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Integral Equations and the Determination of Green's

Functions in the Theory of Potential.

By Professor H. S. CARSLAW.

(Received 20th May 1912. Read 9th December 1912).

In the Theory of Potential the term Green's Function, used
in a slightly different sense by Maxwell, now denotes a function
associated with a closed surface S, with the following properties:—

(i) In the interior of S, it satisfies V2V = 0.
(ii) At the boundary of S, it vanishes.

(iii) In the interior of S, it is finite and continuous, as also its
first and second derivatives, except at the point (xu yv'«,).

(iv) At the point (xu ylt z,}, it becomes infinite as -—, when r

tends to zero, r being the distance from (x, y, z) to

In other branches of Applied Mathematics similar functions
have been introduced and called by the same name. These have
become of increasing importance as kernels of Homogeneous
Integral Equations. In the applications of Integral Equations
in Mathematical Physics they occupy a prominent place.*

* Cf. Kneser, Die Integralgleichungen und ihre Anwendungen in der
Mathematischen Physik (Braunschweig, 1911).

We shall refer to Kneser's book ia the following pages as Kneser,
Inttgralgleichungen.

Hilbert, Gnindziige einer allgemeinen Theorie der linearen Integral-
gleiclmngen, Gottinger Nachrichten, Math.-Phys. Klasse, 1904.

Stekloff, Theorie gene'rale des fonctions fondamentates, Ann. de la Fac.
det Sc. de Toulouse (2), T. 6, p. 351, 1904.
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§ 2. Let (ar,, ylt z,) be the coordinates of the point P at which

the Green's Function is to be infinite as .
inr

Let (x, y, z) be the coordinates of any point Q in the region
bounded by S.

Then the Green's Function at Q will depend upon (x, y, z) and
(&!, yv s,). Following Kneser,* we shall denote it by K(0, 1), and
refer to the points P and Q as (0) and (1) respectively.

Thus we have, inside S,
V2K(0, l) = 0,

and K(0, l) = -^- + M(0, 1),

where M(0, 1) is a finite and continuous function of (0, 1) in the
given region, its first and second differential coefficients with
respect to x, y and s being also finite and continuous there.

Further, K(0, 1) = 0, on the surface S.
A simple application of Green's Theorem shows that K(0, 1) is

a symmetrical function of (x, y, z) and (xlt y,, zj.
In other words, we have

K(0, l) =

§ 3. Now let >p be any solution of

which vanishes on the surface S, and with its first and second
derivatives, is finite and continuous in the region bounded by S.

Applying Green's Theorem to the region between S and a small
sphere 2, whose centre is at the point (1), we have

where — denotes differentiation along the outward normal to 2,
on

and dv the element of volume at the point (0).

Cf. Kneser, Integralgleiehungen, p. 127.
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When the radius of 2 tends to zero, we obtain the known
result

= AJ"JjK(O,
where ^(0) stands for \f>(x, y, z) and ^(1) for ^(x^ yv a,).

Therefore the functions ^ are characteristic functions (Eigen-
funktionen), and the numbers A. are characteristic numbers
(Eigenwerte) of a Homogeneous Integral Equation with K(0, 1) as
its symmetrical kernel.*

§4. These characteristic functions are supposed to be nor-
malised, so that

M
the integration being taken through the interior of S.

If we assume that K(0, 1) can be expanded in an infinite series

which can be integrated term by term, on multiplying by ipn and
integrating, we find that

Therefore with this hypothesis we would have

n = JJjK(O,

We are thus led to enquire whether the series in (2) really
converges and represents the function K(0, 1).

§ 5. For the case of a finite and continuous symmetrical kernel,
K(a;, y), it was shown by Hilbert and Schmidtf that this equality
(2) holds, provided the series is uniformly convergent with regard
to both variables in the given interval.

* Cf. BOcher, An Introduction to the. Study of Integral Equations (Camb.
Tracts, No. 10), p. 57.

t Cf. Schmidt, Zur Theorie der linearen und nichtlinearen Integral-
gleichungen, Math. Ann. Bd. 63, p. 449, 1907.

6
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Kneser has extended* the theorem to kernels which become

infinite'as —, and proved that the Green's Function, as defined

in § 1, is given by the infinite series

provided that the series converges uniformly within S, both with
respect to (x, y, z) and (a;,, yv zt), when the distance r01 between (0)
and (1) remains greater than some fixed quantity.

In some cases it is not difficult to prove the uniform con-
vergence of the series, so that the Green's Functions are definitely
established by means of this theorem. Various examples of this
are given in Kneser's book.

In other cases, however, we have to be content with the
position that the Integral Equation (1) suggests the expression
for the Green's Function, which has then to be verified inde-
pendently.

I t should be noted that in these cases, repeated series, in which
the summations are taken one after the other, are substituted for
the original double, or triple, series, f

In the following pages we shall show that the series (2)
does give the Green's Function in the Theory of Potential, when
the region is bounded by concentric circular cylinders, planes
perpendicular to the axis, and axial planes : and by concentric
spheres, axial planes and cones. The Green's Functions for these
cases have been obtained by other methods by Dougall.t They
can also be deduced from results given by me§ for Instantaneous
Point Sources in the Conduction of Heat, by replacing the
instantaneous source by a constant and continuous one.

* Kneser, Die Theone der Integralgleichungen und die Darstellung
willkiirlicher Funktionen in der mathematischen Physik, Math. Ann. Bd. 63,
p. 486, 1907. Also Integralgleichungen, §41.

+ Cf. Kneser, Integralgleichungen und Darstellung willkurlicher Funk-
tionen von zwei Variabeln, Rend. Circ. Mat. di Palermo, T. XXVII., p. 117,
1909.

% Dougall, The Determination of Green's Functions by means of Cylindrical
and Spherical Harmonics, Proc. Edin. Math. Soc, Vol. XVIII., p. 33, 1900.

§ The Green's Functions for a Wedge of any Angle and other Problems in
the Conduction of Heat, Proc. Lond. Math. Soc. (2), Vol. VIII., p. 365, 1910.
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§ 6. The following theorems dealing with Bessel's Functions will
be required later :—

I. Let pu pz, ... be the positive roots of the equation

Then 2 ^ - 1 * > = ±(^){(±Y - (i-)} >-0<*<f
p11 zJl(Px)dx

II. Z«< /jj, p.2) ... 6e <Ae positive roots of the equation

Jn(pa)Kn(ipb) - Ju(pb)KJiPa) - 0, 0 < a < b, f

< Un(pa:) stand for the expression

Jn(Px)Kn(ipb)-Jn(pb)Kn(ipx).

Then

/or a<x<g<b,

/or a

The second of these theorems can be proved by an argument
similar to that by which Kneser establishes the first. The value

* Cf. Kneser, Integralgltichungtn, §27.

ir - \ni-r / n»V \
t An usual KB(ti) stands for e ( J(a:)-e J(ar) ).

28iimir \-n » /
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of Vn(x) for large values of x is needed, and the fact that, when p
is large, the root p, of the equation

Jn{pa)Kn{ipb) - J,,(pb)Kn(ipa) = 0

is approximately -r •*

III . If p, p' are two different positive roots of
Vn(pa) = Jn(pa)Kn(iPb) - Jn(pb)Kn(ipa) = 0, n > 0

(i)

and (ii) ^xVl(Px)dx= - ^ ~TJn(Pa)^-Un(Pa)

The proof of this theorem offers no difficulty.t

CYLINDRICAL COORDINATES.

§ 7. We proceed to examine the different series

A, A 2

for the regions named in § 5.
We begin with those in which cylindrical coordinates (r, 0, z)

are used. With these coordinates the equation
V Y + A ^ O

becomes

Space bounded by the cylinder r = a, and the planes z = 0, z — c.

The finite and continuous solutions vanishing at the boundary
are given by

, A T / \ c o s a • n 7 r

VV". = A-pmJ Apr) ̂ md sm—z,

where m, n are positive integers, including zero, p is a positive root

of JJpa) = 0, and k = P
2 + ^ - .

c
* Cf. Gray and Mathews, Bessel Functions, p. 242.
t Cf. Carslaw, Fourier's Series, p. 315.
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To normalise these functions we choose A,^,,, so that

r \ " C0Slmdd6 Psin'-zcfz = 1.
Jo s m " J o e

Thus A2 =
pmn r

7rc r J;, (/»•) dr
J o

where a0 = 1 and an = 2, for m ^ 1.
Therefore the series corresponding to

1 vv ,
7TC p m "

(V +
Now it is easy

sin—zsin—

c 1 ' s
P +

»J,

(

to

«'

v 2 \ r°r J 2 ,

show that

1 sinhp(c

A.

r)a?r

nhpc

-cosw(^ -- ^')sin— z sin -r^z'.

roro<,<-)
(4).

1 sinho(c - z')sinhpz , ,
r . , —, for s<z '<c

p sinnpc
Therefore if we start with a repeated series, and sum first with
regard to n, we have

Jm(pr)Jm(pr') sinhp(c - s)sii
2 amcosm(0 - &) 2 /) r

Jo

for s>z', and when z<z\ we have to interchange z and z' in (5).
But it is known* that

I ri-Jpr)dr = ^[
jo

when p is a root of Jm(pa) = 0.
Therefore we can replace (5) by

- L v amcoSm(e - 6') 2 ^ ^ - ^ sinhp(c-2)sinhpz ^ ^
ira1 ™ p p[J m(pa)J" sinhpc v '

This result agrees with Dougall, loc. cit. § 22 (2).f

• Cf Fourier's Series, p. 315.
r In comparing Dougall's results with those giyen in this paper, it has to

be remembered that his Green's Functions are infinite as —, not as -g— •

6 *
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Corollary. We can deduce from (6) the Green's Functions for
(i) The space bounded-by a cylinder r = a:

(ii) The space between the planes z= 0 and z = c.
In (6) change the origin to the point on the axis half-way

between the planes.
Then we have

sinhp( — - a )sinhp( — 4- z )
\ •* / \ 2 / c c

for - — <z'<z< —.
sinhpc 2 2

Put c = » , and we obtain the Green's Function for the cylinder,

K,0, „ _ £ 2
For the space between the two parallel planes, we put a = cc in

(6).
Using the' asymptotic value* of Jm(pa), namely,

2

we have

V ir pa \ z

If />, p + 8p are consecutive roots of

we have oSp = 7r

Thus from (6)

amc

" sinhp(c - z)si

K(0, 1 , . I S am

sinh^c

* Cf. Macdonald, TAe Electrical Distribution on a Conductor bounded by
Two Spherical Surfaces cutting at any Angle, Proc. Lond. Math. Soc, (1) Vol.
XXVI., p. 159, 1895.
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§ 8. Space bounded by a cylinder r = a; two planes z = 0, z = c;
and two axial planes 6 — 0, 6 = a..

. inw . mr
sin Osin—z

c
Here we have \p = ——-J (@r)

rpmn i— m r ^ / r r» -11
Vote — ~T2 /»»\J» 2Jo —

a
the function having been normalised.

In this expression, m and n are positive integers; p is a positive
n27r2

root of J m T (pa) = 0 ; and A. = p2 + —T.

a
Therefore the series corresponding to

is
^(f^nW

4 o O . B I T . . 7H7T . W7T . n7T ,

^ 2 ^ s i n — w s i n 6'sin— zsm—z.
c c

If we sum first with regard to a, as in §7, we have

4 . r»7r . . mir a a sinhp(c - z)sinhpz'
—v^sin 6»sin d'^ r _ — - — - ^ —r-r1- -1—,
eta- m a. «. p p[J mw(pa)\~ sinhpc

a

for a > a'. (9)
This agrees with Dougall, loc. cit. §25 (1).

Corollary. We can deduce from (9) the Green's Functions for
(i) The space bounded by a cylinder and two axial planes:

(ii) The wedge of angle a.:

(iii) The wedge of angle a. and two planes 2 = 0, z = c

For these we have, respectively,

K(0, D .

'o a

for z>«': (10)
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a a

for z>z': (11)

K(0, 1) = i-Ssin^

sinhp(c-z)sinhpz' Qrz>z,
sinhpc

§ 9. Space bounded by two cylinders r = a, r = b: and two planes
z = 0, z-c.

Here the normalised function

U Jpr^md sin n'z
am

 m V r ' s in c

where m, n are positive integers, or zero :
Vm(pr)-Jm(i>r)KJipb) - Jm(pb)Km(ipr) :
p is a positive root of XJm(pa) = 0 :
a* = li ««, = 2 for m = 1 :

, . , »V !

and A. = p 2
 H —.

c
Thus the series corresponding to

is

1 am\Jm(pr)JJm(pr') ,„ m^ . nit . nir
TTC

p m :

If we sum first with regard to n, we have

^ P ^ f o r
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Using the result of § 6 (III.), we have

- 1 2 amcosm (0 - 6') 2 -
* » P d

 TT T

for »>«'. (14)

Corollary. For the space bounded by two cylinders we find
from (14)

K(0 ,1)= - 1 2amcosOT(0 - ff)

for «>«'. (15)

§10. Space bounded by two cylinders r = a,r — b: two planes

= 0, 2 = c : awrf <«>0 axial planes 8 = 0, 6 = OL.

Here the normalised function

n—esm-z

m, n are positive integers :
p is a positive root of ^>mv(pa) = 0 :

and ^P2+r^-

Thus the series corresponding to

is

U <pr)V (or')

4 v ~T ~Y . tnir . mir . mr . mr
— --22 s-;—^T sm <?sin 9 sin—a sin—z
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If we sum first with regard to n, we have

-2 sin 0sm d-^j A smhpc

for 2>z'. (16)
Dougall, l6c. dt. § 26(2) obtains a different result.

SPHERICAL COORDINATES.

§11. Before dealing with the regions bounded by spheres, axial
planes and cones, it will be necessary to state some theorems
regarding the Spherical Harmonics we employ.

Following Hobson* we define P^m(/*) by the equation

This solution of the equation

is finite at /x= 1(6 = 0), and is suitable for the potential problems to
be discussed.

I. When m is any positive number, and n, n' are roots of

P--(^) = 0,
then (i)

and (ii)

The proof of this theorem resembles that given in Macdonald's
Electric Waves, p. 89, for a special case.

* Hobson, On a Type of Spherical Harmonics of Unrestricted Dtgrtt,
Order, and Argument, Phil. Trans. (A), Vol. 187, p. 451, 1896.
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II. If m is any positive number, and TT — 0 = e where t is small,
the positive roots of

are given by

where s has all positive integral values, including zero.
In the limit when <--»0, n = m + s.
This theorem is due to Macdonald.*

III. If n is any positive root o/'P^m(/t) = 0 and m is any positive
number,

This theorem is proved in Dougall's paper, §11, but his proof
needs modification for the case of m zero or a positive integer.

IV. If n is any positive root of P^™(/A) = 0 and m is any
positive number, or zero,

Starting from the equation

where fi = -p, [cf. Macdonald, Proc. Lond. Math. Soc, (1) Vol.
XXXI., p. 273] this theorem follows from an argument similar to
that used by Macdonald, [cf. Electric Waves, § 63], The result in
(III.) is required in this proof.

V. If n, n are any two positive roots of the equation
P~:"(/x1)P^>(/t0) - ^(f^)F~m(fil)) = 0, m > 0

and Sj

then

IMi

* Macdonald, Zeroes of the Spherical Harmonic P™(M) considered a>

a function ofn, Proc. Lond. Math. Soc. (1), Vol. XXXI., p. 273, 1899.

rMls:(/,)s
J Mo

(2n + 1) J^S^)]'^ = [(1 - ^ S : ( ^
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§12. Space bounded by the sphere r = a.
In Spherical Coordinates (r, 0, <f>), the equation

becomes

Thus we have

when m is any positive integer, or zero :
n is any positive integer :
p is any positive root of Jn+$(pa) =0 :

and A. = p2.
The function having been normalised, we find that the series

corresponding to
fr(0)ft(l) ^(0)&(l) .

x •••

P'\ r
J o

Kneser* examines this case in detail, and verifies that the
repeated series

v {n

is equal to the known Green's Function.

§ 13. Space bounded by the sphere r = a and the cone 6 = 60.

Here the normalised function

i~V~£
• Kneser, IrOegralghichungen, §38.
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TO being any positive integer, or zero :
n any positive root of Y^ipo) = 0 :
p any positive root of Jn+j(pa) = 0 :
A. = /32, and ao=l, am = 1 for m ^ 1.

Thus the series corresponding to

X,

2 ^ ^
» 2 . Jrr> pi rrji+i{pr)dr P

Jo j r

If we sum first with regard to p, and use the results of § 6 (I)
and § 11 (I), we obtain

for 0 < r < r ' < a . * (18)

Collorary. Put o = oo in (18) and we find that in the cone 0 = 60

K(0) 1)= - J 2«.co«m<*-*')2 (^T + i ^ t i y W -for r<r'.

This agrees with Dougall, fee. ci<. § 29 (2).

§ 14. Space bounded by the sphere r = a, the cone 6— 80, and the
planes <p = 0, <f> = a..

where in is any positive integer :
mir

n is any positive root of Pn
 a (/*„) = 0 :

p is any positive root of Jn+^(pa) = 0 :
and A = p2.

' Cf. Macdonald, Demonstration of Green's Formula for Electric Density
near the Vertex of a Right Cone, Trans. Camb. Phil. Soc, Vol. XVIII., p. 293,
1900. The Green's Function for 8' = 0 is found in that paper.
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We are thus led to the series
mir TUT

2 2 2 2 Jn+j(Pr)Jn+i(pr') Pn " 0*)P» a ( / ) • "»*• ,„•"»"• J -
—_ _ — k i n mfalll <p .

<*-,Jrr'pmn 2f
a , , n mir a. a

If we sum first with regard to p, using §6 (I.) and §11 (I.)

we have

for 0<r<r'<a. (20)

Corollary (i.) Put a = oo in (20) and we find for the space
bounded by the cone d = 60 and the two planes (j> = 0 and <J> = OL,

K(0( 1)= - — _
( / 0 ) ^

-f-p. ' W - P .
. an a/i0

for r < r ' . (21)

There is an obvious error in Dougall's result, loc. eit. § 33 (2),
S"(/J) being omitted.

Corollary (ii.) Let 6?0->;r and we find from (21), with the aid
of § 11 {II.), (IV.)ybr the space bounded by the planes <£ = 0, <£ = OL,

m7r

- V * ; ( ? ) *Jrr"n OL a. > II(s)

s being any positive integer, including zero.

This agrees with Dougall, loc. cit. § 30 (3).

§ 14. Space bounded by two spheres r = a, r = b.

p
J

BIT

a

a
for

P

r>

mir
— +s

a
<r', (22

Here ̂ . A ^ ^ ^ W ^ ^ PT</0»"*
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where m. is any positive integer, including zero :
n is any positive integer :
p is any positive root of Jn+i(pa)Kn+±(ipb)

-Jn+i(pb)Kn+i(iPa) = 0:
and X = p2.

We are thus led to the series

' 0

writing, as in § 6, Vn(px) for Jn(px)Ku(ipb) - Jn(pb)K»(ipx).

If we sum first with regard to p, using § 6 (II.) and put

r = ae , r' = aeV , and b = ae°, we obtain „

1 v • i / 11 sinh(w + i)(c - n) ,
= ismh(i i + i))i . \ —P.icosy) for rj<ri. 123)

This agrees with Dougall, loc. cit. §28(1).

§15. Space bounded by two spheres r = a, r = b, and the cone

H e r e

mir
o c o s

( )

where m is any positive integer, including zero :
_rtnr

n is any positive root of Pn \/*o)= ^ :

p is any positive root of Un+j(pa) = 0 :

and X = f?.

On normalising the function, and proceeding as in §14, we
obtain

+ \) (c - 7/')
>-<r>')2 ^ -^

~ S l i m y IP ~~v ^ / v

11 ^ „ . (24)

where a o = l , om = 2 for n» S 1 and r)<r\.
This is equivalent to Dougall's result, loc. cit. § 31 (2).
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§ 16. Space bounded by two spheres, r-a, r = b; two axial planes
<f> = 0, <j> = a. ; and the cone 6 = 60.

Here we are led to the series

mir _ irnr

_ J _ 2 s 2 Vn+i(pr)Vn+i(pr') P~ n Q*)P. a (//) ^ m r mw

a. Jrr' P m ™ 2 f6 TT? / \ J f: m ? r «• a

*\Vl()d J ;
Where OT is any positive integer ;

rmr
n is any positive root of Pn

 a (m) = 0 :

p is any positive root of \Jn+i(pa) = 0 :
and A. = p2.

Proceeding as in §15 we obtain, for rj<rj',
4

™ S m «• S m «•

rrnr rmr

P
-, (25).

, d -™ d -^1

Corollary. Let 80->ir, a.nd from §11 (II.) and (IV.) we obtain
for the space between two spheres and two axial planes

sinh( — + s + \ W i n ] / " ^ - + s + \ )(c - rj')

- + s + i )c

• T ' |

a. P (u)P (u'), (26)

s being any positive integer, including zero, and r; < -q.

§ 1 7 . .Space bounded by two spheres r = a,r = b: two cones

6— Of,, 6 = 0 , : a n a ! <M>O planes </> = 0, <f> = a..
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Here we are led to the series
WIT

Vn+i(pr)Vn+i(pr-) _ S ^ S , » >') ^ m r m*

where

m is any positive integer :
mjr mr mr mr

n is any positive root of P n
 a ( ^ ) P n

 a (/*0) - P n
 a (/*o)Pn

 a (ft) = 0,

p is any positive root of Un+tjipa) = 0 :

mr mr mr mr
aS:(,i) denotes P n

 a (/,)PB « (ft,) - PB
 a ( ^ P , " (/x,,):

and \ = pi.
Using §6 (II.) and §11 (V.), and summing first with regard

to p, we obtain

4 . rrnr nnr , sinh(w + J)j;sinh(n + J)(c -rf)
——-—-—J=m

sin
 a ^sm ^ 0 2 sinh(

for T)<r)'. (27)

Dougall, loc. cit. §35 (2) gives a diflFerent result.
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