is whether or not these varieties are Hamiltonian. As the Hamiltonian property 
for affine algebras plays a role in the proofs of Theorem 4.4 and its Corollary, 
we feel that the following problem ought to be investigated as well: 

Problem 2. Is every locally finite abelian variety Artinian and Noetherian? 
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