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Abstract. We prove that all the pure states of the reduced C*-algebra of a free
group on an uncountable set of generators are *-automorphism equivalent and extract
some consequences of this fact.
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1. Preliminaries. For any set R with two or more elements, let FR denote the free
group on R with generators {ur : r ∈ R} and let C∗

r (FR) denote the reduced group C*-
algebra. We shall not distinguish between the elements of FR and the corresponding
unitary operators in C∗

r (FR). In what follows, r0 will be a fixed element of R, u will
denote the generator ur0 and Fu will denote the subgroup of FR generated by u. We
view C∗

r (FS) as the C*-subalgebra of C∗
r (FR) generated by the unitaries {us : s ∈ S} and

C∗
r (Fu) as the C*-subalgebra generated by u. Let Pu (resp. PS) denote the unique trace

preserving conditional expectation from C∗
r (FR) onto C∗

r (Fu) (respectively C∗
r (FS)).

Recall that C∗
r (Fu) is *-isomorphic to the *-algebra of continuous complex valued

functions on the unit circle, with u going into the function θ (z) = z. Let f0 denote the
(unique!) pure state of C∗

r (Fu) that satisfies f0(u) = 1 and let f = f0 ◦ Pu.

2. Results. If R is uncountable, then C∗
r (FR) is inseparable. For Card(R) = ℵ1,

the algebra C∗
r (FR) is discussed in [11, Corollary 6.7], where it is shown that C∗

r (FR)
is inseparable, but that every abelian subalgebra is separable. Powers [12] showed that
for Card(R) = 2, C∗

r (FR) is simple and has unique trace. Powers’ method extends to
general R. For general free products of groups, simplicity and uniqueness of trace
follow by results of Avitzour [7]. In [1] and [3] the methods of [4] were used to extend the
simplicity and uniqueness of trace results to a host of other group of C*-algebras where
free sets lurked in the underlying groups. In [6] Archbold also obtained related results.

LEMMA 2.1. If S ⊂ R, Card (S) > 1 and α is a *-automorphism of C∗
r (FS), then α

has an extension to a *-automorphism of C∗
r (FR).

Proof. Check that if α′ is defined on the *-algebra A generated by C∗
r (FS) and the

generators in R\S by applying α to elements of C∗
r (FS) and leaving the other generators
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alone, then α′ is a *-automorphism of A. Every element of C∗
r (FR) is representable in

the form of an element of l2(FR), and the trace of such an element is simply the
coefficient of the identity. Since the trace is unique on C∗

r (FS) by [1, Proposition 1]
(see also [7, 3.1]), α preserves the trace. Thus it is easy to verify that α′ preserves the
trace on A. Again by density of A in l2(FR), for any a ∈ A and any ε > 0 there exists
b ∈ A such that ‖b‖2 = 1 and ‖ab‖2 > ‖a‖ − ε. So ‖α′(b)‖2 = ‖b‖2 = 1 by invariance
of the trace, and hence ‖α′(a)‖ ≥ ‖α′(a)α′(b)‖2 = ‖α′(ab)‖2 = ‖ab‖2 > ‖a‖ − ε. Since a
similar inequality holds for α−1, we see that α′ extend by continuity to an automorphism
of C∗

r (FR). �
LEMMA 2.2. The state f is the unique state extension of f0 to C∗

r (FR), and f is a pure
state of C∗

r (FR). Moreover, f |C∗
r (FS) is pure for any subset S of R that contains r0.

Proof. Let g be a state of C∗
r (FR) such that g(u) = 1. The Cauchy–Schwarz

inequality applies to show that g((1 − u)a) = g(a(1 − u)) = 0 for any a ∈ C∗
r (FR). By

induction, g(un) = g(u−n) = 1 for every natural number n. Fix s ∈ FR \ Fu. By the
Cauchy–Schwarz inequality again, as above, g(unsu−n) = g(s) for every natural number
n. Taking ξ to be the canonical trace vector in l2(FR), l2(FR) = H0 ⊕ H1, where H0 is
the closed linear span of all vectors of form wξ with w a reduced word in FR with a
non-zero power of u on the left, and H1 is the closed linear span of those wξ with w

not ending in a non-zero power of u on the left. Then, unH1 ⊂ H0 for any non-zero
integer n and sH0 ⊂ H1. By [8, Lemma 2.2] (see also [7, Lemma 3.0])

|g(s)| = lim
k→∞

∣∣∣∣∣(1/k)
k∑

n=1

g(unsu−n)

∣∣∣∣∣ ≤ lim
k→∞

∥∥∥∥∥(1/k)
k∑

n=1

unsu−n

∥∥∥∥∥ ≤ lim
k→∞

2√
k

= 0.

By linearity and continuity of g, this implies that g = g|C∗
r (Fu) ◦ Pu and hence that g = f .

An easy convexity argument shows that f is a pure state.
The conclusion of the last sentence of the Lemma follows immediately from the

conclusion of the first sentence. �
PROPOSITION 2.3. Let {Gr}r∈R be a set of nontrivial countable groups and for non-

empty S ⊂ R, let GS be the free product (∗r∈SGr). Given a nonempty countable subset S0

of R, if g is a pure state on C∗
r (GR) there is a countable subset S of R containing S0 such

that g|C∗
r (GS) is a pure state of C∗

r (GS). Moreover, C∗
r (GS) is separable and also simple if

|Gs| > 2 for some s ∈ S.

Proof. Assume without loss of generality that R is uncountable. For any non-
empty countable S ⊂ R, C∗

r (GS) is separable, and by [7, 3.1] simple if |Gs| > 2 for
some s ∈ S. If (πg, Hg, ξg) is the representation of C∗

r (GR) corresponding to g by the
Gelfand-Naimark-Segal construction, sequences of sets

S1 ⊂ S2 ⊂ · · · ⊂ R,

with each Si countably infinite, closed separable linear subspaces

�ξg = H1 ⊂ H2 ⊂ · · · ⊂ Hg

and, for each i ≥ 2, a countable dense subset Xi of the unit sphere of Hi such that

X2 ⊂ X3 ⊂ · · ·
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are constructed inductively so that

πg(C∗
r (FSi ))Hi ⊆ Hi+1

for i ≥ 1. Let S1 be a non-empty countable subset of R containing S0. For the inductive
step, given Si and Hi, let Hi+1 be the closed linear span of πg(C∗

r (GSi ))Hi, which is
separable, and let Xi+1 be a countable dense subset of the unit sphere of Hi+1 containing
Xi. By Kadison’s transitivity theorem there is a countable setUi+1 of unitaries in C∗

r (GR)
such that for ξ, η ∈ Xi+1, πg(u)ξ = η for some u ∈ Ui+1. Since each such u is a norm-
limit of a sequence of finite linear combinations of elements of GR, there is a countable
subset S′

i+1 of R such that Ui+1 ⊂ C∗
r (GS′

i+1
). Let Si+1 = S′

i+1 ∪ Si. Now let

S =
∞⋃

i=1

Si, X =
∞⋃

i=2

Xi, H =
∞⋃

i=1

Hi.

Then S and X are countable, H is separable, πg(C∗
r (GS))H ⊆ H and X is dense in

the unit sphere of H. If ξ, η ∈ X , then πg(v)ξ = η for some unitary v ∈ C∗
r (GS). It

follows that for any ε > 0 and unit vectors ξ, η ∈ H, ‖πg(w)ξ − η‖ < ε for some unitary
w ∈ C∗

r (GS), which implies that πg(C∗
r (GS))|H acts irreducibly on H. Since g|C∗

r (GS) is
the state of C∗

r (GS) corresponding to ξg, g|C∗
r (GS) is pure. �

THEOREM 2.4. Any two pure states of C∗
r (FR) are *-automorphism equivalent.

Proof. If R is countable, the conclusion is immediate from [10]. Assume that R is
uncountable. Let g be a pure state of C∗

r (FR). We shall show that g is *-automorphism
equivalent to f . By Proposition 2.3 there is a countably infinite subset S ⊂ R such
that r0 ∈ S and g|C∗

r (FS) is pure. We have already noted that C∗
r (FS) is simple, and it

is obviously separable, so by [10] choose a *-automorphism γ0 of C∗
r (FS) such that

g|C∗
r (FS) = γ ∗

0 (f |C∗
r (FS)). By Lemma 2.1, extend γ0 to a *-automorphism γ of C∗

r (FR). We
must show that γ ∗(f ) = g. Lemma 2.2 shows that f |C∗

r (FS) has unique state extension
to C∗

r (FR). Since γ is a *-automorphism extending γ0, the same uniqueness of state
extension must follow for γ ∗(f |C∗

r (FS)) = g|C∗
r (FS). Thus γ ∗(f ) = g. �

The next result is in contrast to Corollary 0.9 of [5].

THEOREM 2.5. If g is a pure state on C∗
r (FR), then its hereditary kernel,

{a ∈ C∗
r (FR) : g(a∗a + aa∗) = 0},

contains a sequential abelian approximate unit, and hence a strictly positive element.

Proof. By Theorem 2.4 it suffices to prove this for f . Choose an excising sequence
{an} for f0 in C∗

r (Fu), as defined in [2]. Let p = lim an in C∗
r (FR)∗∗. By Lemma 2.2, p

is a minimal projection there. By [2, Prop. 2.2], {an} will excise f and {1 − an} will be
an approximate unit for {a ∈ C∗

r (FR) : f (a∗a + aa∗) = 0}, so
∑∞

i 2−n(1 − an) is strictly
positive there. �

THEOREM 2.6. Let r0 ∈ S ⊂ R.
1. Any pure state of C∗

r (FS) has a unique extension to a pure state of C∗
r (FR).

2. The projection PS is the unique conditional expectation of C∗
r (FR) onto C∗

r (FS).
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Proof. 1. By Theorem 2.4, any pure state of C∗
r (FS) is *-automorphism equivalent

to f |C∗
r (FS), and thus has the unique extension property since Lemma 2.2 shows that

f |C∗
r (FS) has that property.

2. If there were another conditional expectation Q : C∗
r (FR) → C∗

r (FS) distinct
from PS, then the duals Q∗ and P∗

S would have to be different on some element of
C∗

r (FS)∗, hence on some state of C∗
r (FS), hence on some pure state of C∗

r (FS) by the
Krein Milman Theorem [9, p. 32]. This is impossible by part 1 of this theorem. �

3. Concluding remarks. 1. A very similar proof to that of Proposition 2.3 shows
the related result that if B is a separable C*-subalgebra of an inseparable C*-algebra
A, then if g is a pure state of A, there is a separable C*-subalgebra C of A such that
B ⊆ C and g|C is pure. An analogous induction argument shows moreover that if A is
simple, then a simple C with these properties can be found.

2. The proof of Theorem 2.4 and the preceding lemmas generalize in an obvious way to
the general free product groups GR = ∗r∈RGr considered in Proposition 2.3, provided
that one of the constituent groups Gr0 is abelian with an element of infinite order. Thus
any two pure states of C∗

r (GR) are *-automorphism equivalent. The corresponding
generalizations of Theorems 2.5 and 2.6 to these free product groups then follow, with
Gr0 taking the place of Fu.
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