A CHARACTERIZATION OF THE FINITE SIMPLE GROUP $\mathrm{PSp}_{4}(3)$

JOHN L. HAYDEN

The aim of this paper is to characterize the finite simple group $\mathrm{PSp}_{4}(3)$ by the structure of the centralizer of an element of order three contained in the center of its Sylow 3-subgroup. More precisely, we shall prove the following results.

Theorem 1. Let α be an element of order 3 contained in the center of a Sylow 3 -subgroup of $\mathrm{PSp}_{4}(3)$. Denote by H_{0} the centralizer of α in $\mathrm{PSp}_{4}(3)$. Let G be a finite group with the following properties:
(a) G has no normal subgroup of index 3.
(b) G has an element α_{1} of order 3 such that $C_{G}\left(\alpha_{1}\right)$ is isomorphic to H_{0}.
(c) $C_{G}\left(\alpha_{1}\right)$ has an elementary abelian subgroup M of order 27 for which $И_{G}\left(M, 3^{\prime}\right)$ is trivial. (Refer to the structure of H_{0} in Section 1.)
Then G is isomorphic to $\mathrm{PSp}_{4}(3)$.
Theorem 2. Let G be a finite group satisfying (b) and (c) of Theorem 1. Then one of the following occurs:
(i) G has a normal subgroup of index 3.
(ii) G is isomorphic to $\mathrm{PSp}_{4}(3)$.

Clearly, Theorem 2 is an immediate consequence of Theorem 1.
The main difficulty in proving this theorem is in showing that a group possessing properties (a), (b), and (c) has a 3 -structure similar to that of PSp_{4} (3). Once this is obtained, the centralizer of an involution in the centre of a Sylow 2 -subgroup is determined. Finally, G is identified with $\mathrm{PSp}_{4}(3)$ by use of [6]. It seems unfortunate that condition (c) is necessary, but its use in determining the 3 -structure of G is indispensable in this method of proof.

1. Structure of H_{0}. We shall now study the structure of the centralizer of an element α of order 3 contained in the center of a Sylow 3 -subgroup of $\mathrm{PSp}_{4}(3)$. Let F_{3} be the finite field of three elements and V be a four-dimensional vector space over F_{3} equipped with a non-singular skew-symmetric bilinear form $x \cdot y \in F_{3}(x, y \in V)$. Then V has a "symplectic basis", i.e., a basis $n_{1}, n_{2}, n_{3}, n_{4}$ such that $n_{1} n_{4}=n_{2} n_{3}=1$ and $n_{1} n_{2}=n_{1} n_{3}=n_{2} n_{4}=n_{3} n_{4}=0$. The group of all linear transformations σ of V such that $\sigma(x) \cdot \sigma(y)=x \cdot y$ for all x, y in V is called the symplectic group $\mathrm{Sp}_{4}(3)$. This group has a centre

[^0]of order 2 and the corresponding factor group is $\mathrm{PSp}_{4}(3) . \mathrm{PSp}_{4}(3)$ is a simple group of order $3^{4} \cdot 2^{6} \cdot 5$ (see Artin [1]).

This means that a linear transformation σ of V belongs to $\mathrm{Sp}_{4}(3)$ if and only if

$$
\begin{aligned}
\sigma\left(n_{1}\right) \cdot \sigma\left(n_{2}\right)= & \sigma\left(n_{1}\right) \cdot \sigma\left(n_{3}\right)=\sigma\left(n_{2}\right) \cdot \sigma\left(n_{4}\right)=\sigma\left(n_{3}\right) \cdot \sigma\left(n_{4}\right)=0 \\
& \sigma\left(n_{1}\right) \cdot \sigma\left(n_{4}\right)=\sigma\left(n_{2}\right) \cdot \sigma\left(n_{3}\right)=1
\end{aligned}
$$

It follows that a linear transformation σ given by the matrix $\left(t_{i j}\right)$, $i, j=1,2,3,4$ in terms of the basis $n_{1}, n_{2}, n_{3}, n_{4}$ where

$$
\sigma\left(n_{1}\right)=t_{11} n_{1}+t_{21} n_{2}+t_{31} n_{3}+t_{41} n_{4} \quad \text { etc. }
$$

belongs to $\mathrm{Sp}_{4}(3)$ if and only if $\left(t_{i j}\right)^{\prime} J\left(t_{i j}\right)=J$ where $\left(t_{i j}\right)^{\prime}$ denotes the transpose matrix and J is the 4×4 matrix

$$
J=\left[\begin{array}{llll}
& & & 1 \\
& & 1 & \\
& -1 & & \\
-1 & & &
\end{array}\right] .
$$

Take

$$
\alpha=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
1 & & & 1
\end{array}\right]
$$

which is an element of order 3 in $\mathrm{Sp}_{4}(3)$. If I is the identity transformation of $\mathrm{Sp}_{4}(3)$, it is clear that $-I$ generates the centre of $\mathrm{Sp}_{4}(3)$. Therefore, $\mathrm{PSp}_{4}(3)$ can be obtained from $\mathrm{Sp}_{4}(3)$ by identifying a matrix of $\mathrm{Sp}_{4}(3)$ and its negative. A matrix $\left(t_{i j}\right)$ of $\mathrm{Sp}_{4}(3)$ centralizes α if and only if

$$
\left(t_{i j}\right)=\left[\begin{array}{llll}
\epsilon & & \tag{1.1}\\
a & T & \\
b & T & \\
c & e & f & \epsilon
\end{array}\right]
$$

where

$$
T=\left[\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right]
$$

belongs to $\mathrm{SL}(2,3), \epsilon= \pm 1$ and $e=\epsilon\left(b t_{11}-a t_{21}\right), f=\epsilon\left(b t_{12}-a t_{22}\right)$.
We conclude that H_{0} is the totality of all matrices of the type (1.1) and that any two such matrices are identified if they are negatives of each other. From (1.1) we calculate that H_{0} has order $3^{4} \cdot 2^{3}$. Several subgroups of H_{0} are important in the proof of Theorem 1. We list them here for convenience.
(1.2) Let P be the totality of all matrices of H_{0} of the form

$$
\left[\begin{array}{cccc}
1 & & & \\
a & 1 & & \\
b & d & 1 & \\
c & e & f & 1
\end{array}\right] \text { where } \begin{aligned}
& e=b-a d \\
& \\
& f=-a
\end{aligned}
$$

It is easily verified that P is a Sylow 3 -subgroup of H_{0} of order 81 and is isomorphic to a Sylow 3 -subgroup of $\mathrm{PSp}_{4}(3)$. The centre of P is generated by α and the center of H_{0} and P coincide.
(1.3) Let M be the subgroup of P which is the totality of all matrices

$$
\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
b & d & 1 & \\
c & b & & 1
\end{array}\right] .
$$

It is easily checked that M is the unique elementary abelian subgroup of P of order $27 . M$ is a self-centralizing subgroup of H_{0} which contains α.
(1.4) $\quad N_{H_{0}}(P)=P\langle t\rangle$ where $\langle t\rangle$ is a complement of order 2 generated by the involution

$$
t=\left[\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & 1
\end{array}\right]
$$

(1.5) A Sylow 2-subgroup of H_{0} is a quaternion group of order 8 . Let Q be the quaternion group with t in its center generated by

$$
q_{1}=\left[\begin{array}{llll}
1 & & & \\
& & 1 & \\
& -1 & & \\
& & & 1
\end{array}\right], \quad q_{2}=\left[\begin{array}{rrrr}
1 & & & \\
& 1 & 1 & \\
& 1 & -1 & \\
& & & 1
\end{array}\right]
$$

The mapping θ of H_{0} which sends each matrix of (1.1) onto its corresponding matrix T is a homomorphism of H_{0} onto $\operatorname{PSL}(2,3)$. The kernel of this homomorphism is the set of all matrices of (1.1) with $T= \pm I$ and is the semidirect product of a nonabelian subgroup of P of order 27 and $\langle t\rangle$. It is easily verified that $O_{3}\left(H_{0}\right)=\operatorname{Ker}(\theta) \cap P$ and $Z\left(H_{0}\right)=Z\left(O_{3}\left(H_{0}\right)\right)=\langle\alpha\rangle$.
2. The structure of $N_{G}(M)$. Let G be a finite group satisfying (a), (b) and (c) of Theorem 1. Let H be a subgroup of G isomorphic to H_{0} and let α_{1} be the generator of the center of H. Let P, M, t have the same meaning as in (1.2), (1.3), and (1.4) but now identified as subgroups of H.
(2.1) P is a Sylow 3-subgroup of G.

Proof. Let S be a Sylow 3 -subgroup of G containing P. Then $Z(S)$ is a subgroup of $C_{G}(M)=C_{H}(M)=M$ so that $Z(S)$ centralizes P. It follows that $Z(S)=Z(P)=\left\langle\alpha_{1}\right\rangle$ and $S \subseteq H$. Since P is a Sylow 3 -subgroup of $H, P=S$.
(2.2) $N_{G}(M) / M$ is isomorphic to a subgroup of GL $(3,3)$ and has a selfcentralizing Sylow 3-subgroup of order 3 . In fact, $N_{G}(P)=P\langle t\rangle$.

Proof. The subgroup M contains α_{1} so that $C_{G}(M)=C_{H}(M)=M$ and it follows that $N_{G}(M) / M$ is isomorphic to a subgroup of GL $(3,3)$. The commutator subgroup P^{\prime} of P is elementary abelian of order 9 , contains α_{1} and is calculated to be $O_{3}(H) \cap M$. It follows that $C_{G}\left(P^{\prime}\right)=C_{H}\left(P^{\prime}\right)=M$ and that $N_{G}\left(P^{\prime}\right) / M$ is isomorphic to a subgroup of GL $(2,3)$. Since $N_{G}(P) / M$ is a Sylow 3-normalizer of $N_{G}\left(P^{\prime}\right) / M$ and since GL $(2,3)$ has a Sylow 3-normalizer of order $12, N_{G}(P) / M$ has order 6 or 12.

Suppose that $N_{G}(P) / M$ has order 12 so that the Sylow 2 -subgroup of $N_{G}(P) / M$ is elementary abelian of order 4 . If $N_{G}(P)$ contained an element y of order 4 , then $y^{2} \in M$ which is impossible. It follows that $N_{G}(P)=P\langle t, \tau\rangle$ where $t \in N_{H}(P)$ and τ is an involution not contained in H such that $\langle t, \tau\rangle$ is a four group. Since $N_{G}(P) / M$ is isomorphic to a Sylow 3-normalizer of GL $(2,3)$ and since t inverts a generator of P / M, we may assume that τ centralizes P / M. From the structure of $P, O_{3}(H)$ is the unique nonabelian subgroup of P of order 27 and exponent 3 . Let X be the unique subgroup of P of order 27 which is nonabelian of exponent 9 . It follows that $\langle t, \tau\rangle$ normalizes $M, O_{3}(H)$ and X and that $X=C_{X}(t) C_{X}(\tau) C_{X}(t \tau)$. Since $C_{X}(t)=\left\langle\alpha_{1}\right\rangle$, it follows that τ or $t \tau$ centralize an element of $X-O_{3}(H)$. This implies that τ or $t \tau$ centralizes $P / O_{3}(H)$. However, t centralizes $P / O_{3}(H)$ so that $\langle t, \tau\rangle$ centralizes $P / O_{3}(H)$. Let $m \in M-P^{\prime}$. Then $m \in P-O_{3}(H)$ so that $[\tau, m] \in O_{3}(H) \cap M=P^{\prime}$. Thus τ centralizes M / P^{\prime}.

Since τ centralizes P / M and M / P^{\prime} we have that τ stabilizes the normal series $P / P^{\prime} \supset M / P^{\prime} \supset \overline{1}$ of P / P^{\prime}. It follows that τ acts trivially on P / P^{\prime}. Since $P^{\prime}=\Phi(P), \tau$ acts trivially on P which is not the case. We conclude that $N_{G}(P) / M$ has order 6 so that $N_{G}(P)=P\langle t\rangle$. Since t inverts a generator of $P / M, P / M$ is a self-centralizing Sylow 3-subgroup of $N_{G}(M) / M$.

(2.3) $N_{G}(M)$ is not 3-closed.

Proof. Suppose that $N_{G}(M)$ is 3 -closed. Then $N_{G}(M) \subseteq N_{G}(P)$ so that $N_{G}(M)=N_{G}(P)=P\langle t\rangle$. Let $g \in G$ and suppose that $\alpha_{1}{ }^{g} \in P$. Since $\alpha_{1}{ }^{g}$ has order $3, \alpha_{1}{ }^{\text {oh }} \in M$ for some $h \in H$. As M is the unique maximal elementary abelian subgroup of P, α_{1} and $\alpha_{1}{ }^{g h}$ are conjugate in $N_{G}(M)$. This implies that $\alpha_{1}=\alpha_{1}{ }^{g h}$ so that $\alpha_{1}=\alpha_{1}{ }^{g}$. It follows that the centre of P is weakly closed in P and by a theorem of Grün, the largest abelian 3-quotient group of G and $N_{G}(Z(P))$ are isomorphic. Since α_{1} and α_{1}^{-1} are not conjugate, $N_{G}(Z(P))=C_{G}(Z(P))=H$. From the structure of H we see that $H / O_{3}(H)$ is isomorphic to $\mathrm{SL}(2,3)$ so that H has a normal subgroup of index 3 . This implies that condition (a) of Theorem 1 is violated, a contradiction.

$$
\begin{equation*}
N_{G}(M)=M L, M \cap L=1 \text { and } L \text { is isomorphic to } S_{4} \text {. } \tag{2.4}
\end{equation*}
$$

Proof. By a theorem of Gaschütz [7], M has a complement L such that $N_{G}(M)=M L, M \cap L=1$. From (2.2), L has a self-centralizing Sylow 3 -subgroup of order 3 and a Sylow 3 -normalizer of order 6 . Since L is isomorphic to a subgroup of GL $(3,3)$, the order of L is a divisor of $2^{5} \cdot 3^{3} \cdot 13$ and it follows from a theorem of Feit and Thompson [3] that L contains a normal nilpotent subgroup N such that L / N is isomorphic to S_{3} or A_{3}. Let L be chosen that $t \in L$ and let $L \cap P$ be generated by x. Then $t x t=x^{-1}$ and since $|L: N|$ is divisible by $3, L / N \cong S_{3}$.

Suppose that 13 is a divisor of $|N|$. Since N is nilpotent, the Sylow 13 -subgroup S is centralized by N and $C_{L}(S)=N$. It follows that L / N is isomorphic to a subgroup of $\operatorname{Aut}(S)$. This is impossible as $L / N \cong S_{3}$ and $\operatorname{Aut}(S)$ is cyclic.

We conclude that N is a 2 -group and that N has order 4 or 16 . If $|N|=16$, then $|L|=2^{5} \cdot 3$ and L contains a Sylow 2 -subgroup W which is isomorphic to a Sylow 2 -subgroup of $\operatorname{GL}(3,3)$. By a result of [2], $W=W_{1} \times C_{2}$ where

$$
W_{1}=\left\langle a, b \mid a^{8}=b^{2}=1, b^{-1} a b=a^{3}\right\rangle
$$

and C_{2} is a cyclic group of order 2 . If N contained an element of order 8 , then N would contain exactly 3 or 6 elements or order 8 . However, any subgroup of W containing an element of order 8 contains 4 or 8 such elements. Thus N is a maximal subgroup of W whose elements are of order 4 or 2 . Since a maximal subgroup of W_{1} is cyclic, quaternion or dihedral, it follows that N has a maximal subgroup which is quaternion or dihedral of order 8. It follows that $|Z(N)|=4$ and that $Z(N)=Z(W)$. Let $W=\mathrm{N}\langle t\rangle$ so that $Z(N)=Z(N\langle t\rangle)$. Then $t \in C_{L}(Z(N))$ which implies that $x \in C_{L}(Z(N))$, a contradiction.

Finally, $|N|=4$ and N is not cyclic. Clearly t does not centralize N so that $N\langle t\rangle$ is a dihedral group of order 8 . It follows that $L=N\langle x, t\rangle$ is isomorphic to S_{4}.

Let L be a complement for M such that $N_{G}(M)=M L, M \cap L=1$, $L \cong S_{4}$. We may assume $t \in L$ since $\langle t\rangle$ is a complement for P in $N_{G}(P)$. From the structure of $P, L \cap P$ is generated by an element x of order 3 inverted by t so that $x \in O_{3}(H)$ and $P=M\langle x\rangle$. Let τ be the involution of L such that $\left\langle\tau, x^{-1} \tau x\right\rangle$ is the normal subgroup of L of order 4 and t centralizes τ. We have the relations

$$
\begin{equation*}
t x t=x^{-1}, \quad t \tau=\tau t, \quad x \tau x=\tau x^{-1} \tau \quad \text { or } \quad(x \tau)^{3}=1 . \tag{2.5}
\end{equation*}
$$

Choose a basis for M given by

$$
\alpha_{1}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
1 & & & 1
\end{array}\right], \quad \alpha_{2}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
1 & & 1 & \\
& 1 & & 1
\end{array}\right], \quad \alpha_{3}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& 1 & 1 & \\
& & & 1
\end{array}\right] .
$$

From the structure of H we see that $t \alpha_{1} t=\alpha_{1}, t \alpha_{2} t=\alpha_{2}{ }^{-1}, t \alpha_{3} t=\alpha_{3}$. Replacing x by x^{-1} if necessary, we have that x satisfies $x^{-1} \alpha_{1} x=\alpha_{1}, x^{-1} \alpha_{2} x=\alpha_{1}^{-1} \alpha_{2}$ and $x^{-1} \alpha_{3} x=\alpha_{1} \alpha_{2} \alpha_{3}$. Relative to this basis,

$$
x \rightarrow\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right], \quad t \rightarrow\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Viewing τ as an involution of $\mathrm{GL}(3,3)$ satisfying the relations (2.5) we calculate that
(i) $\tau=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(ii) $\tau=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(iii) $\tau=\left[\begin{array}{rrr}0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$.

The fusion pattern is calculated:
(i) $\alpha_{1} \sim \alpha_{1} \alpha_{3} \sim \alpha_{1}{ }^{-1} \alpha_{2} \alpha_{3} \sim \alpha_{1}{ }^{-1} \alpha_{2}{ }^{-1} \alpha_{3}$

$$
\begin{aligned}
& \alpha_{1}^{-1} \sim \alpha_{1}^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{1} \alpha_{2}{ }^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{1} \alpha_{2} \alpha_{3}{ }^{-1} \\
& \alpha_{2} \sim \alpha_{2}^{-1} \sim \alpha_{1}^{-1} \alpha_{2} \sim \alpha_{1} \alpha_{2} \sim \alpha_{1}^{-1} \alpha_{2}{ }^{-1} \sim \alpha_{1} \alpha_{2}^{-1} \sim \alpha_{3} \sim \alpha_{1} \alpha_{2} \alpha_{3} \sim \\
& \quad \alpha_{1} \alpha_{2}^{-1} \alpha_{3} \sim \alpha_{3}{ }^{-1} \sim \alpha_{1}{ }^{-1} \alpha_{2}{ }^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{1}{ }^{-1} \alpha_{2} \alpha_{3}{ }^{-1} \\
& \alpha_{1}^{-1} \alpha_{3} \sim \alpha_{2} \alpha_{3} \sim \alpha_{2}{ }^{-1} \alpha_{3} \sim \alpha_{2}^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{2} \alpha_{3}{ }^{-1} \sim \alpha_{1} \alpha_{3}{ }^{-1} .
\end{aligned}
$$

(ii) $\alpha_{1} \sim \alpha_{1}^{-1} \alpha_{3} \sim \alpha_{2} \alpha_{3} \sim \alpha_{2}^{-1} \alpha_{3}$
$\alpha_{1}{ }^{-1} \sim \alpha_{1} \alpha_{3}{ }^{-1} \sim \alpha_{2}^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{2} \alpha_{3}{ }^{-1}$
$\alpha_{2} \sim \alpha_{2}^{-1} \sim \alpha_{1}^{-1} \alpha_{2} \sim \alpha_{1} \alpha_{2} \sim \alpha_{1}^{-1} \alpha_{2}^{-1} \sim \alpha_{1} \alpha_{2}^{-1} \sim \alpha_{1} \alpha_{3} \sim \alpha_{1}^{-1} \alpha_{3}^{-1} \sim$ $\alpha_{1}^{-1} \alpha_{2} \alpha_{3} \sim \alpha_{1}^{-1} \alpha_{2}^{-1} \alpha_{3} \sim \alpha_{1} \alpha_{2}^{-1} \alpha_{3}^{-1} \sim \alpha_{1} \alpha_{2} \alpha_{3}^{-1}$
$\alpha_{3} \sim \alpha_{1} \alpha_{2} \alpha_{3} \sim \alpha_{1} \alpha_{2}^{-1} \alpha_{3} \sim \alpha_{3}^{-1} \sim \alpha_{1}^{-1} \alpha_{2}^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{1}^{-1} \alpha_{2} \alpha_{3}{ }^{-1}$.
(iii) $\alpha_{1} \sim \alpha_{3} \sim \alpha_{1} \alpha_{2} \alpha_{3} \sim \alpha_{1} \alpha_{2}{ }^{-1} \alpha_{3}$
$\alpha_{1}{ }^{-1} \sim \alpha_{3}{ }^{-1} \sim \alpha_{1}{ }^{-1} \alpha_{2}^{-1} \alpha_{3}^{-1} \sim \alpha_{1}^{-1} \alpha_{2} \alpha_{3}{ }^{-1}$
$\alpha_{2} \sim \alpha_{2}^{-1} \sim \alpha_{1}^{-1} \alpha_{2} \sim \alpha_{1} \alpha_{2} \sim \alpha_{1}^{-1} \alpha_{2}^{-1} \sim \alpha_{1} \alpha_{2}^{-1} \sim \alpha_{1}^{-1} \alpha_{3} \sim \alpha_{1} \alpha_{3}{ }^{-1}$ $\alpha_{2} \alpha_{3} \sim \alpha_{2}{ }^{-1} \alpha_{3} \sim \alpha_{2}{ }^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{2} \alpha_{3}{ }^{-1}$
$\alpha_{1} \alpha_{3} \sim \alpha_{1}^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{1}^{-1} \alpha_{2} \alpha_{3} \sim \alpha_{1}{ }^{-1} \alpha_{2}{ }^{-1} \alpha_{3} \sim \alpha_{1} \alpha_{2}{ }^{-1} \alpha_{3}{ }^{-1} \sim \alpha_{1} \alpha_{2} \alpha_{3}{ }^{-1}$.
In any case we see that G has exactly four classes of elements of order 3 with representatives $\alpha_{1}, \alpha_{1}^{-1}, \alpha_{1}^{-1} \alpha_{1}{ }^{\tau}, \alpha_{1} \alpha_{1}^{\tau}$. Furthermore, $\tau \alpha_{2} \tau=\alpha_{2}^{-1}$ in all cases. We have proven the following.
(2.6) $N_{G}(M)=M\langle x, t, \tau\rangle$ where $\langle x, t, \tau\rangle$ is a complement for M satisfying the relations $t^{2}=\tau^{2}=x^{3}=1, t x t=x^{-1}, t \tau=\tau t,(x \tau)^{3}=1$. G has exactly four classes of elements of order 3 with representatives $\alpha_{1}, \alpha_{1}{ }^{-1}, \alpha_{1}{ }^{-1} \alpha_{1}{ }^{\tau}, \alpha_{1} \alpha_{1}{ }^{\tau}$ where $\alpha_{1}{ }^{\tau} \neq \alpha_{1}, \alpha_{1}{ }^{-1}$.

$$
C_{N G(M)}\left(\alpha_{1}\right)=P\langle t\rangle, \quad C_{N G(M)}\left(\alpha_{1}^{-1}\right)=P\langle t\rangle, \quad C_{N G(M)}\left(\alpha_{1}^{-1} \alpha_{1}^{\tau}\right)=M\langle t\rangle,
$$

and $C_{N G(M)}\left(\alpha_{1} \alpha_{1}^{\tau}\right)=M\langle t, \tau\rangle$.
3. The structure of $C_{G}\left(\alpha_{1}^{-1} \alpha_{1}{ }^{\tau}\right)$ and $C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)$. Let τ be the involution of $N_{G}(M)$ given in (2.6).

$$
\begin{equation*}
C_{G}\left(\alpha_{1}^{-1} \alpha_{1}^{\tau}\right) \cap C_{G}\left(\alpha_{2}\right)=M \tag{3.1}
\end{equation*}
$$

Proof. By (2.6), $C_{N G(M)}\left(\alpha_{1}{ }^{-1} \alpha_{1} \tau\right)=M\langle t\rangle$ and $C_{N G(M)}\left(\alpha_{2}\right)=M\langle t \tau\rangle$. It follows that M is a Sylow 3-subgroup of

$$
C_{G}\left(\alpha_{1}^{-1} \alpha_{1}^{\tau}\right) \cap C_{G}\left(\alpha_{2}\right)
$$

which is located in the center of its normalizer. By a theorem of Burnside, $C_{G}\left(\alpha_{1}^{-1} \alpha_{1}^{\tau}\right) \cap C_{G}\left(\alpha_{2}\right)=M V, M \cap V=1$ and V is a normal complement of M. Thus $V \in И_{G}\left(M, 3^{\prime}\right)$ and it follows that $V=1$ by (c) of Theorem 1.

$$
\begin{equation*}
C_{G}\left(\alpha_{1}^{-1} \alpha_{1}^{\tau}\right)=M\langle t\rangle, C_{G}\left(\alpha_{2}\right)=M\langle t \tau\rangle . \tag{3.2}
\end{equation*}
$$

Proof. $C_{G}\left(\alpha_{1}^{-1} \alpha_{1}{ }^{\tau}\right)$ has $M\langle t\rangle$ as a Sylow 3-normalizer so that $\left\langle\alpha_{1}\right\rangle \times\left\langle\alpha_{1}{ }^{\tau}\right\rangle$ is the centre of the Sylow 3 -normalizer. By a theorem of Grün, $C_{G}\left(\alpha_{1}{ }^{-1} \alpha_{1}{ }^{\tau}\right)$ has a normal subgroup K of index 9 and $M \cap K=[M, t]=\left\langle\alpha_{2}\right\rangle$. By (3.1), $C_{K}\left(\alpha_{2}\right)=\left\langle\alpha_{2}\right\rangle$ so that K has a self-centralizing Sylow 3 -subgroup of order 3. By [3], K is isomorphic to A_{5} or $\operatorname{PSL}(2,7)$ or has a normal nilpotent subgroup N such that K / N is isomorphic to A_{3}, S_{3} or A_{5}.

Since K admits α_{1} as an automorphism, we may assume that α_{1} acts nontrivially on K as otherwise $K=\left\langle\alpha_{2}, t\right\rangle$ and we have our desired result. Assuming that α_{1} acts nontrivially on K we have that α_{1} centralizes $\left\langle\alpha_{2}, t\right\rangle$ so can not be the inner automorphism induced by α_{2}. It follows that α_{1} is a nontrivial outer automorphism of K and since A_{5} and $\operatorname{PSL}(2,7)$ admit no such outer automorphism, K is not simple. We have that K has a normal nilpotent subgroup N.

If $K / N \cong A_{5}$, then $N^{\alpha_{1}} \triangleleft K$ and since $N N^{\alpha_{1}} \triangleleft K$, it follows that $N N^{\alpha_{1}}=N$ and α_{1} normalizes N. Thus $N \in И_{G}\left(M, 3^{\prime}\right)$ and we have $N=1$. This implies that K is simple contrary to our preceding discussion.

Since $\left\langle\alpha_{2}, t\right\rangle$ is a dihedral group of order $6, K / N \cong S_{3}$. It follows that $N^{\alpha_{1}}=N$, so that $N \in И_{G}\left(M, 3^{\prime}\right)$. Thus, in any case $K=\left\langle\alpha_{2}, t\right\rangle$ and $C_{G}\left(\alpha_{1}{ }^{-1} \alpha_{1}{ }^{\tau}\right)=M\langle t\rangle$. Since α_{2} and $\alpha_{1}^{-1} \alpha_{1}{ }^{\tau}$ are conjugate in $N_{G}(M)$, $C_{G}\left(\alpha_{2}\right)=M\langle t \tau\rangle$.

To determine the structure of $C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)$ it is necessary to prove the following lemma.
(3.3) Let G be any finite group which satisfies the following conditions:
(i) $T=\langle\alpha\rangle \times\langle\beta\rangle$ is a Sylow 3-subgroup of order 9 with $\alpha^{3}=\beta^{3}=1$.
(ii) $N_{G}(T)=T\langle t, \tau\rangle$ such that $\alpha^{t}=\alpha^{\tau}=\alpha^{-1}, t \tau=\tau t, t^{2}=\tau^{2}=1$ and $\beta^{t}=\beta, \beta^{\tau}=\beta^{-1}$.
(iii) $C_{G}(\beta)=T\langle t\rangle, C_{G}(\alpha)=T\langle t \tau\rangle, C_{G}(\alpha \beta)=T$.

Then $G=N_{G}(T)=T\langle t, \tau\rangle$.
Proof. Let $D=T^{\#}=T-1$. From (ii), $T^{\#}$ is the union of 3 classes of elements of order 3 of $N_{G}(T)$ with representatives α, β, and $\alpha \beta$. Since T is
abelian, these representatives are not conjugate in G, and by (iii), $N_{G}(T)$ contains the centralizer of each of α, β, and $\alpha \beta$. It follows that D is a closed set of special classes of G and that $M(D)$, the module of generalized characters of $N_{G}(T)$ with support on D, has a basis consisting of three generalized characters of $N_{G}(T)$ (see [8]).

The character table of $N_{G}(T)$ can be computed by computing an induced character form each of $T, T\langle t \tau\rangle$, and $T\langle t\rangle$.

	1	β^{*}	α^{*}	$\alpha \beta^{*}$	t	τ	$t \tau$	$t \tau \alpha$	$t \beta$
ϕ_{1}	1	1	1	1	1	1	1	1	1
ϕ_{2}	1	1	1	1	-1	1	-1	-1	-1
ϕ_{3}	1	1	1	1	-1	-1	1	1	-1
ϕ_{4}	1	1	1	1	1	-1	-1	-1	1
ϕ_{5}	4	-2	-2	1	0	0	0	0	0
ϕ_{6}	2	2	-1	-1	0	0	2	-1	0
ϕ_{7}	2	2	-1	-1	0	0	-2	1	0
ϕ_{8}	2	-1	2	-1	2	0	0	0	-1
ϕ_{9}	2	-1	2	-1	-2	0	0	0	1
$*$	$=$	special classes							

A basis for $M(D)$ is given by

$$
\begin{aligned}
& \Phi_{1}=\phi_{5}-\phi_{1}-\phi_{2}-\phi_{3}-\phi_{4} \\
& \Phi_{2}=\phi_{5}-\phi_{6}-\phi_{7} \\
& \Phi_{3}=\phi_{5}-\phi_{8}-\phi_{9} .
\end{aligned}
$$

By $[\mathbf{8}],\left(\Phi_{i}{ }^{*}, \Phi_{j}{ }^{*}\right)_{G}=\left(\Phi_{i}, \Phi_{j}\right)_{N}$ where $\Phi_{i}{ }^{*}$ denotes the induced character and $(,)_{G},(,)_{N}$ denote, respectively, the inner product in G and $N_{G}(T)$. Let 1_{G} denote the principal character of G and let $\left|\Phi_{i}{ }^{*}\right|=\left(\Phi_{i}{ }^{*}, \Phi_{i}{ }^{*}\right)_{G}$.

By the Frobenius Reciprocity Formula, $\left(\Phi_{1}{ }^{*}, 1_{G}\right)_{G}=\left(\Phi_{1}, 1_{N}\right)_{N}=-1$. Since $\left|\Phi_{1}{ }^{*}\right|=5$, it follows that $\Phi_{1}{ }^{*}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+\epsilon_{3} x_{3}+\epsilon_{4} x_{4}-1_{G}$ where $\epsilon_{i}= \pm 1,1 \leqq i \leqq 4$ and x_{i} are all distinct irreducible characters of G. Since $\left|\Phi_{2}{ }^{*}\right|=3,\left(\Phi_{2}{ }^{*}, \Phi_{1}{ }^{*}\right)_{G}=\left(\Phi_{2}, \Phi_{1}\right)_{N}=1$, it follows that

$$
\Phi_{2}{ }^{*}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+-\epsilon_{3} x_{3} \text { or } \Phi_{2}{ }^{*}=\epsilon_{1} x_{1}+n_{1} y_{1}+\eta_{2} y_{2}
$$

where $\eta_{i}= \pm 1$ and y_{1}, y_{2} are irreducible characters of G distinct from the x_{i}, $1 \leqq i \leqq 4$.

Let us suppose that we are in the first case so that

$$
\begin{aligned}
& \Phi_{1}^{*}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+\epsilon_{3} x_{3}+\epsilon_{4} x_{4}-1_{G} \\
& \Phi_{2}{ }^{*}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}-\epsilon_{3} x_{3} .
\end{aligned}
$$

Since $\left(\Phi_{2}{ }^{*}, \Phi_{3}{ }^{*}\right)=1,\left(\Phi_{1}{ }^{*}, \Phi_{3}{ }^{*}\right)=1, \Phi_{3}{ }^{*}$ has exactly 3 characters in common with $\Phi_{1}{ }^{*}$ or exactly one character in common. If $\Phi_{3}{ }^{*}=\mu_{1} x_{1}+\mu_{2} x_{2}+\mu_{3} x_{3}$, then $\mu_{1} \epsilon_{1}+\mu_{2} \epsilon_{2}+\mu_{3} \epsilon_{3}=1$ and $\mu_{1} \epsilon_{1}+\mu_{2} \epsilon_{2}-\mu_{3} \epsilon_{3}=1$ which is impossible. Since $\left(\Phi_{3}{ }^{*}, \Phi_{2}{ }^{*}\right)=1, \Phi_{3}{ }^{*}$ can not have x_{4} and two other characters of $\Phi_{1}{ }^{*}$ in common. Thus $\Phi_{3}{ }^{*}$ has exactly one character of $\Phi_{1}{ }^{*}$ in common and it must be x_{1}, x_{2} or x_{3}. Since x_{3} appears in $\Phi_{1}{ }^{*}$ and $\Phi_{2}{ }^{*}$ with opposite signs, x_{3} can not be the common character. Since $\Phi_{1}{ }^{*}, \Phi_{2}{ }^{*}$ are symmetric in x_{1} and x_{2}, we may suppose x_{1} is the common character and we have $\Phi_{3}{ }^{*}=\epsilon_{1} x_{1}+\eta_{1} y_{1}+\eta_{2} y_{2}$, $\eta_{i}= \pm 1, y_{1}, y_{2}$ irreducible characters distinct from $x_{i}, 1 \leqq i \leqq 4$.

Case (i):

$$
\begin{aligned}
& \Phi_{1}{ }^{*}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+\epsilon_{3} x_{3}+\epsilon_{4} x_{4}-1_{G} \\
& \Phi_{2}{ }^{*}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}-\epsilon_{3} x_{3} \\
& \Phi_{3}{ }^{*}=\epsilon_{1} x_{1}+\eta_{1} y_{1}+\eta_{2} y_{2},
\end{aligned}
$$

with $x_{i}, y_{i}, 1_{G}$ distinct irreducible characters of $G, \epsilon_{i}= \pm 1, \eta_{i}= \pm 1$.
On the other hand, if $\Phi_{2}{ }^{*}=\epsilon_{1} x_{1}+\eta_{1} y_{1}+\eta_{2} y_{2}$,

$$
\Phi_{1}{ }^{*}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+\epsilon_{3} x_{3}+\epsilon_{4} x_{4}-1_{G}
$$

let us suppose that $\Phi_{3}{ }^{*}$ has three nonprincipal characters in common with $\Phi_{1}{ }^{*}$. We have that $\Phi_{3}{ }^{*}=\epsilon_{1} x_{1}+\epsilon_{k} x_{k}-\epsilon_{j} x_{j}$ and we are back in case (i) except for a permutation of the subscripts of the $\Phi_{i}{ }^{*}$ and the x_{i}. We may assume that $\Phi_{3}{ }^{*}$ has exactly one irreducible character in common with $\Phi_{1}{ }^{*}$ and $\Phi_{3}{ }^{*}=\epsilon_{1} x_{1}+$ $\zeta_{1} z_{1}+\zeta_{2} z_{2} ; z_{i}, 1 \leqq i \leqq 2$ distinct from 1_{G} and the x_{i}. If $\Phi_{3}{ }^{*}$ has y_{1} in common, then $\Phi_{3}{ }^{*}=\epsilon_{1} x_{1}+\eta_{1} y_{1}-\eta_{2} y_{2}$ and $\Phi_{3}{ }^{*}(1)=\epsilon_{1} f_{1}+\eta_{1} g_{1}-\eta_{2} g_{2}=0, \Phi_{2}{ }^{*}(1)=$ $\epsilon_{1} f_{1}+\eta_{1} g_{1}+\eta_{2} g_{2}=0$ where $f_{1}=x_{1}(1), g_{i}=y_{i}(1), 1 \leqq i \leqq 2$. This is impossible. We have proved,

Case (ii): $\quad \Phi_{1}{ }^{*}=\epsilon_{1} x_{1}+\epsilon_{2} x_{2}+\epsilon_{3} x_{3}+\epsilon_{4} x_{4}-1_{G}$

$$
\Phi_{2}^{*}=\epsilon_{1} x_{1}+\eta_{1} y_{1}+\eta_{2} y_{2}
$$

$$
\Phi_{3}^{*}=\epsilon_{1} x_{1}+\zeta_{1} z_{1}+\zeta_{2} z_{2}
$$

with $\epsilon_{i}= \pm 1, \eta_{i}= \pm 1, \zeta_{i}= \pm 1,1_{G}, x_{i}, y_{i}, z_{i}$ distinct irreducible characters of G.

It is now possible to compute a fragment of the character table of G. In case (i) it is found that $x_{1}=\epsilon_{1} \phi_{5}, x_{2}=-\epsilon_{2}\left(\phi_{1}+\phi_{6}\right), x_{3}=\epsilon_{3}\left(-\phi_{1}+\phi_{6}\right)$, $x_{4}=-\epsilon_{4} \phi_{1}, y_{1}=\eta_{1}\left(\phi_{1}+\phi_{5}+\phi_{6}\right), y_{2}=\eta_{2}\left(\phi_{1}+\phi_{5}+\phi_{6}\right)$ when restricted to the special classes of $N_{G}(T)$.

Case (i):

	1	β	α	$\alpha \beta$
1_{G}	1	1	1	1
x_{1}	f_{1}	$-2 \epsilon_{1}$	$-2 \epsilon_{1}$	ϵ_{1}
x_{2}	f_{2}	$-3 \epsilon_{2}$	0	0
x_{3}	f_{3}	ϵ_{3}	$-2 \epsilon_{3}$	$-2 \epsilon_{3}$
x_{4}	f_{4}	$-\epsilon_{4}$	$-\epsilon_{4}$	$-\epsilon_{4}$
y_{1}	g_{1}	η_{1}	$-2 \eta_{1}$	η_{1}
y_{2}	g_{2}	η_{2}	$-2 \eta_{2}$	η_{2}

In case (ii), $x_{1}=\epsilon_{1} \phi_{5}, x_{2}=-\epsilon_{2} \phi_{1}, x_{3}=-\epsilon_{3} \phi_{1}, x_{4}=-\epsilon_{4} \phi_{1}, y_{1}=-\eta_{1} \phi_{6}$, $y_{2}=-\eta_{2} \phi_{6}, z_{1}=\zeta_{1}\left(\phi_{1}+\phi_{5}+\phi_{6}\right), z_{2}=\zeta_{2}\left(\phi_{1}+\phi_{5}+\phi_{6}\right)$ when restricted to the special classes of $N_{G}(T)$.

Case (ii):

	1	β	α	$\alpha \beta$
1_{G}	1	1	1	1
x_{1}	f_{1}	$-2 \epsilon_{1}$	$-2 \epsilon_{1}$	ϵ_{1}
x_{2}	f_{2}	$-\epsilon_{2}$	$-\epsilon_{2}$	$-\epsilon_{2}$
x_{3}	f_{3}	$-\epsilon_{3}$	$-\epsilon_{3}$	$-\epsilon_{3}$
x_{4}	f_{4}	$-\epsilon_{4}$	$-\epsilon_{4}$	$-\epsilon_{4}$
y_{1}	g_{1}	$-2 \eta_{1}$	η_{1}	η_{1}
y_{2}	g_{2}	$-2 \eta_{2}$	η_{2}	η_{2}
z_{1}	h_{1}	ζ_{1}	$-2 \zeta_{1}$	ζ_{1}
z_{2}	h_{2}	ζ_{2}	$-2 \zeta_{2}$	ζ_{2}

Now we prove a lemma which will be used in computing $|G|$.
(3.4) Let a, b, c be elements of the special classes of $N_{G}(T)$. If for some $x, y \in G$ we have $a^{x} b^{y}=c$ and we assume that a, b, c do not belong to the same class of $N_{G}(T)$, then a^{x}, b^{y} belong to T.

Proof. Let $a^{x} b^{y}=c$ and suppose that a, b, c do not belong to the same class of $N_{G}(T)$. Let $S=\left\langle a^{x}, b^{y}\right\rangle$. By a result of [3], S has a normal abelian subgroup
N of index 3 . If N has order prime to $3, S$ has a Sylow 3 -subgroup of order 3 and a, b, c are in the same class of $N_{G}(T)$. It follows that S has a Sylow 3subgroup of order 9 containing c. Since $C_{G}(c) \subseteq N_{G}(T), T \subseteq S$ and $N \cap T$ has order 3. This implies that N centralizes an element of T so that $N \subseteq N_{G}(T)$. It follows that $S \subseteq N_{G}(T)$ so that $a^{x}, b^{y} \in T$.

Let k be the number of ways $a^{x} b^{y}=c$, where a, b, c are elements of the special classes of $N_{G}(T)$. If $\chi_{j}, 1 \leqq j \leqq n$ are the irreducible characters of G we have,

$$
\begin{equation*}
k=\frac{|G|}{\left|C_{G}(a)\right|\left|C_{G}(b)\right|} \sum_{j=1}^{n} \frac{\chi_{j}(a) \chi_{j}(b) \overline{\chi_{j}(c)}}{\chi_{j}(1)} . \tag{3.5}
\end{equation*}
$$

Using the fragment in case (i), (3.4) and (3.5),
$a=\alpha, b=\beta, c=\alpha \beta$
(1) $1=\frac{|G|}{(18)^{2}}\left[1+\frac{4 \epsilon_{1}}{f_{1}}+\frac{4 \epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}-\frac{2 \eta_{1}}{g_{1}}-\frac{2 \eta_{2}}{g_{2}}\right]$
$a=\alpha, b=\beta, c=\alpha$
(2) $0=1-\frac{8 \epsilon_{1}}{f_{1}}+\frac{4 \epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}+\frac{4 \eta_{1}}{g_{1}}+\frac{4 \eta_{2}}{g_{2}}$
$a=\beta, b=\alpha \beta, c=\beta$
(3) $0=1+\frac{4 \epsilon_{1}}{f_{1}}-\frac{2 \epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}+\frac{\eta_{1}}{g_{1}}+\frac{\eta_{2}}{g_{2}}$
$a=\alpha, b=\beta, c=\beta$
(4) $0=1-\frac{8 \epsilon_{1}}{f_{1}}-\frac{2 \epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}-\frac{2 \eta_{1}}{g_{1}}-\frac{2 \eta_{2}}{g_{2}}$.

Subtracting (4) from (3), we have

$$
0=\frac{4 \epsilon_{1}}{f_{1}}+\frac{\eta_{1}}{g_{1}}+\frac{\eta_{2}}{g_{2}} .
$$

Since $\Phi_{3}{ }^{*}=\epsilon_{1} x_{1}+\eta_{1} y_{1}+\eta_{2} y_{2}, \epsilon_{1} f_{1}=-\left(\eta_{1} g_{1}+\eta_{2} g_{2}\right)$. Substituting for f_{1} we have that $2=\eta_{1} \eta_{2}\left(g_{2} / g_{1}+g_{1} / g_{2}\right)$. It follows that $g_{1}=g_{2}$ and $\eta_{1}=\eta_{2}$. Since $\epsilon_{1} f_{1}=-\left(\eta_{1} g_{1}+\eta_{2} g_{2}\right)$, we find that $f_{1}=2 g_{1}, \eta_{1}=-\epsilon_{1}$.

Using the above new information, (4) becomes

$$
0=1-\frac{2 \epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}
$$

and (2) becomes

$$
0=1-\frac{24 \epsilon_{1}}{f_{1}}+\frac{4 \epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}} .
$$

Subtracting (2) from (4), we find that $f_{1}=\epsilon_{1} \epsilon_{3} 4 f_{3}$ and it follows that $\epsilon_{1}=\epsilon_{3}$, $f_{1}=4 f_{3}$.

From $0=1-2 \epsilon_{3} / f_{3}-\epsilon_{4} / f_{4}$, we now find that $\epsilon_{4} / f_{4}=1-8 \epsilon_{1} / f_{1}$. Substituting all this information into (1), we have that $|G|=9 \epsilon_{1} f_{1}$. Since $|G|$ is a positive integer, $\epsilon_{1}=1$ and $f_{1}=|G| / 9$. From elementary character theory, $|G| \geqq f_{1}{ }^{2}$ and we find that $|G| \leqq 81$. Since $\left|N_{G}(T)\right|=36,|G|=36$ or 72. In the latter case $72 \geqq f_{1}{ }^{2}+g_{1}{ }^{2}=80$, a contradiction. Thus $|G|=36$ and (3.3) holds in case (i).

We may now assume that case (ii) holds. Using the fragment in case (ii), (3.4) and (3.5),
$a=\alpha, b=\beta, c=\alpha \beta$
(1) $1=\frac{|G|}{(18)^{2}}\left[1+\frac{4 \epsilon_{1}}{f_{1}}-\frac{\epsilon_{2}}{f_{2}}-\frac{\epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}-\frac{2 \eta_{1}}{g_{1}}-\frac{2 \eta_{2}}{g_{2}}-\frac{2 \zeta_{1}}{h_{1}}-\frac{2 \zeta_{2}}{h_{2}}\right]$
$a=\alpha, b=\beta, c=\alpha$
(2) $0=1-\frac{8 \epsilon_{1}}{f_{1}}-\frac{\epsilon_{2}}{f_{2}}-\frac{\epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}-\frac{2 \eta_{1}}{g_{1}}-\frac{2 \eta_{2}}{g_{2}}+\frac{4 \zeta_{1}}{h_{1}}+\frac{4 \zeta_{2}}{h_{2}}$
$a=\beta, b=\alpha \beta, c=\beta$
(3) $0=1+\frac{4 \epsilon_{1}}{f_{1}}-\frac{\epsilon_{2}}{f_{2}}-\frac{\epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}+\frac{4 \eta_{1}}{g_{1}}+\frac{4 \eta_{2}}{g_{2}}+\frac{\zeta_{1}}{h_{1}}+\frac{\zeta_{2}}{h_{2}}$
$a=\alpha, b=\alpha, c=\alpha \beta$
(4) $0=1+\frac{4 \epsilon_{1}}{f_{1}}-\frac{\epsilon_{2}}{f_{2}}-\frac{\epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}+\frac{\eta_{1}}{g_{1}}+\frac{\eta_{2}}{g_{2}}+\frac{4 \zeta_{1}}{h_{1}}+\frac{4 \zeta_{2}}{h_{2}}$.

Subtracting (4) from (2), we have

$$
0=\frac{4 \epsilon_{1}}{f_{1}}+\frac{\eta_{1}}{g_{1}}+\frac{\eta_{2}}{g_{2}} .
$$

Since $\Phi_{2}{ }^{*}(1)=\epsilon_{1} f_{1}+\eta_{1} g_{1}+\eta_{2} g_{2}=0$, we have that $\eta_{1}=\eta_{2}, g_{1}=g_{2}$. Thus $f_{1}=-2 \epsilon_{1} \eta_{1} g_{1}$ and we have $f_{1}=2 g_{1}, \epsilon_{1}=-\eta_{1}$.

Using this information (4) becomes

$$
0=1-\frac{\epsilon_{2}}{f_{2}}-\frac{\epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}+\frac{4 \zeta_{1}}{h_{1}}+\frac{4 \zeta_{2}}{h_{2}}
$$

and (3) becomes

$$
0=1-\frac{12 \epsilon_{1}}{f_{1}}-\frac{\epsilon_{2}}{f_{2}}-\frac{\epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}}+\frac{\zeta_{1}}{h_{1}}+\frac{\zeta_{2}}{h_{2}} .
$$

Subtracting (3) from (4), we have

$$
0=\frac{4 \epsilon_{1}}{f_{1}}+\frac{\epsilon_{1}}{n_{1}}+\frac{\epsilon_{2}}{h_{2}} .
$$

Using $\Phi_{3}{ }^{*}(1)=\epsilon_{1} f_{1}+\zeta_{1} h_{1}+\zeta_{2} h_{2}=0$ and substituting the value of f_{1}, we find that $\zeta_{1}=\zeta_{2}, h_{1}=h_{2}$. Since $f_{1}=-\epsilon_{1}\left(\zeta_{1} h_{1}+\zeta_{2} h_{2}\right), f_{1}=-2 \epsilon_{1} \zeta_{1} h_{1}$ and it follows that $\epsilon_{1}=-\zeta_{1}, f_{1}=2 h_{1}$.

We now have that $f_{1}=2 g_{1}, f_{1}=2 h_{1}, g_{1}=g_{2}, \eta_{1}=\eta_{2}, h_{1}=h_{2}, \zeta_{1}=\zeta_{2}$, $\epsilon_{1}=-\zeta_{1}$ and $\epsilon_{1}=-\eta_{1}$. Using this information, (2) becomes

$$
\begin{equation*}
0=1-\frac{16 \epsilon_{1}}{f_{1}}-\frac{\epsilon_{2}}{f_{2}}-\frac{\epsilon_{3}}{f_{3}}-\frac{\epsilon_{4}}{f_{4}} \tag{2}
\end{equation*}
$$

Equation (1) becomes,

$$
\begin{equation*}
1=\frac{|G|}{(18)^{2}}\left[1+\frac{20 \epsilon_{1}}{f_{1}}-\frac{\epsilon_{2}}{f_{1}}-\frac{\epsilon_{3}}{f_{1}}-\frac{\epsilon_{4}}{f_{4}}\right] \tag{1}
\end{equation*}
$$

Substituting (2) into (1), we have

$$
1=\frac{|G|}{(18)^{2}}\left[\frac{36 \epsilon_{1}}{f_{1}}\right] \quad \text { or } \quad f_{1}=\frac{|G|}{9} \epsilon_{1}
$$

It follows that $\epsilon_{1}=1$ and $f_{1}=|G| / 9$. Since $|G| \geqq f_{1}{ }^{2}, 81 \geqq|G|$ so that $|G|=36$ or 72 . In the latter case, $f_{1}=8, g_{1}=4, g_{2}=4$ and $72 \geqq 8^{2}+4^{2}+4^{2}=96$, a contradiction. Finally, $|G|=36$ so that $G=N_{G}(T)$ and (3.3) holds in case (ii).

We are now in a position to prove the following theorem.
(3.6) G has precisely 4 classes of elements of order 3 given by the representatives $\alpha_{1}, \alpha_{1}^{-1}, \alpha_{1}^{-1} \alpha_{1}^{\tau}, \alpha_{1} \alpha_{1}^{\tau}$. We have $C_{G}\left(\alpha_{1}\right)=C_{G}\left(\alpha_{1}^{-1}\right)=H$ and $C_{G}\left(\alpha_{1}^{-1} \alpha_{1}{ }^{\tau}\right)=M\langle t\rangle$, $C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)=M\langle t, \tau\rangle$.

Proof. The first part of this theorem follows from (2.6) and (3.2). It remains to determine the structure of $C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)$. Since $\alpha_{1} \alpha_{1}{ }^{\tau}$ is not conjugate to α_{1} or $\alpha_{1}{ }^{-1}, C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)$ has $N=M\langle t, \tau\rangle$ as a Sylow 3 -normalizer. Since $Z(N) \cap M=\left\langle\alpha_{1} \alpha_{1}^{\tau}\right\rangle, C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)$ has a normal subgroup K of index 3 and $K \cap M=[M,\langle t, \tau\rangle]=\left\langle\alpha_{2}\right\rangle \times\left\langle\alpha_{1}{ }^{-1} \alpha_{1} \tau\right\rangle$. Let $T=K \cap M$. From (3.2), $C_{K}\left\langle\alpha_{2}\right\rangle=T\langle\tau t\rangle \quad$ and $\quad C_{K}\left\langle\alpha_{1}{ }^{-1} \alpha_{1}{ }^{\tau}\right\rangle=T\langle t\rangle$. Since $\alpha_{1} \alpha_{1}{ }^{\tau}$ centralizes K, $C_{K}\left\langle\alpha_{1}{ }^{-1} \alpha_{2} \alpha_{1}{ }^{\tau}\right\rangle \subseteq C_{K}\left(\alpha_{1} \alpha_{2}\right)$. However, $\alpha_{1} \alpha_{2}$ and α_{2} are conjugate so that $C_{G}\left(\alpha_{1} \alpha_{2}\right) \subseteq M\langle t, \tau, x\rangle=N_{G}(M)$. It follows that $C_{K}\left(\alpha_{1}{ }^{-1} \alpha_{2} \alpha_{1}{ }^{\tau}\right)=T$. We have shown that K is a group satisfying the hypothesis of (3.3) so that $K=T\langle t, \tau\rangle$. If follows that $C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)=M\langle t, \tau\rangle$.
4. Structure of $C_{G}(t)$. It is now possible to determine the structure of $C_{G}(t)$. The first result of this section is a characterization of the centralizer of a central involution in $\mathrm{PSp}_{4}(3)$.
(4.1) Let G be a finite group with an involution t in its center. If G has a Sylow 3 -subgroup T which is elementary abelian of order 9 and a Sylow 3-normalizer $T\langle t, \tau\rangle$ such that
(i) $T=\langle\alpha\rangle \times\langle\beta\rangle, \alpha^{\tau}=\beta, \tau^{2}=1$;
(ii) $C_{G}(\alpha)=T Q, C_{G}(\beta)=T Q^{\tau}$ where Q is a quaternion group of order 8 normalized by T and not centralized by β;
(iii) $C_{G}\left(\alpha^{-1} \beta\right)=T\langle t\rangle, C_{G}(\alpha \beta)=T\langle t, \tau\rangle$. Then $G=S_{1} S_{2}\langle\tau\rangle$ where $S_{1}=\langle\beta\rangle Q, \quad S_{2}=\langle\alpha\rangle Q^{\tau}, \quad\left[\begin{array}{ll}S_{1}, & S_{2}\end{array}\right]=1$, $S_{1} \cap S_{2}=\langle t\rangle$ and $S_{1}^{\tau}=S_{2}$.

Proof. Let $N=T\langle t, \tau\rangle$. By a theorem of Grün, G has a normal subgroup K of index 3 such that $K \cap T=[T,\langle t, \tau\rangle]=\left\langle\alpha^{-1} \beta\right\rangle$. By (iii), $C_{K}\left(\alpha^{-1} \beta\right)=\left\langle\alpha^{-1} \beta, t\right\rangle$. Let $X=K /\langle t\rangle$. Then X has a self-centralizing Sylow 3 -group of order 3 and a Sylow 3 -normalizer of order 6 . Since X admits T as a group of automorphisms and since $\alpha \beta$ does not centralize $Q, \alpha \beta$ induces a nontrivial automorphism of X. Since $\alpha \beta$ centralizes τ and $\alpha^{-1} \beta$ is inverted by τ, it follows that $\alpha \beta$ and $\alpha^{-1} \beta$ induce distinct automorphisms of X. Furthermore, the only inner automorphism of X that centralizes $\left\langle\alpha^{-1} \beta, t\right\rangle /\langle t\rangle$ is induced by $\alpha^{-1} \beta$. It follows that $\alpha \beta$ induces a nontrivial outer automorphism of X of order 3 . We conclude that X is not isomorphic to $\operatorname{PSL}(2,5)$ or $\operatorname{PSL}(2,7)$.

By [3], K has a normal nilpotent subgroup R such that K / R is isomorphic to S_{3} or $\operatorname{PSL}(2,5)$. For any $\sigma \in T, R R^{\sigma}$ is a normal subgroup of K of order prime to 3 . From the structure of $K / R, R R^{\sigma}=R$ so that $R^{\sigma}=R$. Thus R is a T invariant nilpotent subgroup of K. Let P be a Sylow p-subgroup of R, $p \neq 2, p \neq 3$. Then

$$
P=C_{P}(\alpha) C_{P}(\beta) C_{P}(\alpha \beta) C_{P}\left(\alpha^{-1} \beta\right)=1
$$

and we conclude that R is a 2 -group such that $R=C_{R}(\alpha) C_{R}(\beta)$. Since $R \neq\langle t\rangle$, we may assume without loss of generality that $C_{R}(\alpha) \neq\langle t\rangle$. Then $Q \cap R \neq\langle t\rangle$ and since β acts regularly on the nonidentity elements of $Q /\langle t\rangle, Q \subseteq R$. Since $R \triangleleft K, Q^{\tau} \subseteq R$ and we have $R=Q Q^{\tau}$.

Now let us suppose that $K / R \cong \operatorname{PSL}(2,5)$. Then K has a subgroup F such that F / R is an elementary abelian group of order 4 which is normalized by $\alpha^{-1} \beta$. If $\alpha \beta$ induces a trivial automorphism of K / R, then T leaves F / R invariant and $F=C_{F}(\alpha) C_{F}(\beta) C_{F}(\alpha \beta) C_{F}\left(\alpha^{-1} \beta\right)$. This implies that $F=$ $Q Q^{\tau}=R$ which is not the case. We conclude that $\alpha \beta$ induces a nontrivial outer automorphism of K / R of order 3 , a contradiction.

Finally, $K / R \cong S_{3}$ so that $K=R\left\langle\alpha^{-1} \beta, \tau\right\rangle=Q Q^{\tau}\left\langle\alpha^{-1} \beta, \tau\right\rangle$. Since R is a 2 -group, $Q^{\tau} \cap N_{G}(Q) \neq\langle t\rangle$. This implies that $Q^{\tau} \subseteq N(Q)$ since α acts regularly on the nonidentity elements of $Q^{\tau} /\langle t\rangle$. It follows that R is a 2 -group of $N_{G}(Q)$ of order 32 and since $N_{G}(Q) / C_{G}(Q)$ is isomorphic to a subgroup of S_{4}, $Q^{\tau} \subseteq C_{G}(Q)$. Let $S_{1}=\langle\beta\rangle Q, S_{2}=\langle\alpha\rangle Q^{\tau}$. Then $S_{1} \cap S_{2}=\langle t\rangle,\left[S_{1}, S_{2}\right]=1$, $S_{1}{ }^{\tau}=S_{2}$ and $G=S_{1} S_{2}\langle\tau\rangle$.

We can now determine the structure of $C_{G}(t)$. Let t, τ, Q have the same meaning as in (1.4), (1.5) and (2.6).
(4.2) $\quad C_{G}(t)=S_{1} S_{2}\langle\tau\rangle, S_{1}=\left\langle\alpha_{1} \tau\right\rangle Q, S_{2}=\left\langle\alpha_{1}\right\rangle Q^{\tau},\left[S_{1}, S_{2}\right]=1, S_{1} \cap S_{2}=\langle t\rangle$ and $S_{1}{ }^{\tau}=S_{2}$.

Proof. From the structure of $H, C_{M}(t)=\left\langle\alpha_{1}\right\rangle \times\left\langle\alpha_{1}{ }^{\tau}\right\rangle$. Let $T=\left\langle\alpha_{1}\right\rangle \times\left\langle\alpha_{1}{ }^{\tau}\right\rangle$. Then $C_{G}(T)=C_{H}(T)=M\langle t\rangle$ and it follows that $N_{G}(T) \subseteq N_{G}(M)$. From the structure of $N_{G}(M), T\langle t, \tau\rangle$ is a Sylow 3-normalizer of $C_{G}(t)$. From the structure of $H, \quad C_{G}(t) \cap C_{G}\left(\alpha_{1}\right)=T Q$ and $C_{G}(t) \cap C_{G}\left(\alpha_{1}{ }^{\tau}\right)=T Q^{\tau}$. By (3.6), $C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)=M\langle t, \tau\rangle$ and $C_{G}\left(\alpha_{1}{ }^{-1} \alpha_{1}{ }^{\tau}\right)=M\langle t\rangle$ so that $C(t) \cap C_{G}\left(\alpha_{1} \alpha_{1}{ }^{\tau}\right)=$ $T\langle t, \tau\rangle$ and $C_{G}(t) \cap C\left(\alpha_{1}^{-1} \alpha_{1}^{\tau}\right)=T\langle t\rangle$. Applying (4.1), the result follows.
(4.3) Let $S=Q Q^{\tau}\langle\tau\rangle$ be a Sylow 2-group of $C_{G}(t)$. Then S is a Sylow 2-group of G.

Proof. Let S_{1} be a Sylow 2-group of G containing S. Since $Z(S)=\langle t\rangle$, $N_{S_{1}}(S) \subseteq C(t)$. This implies that $N_{S_{1}}(S)=S$ and we have $S_{1}=S$.

From (4.2) we see that condition (b) of [6] has been established.
By the structure of $C_{G}(t), C_{G}(t)$ has exactly 4 classes of involutions with representatives $t, \tau, t \tau$, and $q q^{\tau}$ where $q \in Q$ is some element of order 4 . The involution t is conjugate in G to one of $\tau, t \tau$ or $q q^{\tau}$ since otherwise $G=O_{2^{\prime}}(G) C_{G}(t)$ by $[\mathbf{4}]$ and G has a normal subgroup of index 3 , a contradiction to (a) of Theorem 1. The proof of Theorem 1 now follows from [6].

It is perhaps interesting to notice that Sections 2, 3, and 4 of this paper together with the first three sections of [6] determine the local 2 and 3 structure of G. Letting $B=N_{G}(P)$ and $N=\langle\tau, \tau q\rangle, N /\langle t\rangle$ is a dihedral group of order 8 and one may show that $G=B N B \cong \operatorname{PSp}_{4}(3)$ directly without the use of the last sections of [6] and particularly without the aid of the characterization of $\mathrm{PSp}_{4}(3)$ in [9].

References

1. E. Artin, Geometric algebra (Interscience, New York, 1957).
2. R. Carter and P. Fong, The Sylow 2-subgroup of the finite classical groups, J. Algebra 1 (1964), 139-151.
3. W. Feit and J. Thompson, Finite groups which contain a self-centralizing subgroup of order 3, Nagoya Math. J. 21 (1962), 185-197.
4. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
5. D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
6. Z. Janko, A characterization of the finite simple group $\mathrm{PSp}_{4}(3)$, Can. J. Math. 19 (1967), 872-894.
7. W. Scott, Group theory (Prentice-Hall, New York, 1968).
8. M. Suzuki, Applications of group characters, Proc. Symp. Pure Math., Amer. Math. Soc. 1 (1959), 88-99.
9. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. II, Pacific J. Math. 33 (1970), 451-536.

Bowling Green State University, Bowling Green, Ohio

[^0]: Received February 14, 1972 and in revised form, March 21, 1972.

