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FRAMES AND STABLE BASES 
FOR SHIFT-INVARIANT SUBSPACES OF L2(R

d) 

AMOS RON AND ZUOWEI SHEN 

ABSTRACT. Let Xbe a countable fundamental set in a Hilbert space H, and let T be 
the operator 

Whenever T is well-defined and bounded, X is said to be a Bessel sequence. If, in ad­
dition, ran T is closed, then X is a frame. Finally, a frame whose corresponding T is 
injective is a stable basis (also known as a Riesz basis). 

This paper considers the above three properties for subspaces H of L2(Rd), and for 
sets X of the form 

X ={<j>{--a) :<t>e<t>,aeZd}, 

with O either a singleton, a finite set, or, more generally, a countable set. The anal­
ysis is performed on the Fourier domain, where the two operators TT* and T* T are 
decomposed into a collection of simpler "fiber" operators. The main theme of the en­
tire analysis is the characterization of each of the above three properties in terms of the 
analogous property of these simpler operators. 

1. Introduction. 

1.1 General We study in this paper certain types of "bases" for shift-invariant sub-
spaces of L,2(Rd). Our primary objective is to connect among three important families 
of "basis" sets: shift-invariant sets, Weyl-Heisenberg sets, and affine (wavelet) sets. The 
present paper is the first in a series of three, and is concerned with the basic theory of 
shift-invariant bases for shift-invariant spaces. The two other papers, [RSI] and [RS2], 
will focus on the applications of the theory developed here to Weyl-Heisenberg and affine 
sets. 

Given X C L,2(Rd),we s a v that X is a shift-invariant (SI, for short) set if it is invariant 
under all possible shifts, i.e., invariant under all integer translations. A shift-invariant 
subspace S ofL2(R

d) is a closed subspace which is also a shift-invariant set. Such spaces 
play an important role in the areas of Multivariate Splines, Wavelets, Radial Function 
Approximation and Sampling Theory. 
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1052 A. RON AND Z. SHEN 

The following terminology is commonly used in the context of shift-invariant spaces. 
First, for a given O C L2(R

d), the space generated by O, denoted by S(cD), is the smallest 
(closed) shift-invariant space that contains O. The set of shifts of O 

(1.1.1) £o := {Ea<j) : <j> G 0 , a G Z J}, 

with 

(1.1.2) Ea:f^f(--a), 

is then clearly fundamental in S(0), and is a natural candidate for the previously dis­
cussed X. The space S is a principal shift-invariant (PSI) space in case S = S(<£>) for a 
singleton O, and, more generally, is a finitely generated shift-invariant (FSI) space if O 
above is finite. Many articles are devoted, wholly or in part, to the study of Riesz (=un-
conditional=stable) bases for PSI and FSI spaces (cfi e.g. [JM], [BDR1]). In particular, 
a complete characterization of such bases is given in [BDR1], which, further, introduces 
and analyses the more general notion of quasi-stable bases. These results form the start­
ing point of the present paper. 

We provide here a complete characterization of frames and tight frames in FSI spaces, 
and draw interesting connections between these notions and the notions of quasi-stability 
and quasi-orthogonality of [BDR1]. We further give a comprehensive analysis of in­
finitely generated SI spaces, and employ in that course two complementary approaches 
termed here as "Gramian Analysis" and "dual Gramian Analysis". 

1.2 Notation. The Fourier transform of a tempered distribution / is denoted here by / , 
and is defined, for / G Li(Rd), by 

f(w):= J^df(t)e^w(t)dt, 

where 
ew: t H - eiw\ 

The inverse Fourier transform of/ is denoted by fy. 
We frequently discuss in this paper functions that are defined on Jd

9 the ^/-dimensional 
torus. Those functions can be viewed as 27r-periodic functions, via the standard transfor­
mation H J 3 W M e

iw := (eiWl,..., eiWd) G Jd. Though we may refer to such functions 
as being defined on TJ, we always treat their argument as real. Thus, "multiplying a 
function defined on Jd by a function defined on Rd" simply means "multiplying a 2n-
periodic function by...". Following this slight abuse of terminology, we write "Q C T^" 
and mean "Q C [—7r, ir]d". The 27r-periodic extension, Q + 2irZd, of Q is denoted by Q°. 

The inner product (norm) of any Hilbert space H discussed in this paper is denoted by 
(•, )// (|| • \\H, respectively). The default inner product and norm are these ofL2(R

d). We 
may also suppress the subscripts in (•, -)H and || • \\H if they are clear from the context. 

Given a setX, the notation t2{X) stands (as usual) for the space of square-summable 
sequences on X, with the standard inner product. Also, if Y C X, we embed ^ W canon-
ically in l2(X) (i.e., by defining each c G £2(Y) to be zero o n J \ Y). The space £Q(X) is 
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the space of all finitely supported sequences in li(X), and is considered as a subspace of 
the latter (i.e., equipped with the same norm). 

Vectors in Rd are considered as either row vectors or column vectors, and the exact 
meaning should be clear from the context. 

For a countable O C L2(Rd), we define the Hilbert space of ̂ (T^-valued O-vectors 
as follows: 

1% ••= f tow : H G her1); £ IMIia-o < 00} • 

The inner product here is 

(r>T')z* : = Yj{ThT'<f>)L2{Vy 

If r G Lf, then r(w) G l2(&), for almost all w G T*. 
The space i f enters the discussion in this paper as the image under the Fourier trans­

form of the sequence space liÇLd x cp). Indeed, given c G liÇLd x O), we denote by c^, 
(j) G O, the restriction of c to ZJ x (0). The Fourier series c^ of c^ is defined as 

c$'-= J2 c^(a)e-a. 
a£ld 

Accordingly, the Fourier transform of c G liÇLd x O) is defined as the element 

Note that this Fourier transformation is an isometry between £2^ x $>) and Lf. 
The following bracket product plays an important role in the analysis of shift-

invariant spaces: given/ and g in /^(l^) , the bracket product is defined as 

(1.2.1) [f,g]:= E /(• + <*)«(•+<*). 
«G27rZ^ 

Then, [f,g] is a well-defined element of L\(Jd)9 and satisfies 

(1-2.2) W,f\\Wn = 11/llW)-

Also, a standard periodization argument yields that 

(1.2.3) ((/;g(- - a)) = 0, Va G Z*) «=» ([?,g] - 0, a.e.). 

Finally, we find it convenient to define g/f as follows: 

g/f'-x* 
f g(x)/f(x), x G supp/D suppg, 
( 0, otherwise. 

1.3 Preliminaries. In this section we briefly recall some elementary facts concerning 
fundamental sets in Hilbert spaces. While most of the material here can be found in 
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[C], [Dl,2], [DS], [HW] and in several other references, it makes the paper more self-
contained, and allows us to introduce the basic terminology in its natural setup. Only 
occasional proofs are given here. 

Let H be a separable Hilbert space and X a countable subset of H. We attempt to 
introduce the operator 

(1.3.1) T := Tx: l2(X) -* //: c •-> £ c ( * -
xex 

T is certainly well-defined on the finitely supported elements of l2(X). X is said to be a 
Bessel sequence/set if T is bounded on the subspace of finitely supported sequences. In 
such a case, it is continuously extended to a bounded operator on t2(X). 

Associated with Tx is the map T* := T^iH defined by 

r:h^{(h,x)H}xeX. 

PROPOSITION 1.3.2. T* is a bounded map from H into l2(X) if and only if X is a 
Bessel set. In such a case T* is the adjoint ofT and \\T\\ = \\T*\\. 

Now, let T be any bounded operator from a Hilbert space H' into a Hilbert space H. 
Then the set 

(1.3.3) C r : = / / 0 k e r r . 

(i.e., the orthogonal complement of ker T in H1) is well-defined, T is injective on Cj, 
ranT = ran(r|cr), and ranT* is dense in Cj. In this paper, we use the notation T|_1 

to denote the inverse map from ran T to Cj and, similarly, denote by 7*| -1 the inverse 
map from ran T* to HQ ker T*. These maps are usually referred to as partial (or pseudo) 
inverses. With these conventions, we have the following result. 

PROPOSITION 1.3.4. Let X be a Bessel set, and T := Tx, T* := T^as before. Then 
the following conditions are equivalent: 

(a) ran T is closed. 
(b) T is bounded below on Cj. 
(c) T* is onto Cj. 
(d) r* is bounded below on HQ ker T*. 
When one (hence all) of these conditions holds, we have \\T*\~X || = \\T\~1 \\. 

DEFINITION 1.3.5. Let H be a Hilbert space and X a fundamental Bessel set in H. 
We say that X is a frame for H if one (hence all) of the conditions of Proposition 1.3.4 
holds. A frame X is called tight if || y|| || y|—11| = 1. We call a frame for H := L2(R

d) a 
fundamental frame. 

Thus, X is a frame if and only if there exist constants C\, C2 such that the inequalities 

c.lHI2<£KMtfl2<c2p||2 

x€X 
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hold (for all h e H). The sharpest possible constants are C2 = ||r||2 = \\r||2 and 
d = l/Url-1!!2 = 1 /1| r\~l \\2 and are usually referred to as the frame bounds. A 
frame is tight if and only if its frame bounds coincide. 

A notion closely related to frames is that of a stable basis for H (also known as a Riesz 
or unconditional basis) defined as follows: 

DEFINITION 1.3.6. A stable basis X for H is a frame for H whose corresponding Tx 
is injective. Equivalently, it is a frame whose corresponding T*x is onto ti(X). 

Given a frame X for H, the map 

TT*:H-+H:h)->Y,(h>x)HX 
xex 

is called the frame operator. TT* is continuously invertible, and we use 

for its inverse. Since the map R maps X 1-1 onto RX, we may identify canonically the 
spaces Zi(X) and tifRX), as we do hereafter, without further notice. 

Since R is self-adjoint, T£R = T^, and hence (i): 7 ^ is a right inverse of 7>, and (ii): 
RX is a frame (the latter since 7 ^ is composed of two continuously invertible maps). 
The frame RA" is known as the dual frame of X, and some basic facts concerning dual 
frames are collected in the following proposition.* 

PROPOSITION 1.3.7. LetRXbe the dual frame ofthe frame X. Then: 
(a) Xis the dual frame ofRX (i.e., duality is reflexive). 
(b) TxT^x = 7R^7^ = IH, with IH the identity map on H. 
(c) ker Tx — ker T^JC and CTx — CTRX. 

(d) The dual frame RX is the only Bessel set R!X in H that satisfies TxT\,x = IH and 

kerTx = kerTRfx. 

PROOF. Since RTX = TKX, we have 7 R * 7 ^ = RTXT%R = R, hence the dual of the 
frame RX is Rl RX = X, which shows (a). 

For (b), we already know that 7 ^ 7 ^ = IH- Taking adjoints (or, alternatively, inter­
changing the roles of X and RX, which is possible thanks to (a)), we get that TRXT^ = IH. 

The relation T$x — RTx shows also that ker Tx = ker 7R^, and hence Cjx — C ^ , 
which proves (c). 

Finally, assume R':X —-> H satisfies the conditions in (d). Define (on X) a map K := 
R - R7. Then KX is Bessel, and 7 > 7 ^ = 7*(7^ - 7 ^ ) = 0, showing that ker Tx D 
CTKX- Further, since kerT^x = ker7R^ = ker 7* (by assumption), we have ker TKX ^ 
ker Tx. Thus, ker TKX contains its orthogonal complement C ^ . This implies that TKX — 
0, hence, KX=0. m 

The above proposition allows us to represent the orthogonal projector onto H with the 
aid of a frame and its dual: 

* The symbol i which is commonly used in the literature to denote the dual frame is used in this paper for a 
totally different purpose. In any case, the use of x to denote the dual of X is an abuse of mathematical notations, 
since it suppresses the dependence of R̂ JC on X\x. The notation x for the dual has many other drawbacks. To 
see one of them, try to rewrite the discussion here on dual frames using it instead of R. 
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PROPOSITION 1.3.8. Let S be a closed subspace of a Hilbert space H. Suppose thatX 
is a frame of S with a dual frame RX. Then TxT^ is the orthogonal projector <Ps'. H' —» S, 
i.e., 

psh = £(A,Rjt)jt. 
xex 

PROOF. The definition of TxT^ directly implies that its range lies in S, and hence, 
by (b) of Proposition 2.3.7, it is, indeed, a projector. It is also orthogonal, since 7^,, 
hence TxT^, obviously vanish on the orthogonal complement of S in H. m 

Part (d) of Proposition 1.3.7 provides a criterion for checking whether a certain Bessel 
set RXis the dual frame ofX, or not. However, that criterion might be hard to implement, 
since it requires the identification of ker Tx and ker TRX. The following corollary provides 
us with partial remedy to that difficulty. 

COROLLARY 1.3.9. Let H be a Hilbert space, H1 a closed subspace ofH, X a frame 
for H', and R a map from X to H'. Assume that RX is a Bessel set which is fundamental 
in H'. Then the following conditions are equivalent: 

(a) RX is the dual frame ofX. 
(b) T^Tx, T^TRX, TXT^X, and T^xT^ are orthogonal projectors. 
(c) T^jrTx, and TRXT^ are orthogonal projectors. 

PROOF. The equivalence of (b) and (c) follows from the fact that every orthogonal 
projector is, in particular, self-adjoint, and hence, assuming (c), we get that T^Tx = 
T^TRX, and TxTfo = TRXT} verifying thereby (b). 

Assume (a). The fact that TxT^ is then an orthogonal projector is the statement of 
Proposition 1.3.8. This implies that T^TRX is a projector. Since RXis a frame, T$x maps 
ti(X) onto H1', and since X is a frame, T*x maps H' onto CTX. Hence, T*xT^x must be the 
identity on Cjx. The orthogonal complement of Cjx is ker Tx = ker TRX (the equality by 
(c) of Proposition 1.3.7), and T^T^x certainly vanish on ker TRX> Hence it is orthogonal. 

Now, assume (b). By statement (d) of Proposition 1.3.7, in order to prove that RX 
is the dual frame of X, we only need show that Cjx = C ^ . For that, we first observe 
that, since bothXand RXare fundamental in H1', T^T^x maps C ^ 1-1 densely into Cjx. 
Since that operator certainly vanishes on ker TRX and is assumed to be orthogonal, we 
must have CTX = Cr^. • 

For a shift-invariant set X = E® (with E® as in (1.1.1)), we use the abbreviated nota­
tions 

For this case, the search for the dual frame is simpler due to the following proposition. 

PROPOSITION 1.3.10. The dual R(E^) of a shift-invariant frame E$> is the shift-
invariant frame ERq> generated by RO. In particular, the dual of a principal (respectively, 
finite) shift-invariant frame is also a principal (finite) shift-invariant frame. 
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PROOF. We need to show that R commutes with shifts Ea:f >—> /(• — a), a G Zd. 
For that, it suffices to show that the map 

%%:f^ E</>>* 
XÇzEq, 

commutes with shifts Ea (and use the fact that R is the inverse of that map). Indeed, for 
a G Zd, 

{%%){Eaf) = £ (Eafx)x = £ (f,E-ax)x = £ (f,x)F* = F%%f, 
XÇZEQ, XÇLEQ XÇLEQ 

with the fact that EaE<& = E® being used in the penultimate equality. • 

1.4 The Gramian matrices. The central notions in this paper are the pre-Gramian ma­
trix, the Gramian matrix, and the dual Gramian matrix. In principle, the objective is 
to decompose the involved operators %> and 'ZJ into a collection of simpler operators 
("fibers"), indexed by w G Jd. Each one of the "fiber" operators acts from a sequence 
space to (the same or another) sequence space and its matrix representation can be ex­
plicitly described in terms of the Fourier transforms of the generators O. The main theme 
of the entire analysis is as follows: every property of the set E$> (such as being a Bessel 
set, a frame, a stable basis etc.) is equivalent to the "fiber " operators satisfying an analo­
gous property in a uniform way (here "uniformity " refers to the norms of the underlying 
operators). 

The pre-Gramian operator J® is simply the Fourier transform analog of the operator 
%>. If c G £i(E<X)) is finitely supported, we see that 

(1.4.1) C&c) = E ^ -

Hence, we may introduce an operator J$>, which is defined, at least, on the space 

(1.4.2) L[f := {c : c: E<& —> C is finitely supported}, 

by the rule 

(1.4.3) 4 : T ^ X | T ^ . 

Since the Fourier transform is an isometry, the boundedness, invertibility, and other prop­
erties of %> can be equally studied via J<&. 

The definition of J® extends naturally to spaces larger than L®\ for instance, if O is 
finite, the rule in (1.4.3) can be extended to the entire Lf (In such a case, J^r need not 
be a i>2(^)-ftinction, but is always defined a.e.). 

More relevant to our purposes, the pre-Gramian can be "evaluated" on Jd in the fol­
lowing way: we define the value J$>(w) of J® at w G T^ as the (2irZd x ®)-matrix 

Mw):=(j>(w + aj)a( 
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Since each <j) is well-defined only up to a null-set, so is the function w \—> J®(w). In a 
natural way, the matrix J<&(w) can be viewed as a densely defined operator on ^i®)- In 
any case, (1.4.1) together with (1.4.3) show that, for c G lo(E$>), 

(1.4.4) ((%c)\w + « ) ) a e M , = Mw)c(w). 

In summary, we have decomposed %>, on the Fourier domain, into a collection of 
operators {JQ>(W) : w G Jd}, defined for almost every w, each of which acts on a dense 
subspace of £2^) and represents the action of J<& on the coset w + 2iŒd. Because of the 
explicit matrix representation of each J<&(w), questions like its boundedness, invertibility 
etc., are by far more accessible than their %> counterparts. Thus, our goal is to study %> 
via the behaviour of the "fibers" J®(w), w G Jd. 

The spectrum of the space S($>) generated by O is defined (up to a null-set) as 

ad) := aS(d>) := {weT* : Mw) ^ 0}. 

An equivalent definition of the spectrum is: 

(1.4.5) aO := {w G Jd : [<j>,<t>](w) ^ 0, for some <f> G O}. 

For a FSI space, it was proved in [BDR1] that the spectrum of S only relies on the space 
and is independent of any particular selection of the generators of the space. That proof 
can be carried on to infinitely generated SI spaces. 

Next, we want to decompose the operator <T^. Since the Fourier transform is an isom-

etry, the (formal, say) relation J® — %>, leads to the relation 

<f* — /* 

In Section 2 (cf. (2.1.1)) we show that, given <j> G O a n d / G L,2(Rd)9 the sequence 
T£f, though need not be in ^(E^), is always in the Wiener algebra of iï^, and more 
precisely, consists of the Fourier coefficients of the Zi(T^)-function [/", </>]. This leads to 
the conclusion that JJ , the Fourier transform analogue of *2J, has the form 

(1-4.6) J**.f~(\fM**> 

and allows us to introduce "point evaluation" with respect to JJ : we define J%(w) to be 
the following operator acting on £2(2irZd): 

(1.4.7) Jl(w):c^( £ c(a)j>(w + a)) . 

(To compare (1.4.6) and (1.4.7), choose c(a) :=f(w + a) in the latter.) 
As expected, the analysis above reveals that the matrix representation of the operator 

J^(w) is the adjoint of the matrix representation of the operator J<&(w). i.e., we had verified 
that "evaluation" commutes with taking adjoints. After making that observation, and with 
only very few necessary exceptions, we will identify J<& with its matrix representation 

The following lemma collects two useful facts that were just observed. 
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LEMMA 1.4.8. Let O C L2(R
d) be a countable set. Then for any c G lo(E®) and 

f G L2(R
d), and for a.e. w E 

(1.4.9) %c(w + .)|2irz' = Mw)c(w), 

and 

(1-4.10) W = 4(w)Ô|^z')-

Two self-adjoint operators can be constructed from J®. The first is the Gramian G := 
Go, which is defined by 

G := o/JJ(D. 

Previous considerations imply that G# is the Fourier transform représenter of <T^%>. 
This fact allows us to draw the following immediate conclusions. 

PROPOSITION 1.4.11. For the densely defined linear operators %> and G: 
(i) %> is bounded if and only ifG, considered as an endomorphism ofLf, is well-

defined and bounded. Also, \\G\\ = H'îoll2. 
(ii) Assume %, (hence, G) is bounded. Then, %> is partially invertible if and only if 

G is partially invertible. A Iso, 11G | ~ ' 11 = 11 *Zi | ~! 112. 

(Hi) Assume %> is bounded. Then, %> is invertible if and only ifG is invertible. Also, 

IIG-'II-II^-'II2 . 
We define the value G(w) of G at w £ ld as 

(1.4.12) G(w) := r9(wy9(w) = ( [<U'](w))^ e < t , 

In general, for a.e. w G Jd, the Gramian G(w) is a densely defined self-adjoint operator 
on ^2{^>) (hopefully into itself). In order to make any good use of G(w), one needs to 
make sure that, at least on Ljf, evaluation commutes with the application of G, i.e., that 

(Gr)(w) = G(wyr{w\ for r G L$, and for a.e. w G Jd. 

This is actually obtained by summation-by-parts, whose straightforward justification is 
omitted here. Hence: 

LEMMA 1.4.13. For every c G IO(EQ>), and for a.e.w G Jd, 

((%%c)(w))^ = G(w)c(w). 

The notation 
A(w) := ||G(w)|| 
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stands for the operator norm of G(w), and is assumed to be oo whenever G(w) is not 
well-defined or is unbounded. In case G(w) is also boundedly invertible, we denote its 
bounded inverse by G(w)~l, and set 

X(w):=\\G(w)-l\\-1. 

Also, we set 
\+(w):=\\G(w)\-'\\-1. 

In case O is finite, A(w) and \(w) are clearly the largest and smallest eigenvalues of 
the finite-order matrix G(w). A closer look may reveal that A+(w) is, in such a case, the 
smallest non-zero eigenvalue of G(w). 

Typical results concerning the Gramian analysis can be found in Theorem 2.2.7 (PSI 
spaces), Theorem 2.2.14 (PSI spaces, several generators), Theorem 2.3.6 (FSI spaces), 
and Theorems 3.2.3 and 3.4.1 (infinitely generated SI spaces). 

The Gramian approach is efficient for the study of those properties of E® which are 
"visible" via the operator 1$, primarily orthogonality and stability properties. In contrast, 
other properties such as E® being a fundamental frame or a fundamental tight frame are 
better analysed with the aid of the adjoint CT^. For the analysis of this adjoint operator, we 
introduce another self-adjoint operator which we call the dual Gramian G. It is obtained 
by multiplying the pre-Gramians, but in reverse order, namely, 

(1.4.14) G := Go := J<tA-

Problems of well-definedness are more subtle here than in the Gramian case. Fully de­
tailed discussions of that point are given in Section 3.3, and we mention here only two 
facts: first, if E$> is a Bessel set, then G is a well-defined self-adjoint bounded endomor-
phism of L,2(Rd). Second, if E® is not a Bessel set, the definition (1.4.14) may not make 
sense, and it is safer to view G as a quadratic form, i.e., to define it by 

G : / - IM3/Ili? = EIWl!2(T<) = 

The evaluation G(w) of the dual Gramian is the (2ir~Ld x 27rZûf)-matrix whose (a, a')-
entry has the form 

]P 0(w + a)(j)(w + a'). 

The argument w may be restricted to Jd. For a general E®, the entries of G(w) may not be 
well-defined (in the sense that the sum in their definition needs not converge absolutely). 
Nevertheless, we will show (in Section 3.3) that, whenever £o is a Bessel set, the sum in 
(1.4.15) converges absolutely for every a, a' G 2ifld and for a.e. w. Thus, for a Bessel 
set E$>, G(w) is well-defined a.e., and can viewed as a densely defined operator from 
^2(27rZJ) (hopefully into itself). Moreover, we will show then that the basic relation 

E WM 

(Gf)(w) = G(wV\ 
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(with/^ the restriction of / to w + 27rld) holds a.e. A similar relation is drawn in Sec­
tion 3.3 even in the non-Bessel case, under the assumption that the entries of G(w) are 
well-defined, and with the interpretation of G and G(w) as quadratic forms. 

Analogously to the Gramian case, we define here the following functions 

Â(w):=||G(w)||, 

\(w):=\\G(w)-]\\-1, 

\+(w):=\\G(w)\-l\\-1, 

and attempt to study properties of E® in terms of the behaviour of these functions. Our 
main results in this regard are Theorem 3.3.5, and Theorem 3.4.1. 

The Gramian/dual Gramian analyses are also efficient for studying the connection 
between a frame and its dual: given two sets O, *F C L,2(Rd\ and some bijection R: O —» 
*F, this is done via the study of the matrices ^O(WVRO(W)>

 an(l,^o(wVRo(H7)5 as discussed 
in Section 4. 

1.5 An example. We provide here an example, which is taken from [RSI], (and is a 
specific type of what we call there "self-adjoint Weyl-Heisenberg sets") that illustrates 
the potential power of the results to be developed in this paper. 

Let (j) e L2(R
d). Let 

O := {ea^)aellç2d. 

Indexing O by 27rZrf, the pre-Gramian J®(w) is found to be 

Therefore, J^(w) = J®(w), and hence 

G$>(w) = Go(w). 

Now, Theorem 3.2.3 characterizes the stability property of E<$> in terms of the Gramian 
fibers Go(w), w £ Jd. On the other hand, the same criterion when applied to G®(w), 
w G Jd, is shown to be equivalent to E® being the fundamental frame (Theorem 3.3.5). 
This recovers the following well-known fact (cf. e.g. [Dl,2]): 

COROLLARY 1.5.1. With O as above, E® is a stable basis if and only if it is a funda­
mental frame. 

1.6 An application: estimating the frame bounds. The main results of this paper are 
concerned with the connections between the spectrum of the operators G and G and the 
spectra of the operators G(w) and G(w), w G Jd. As we mentioned before, information 
about the fiber operators G(w) and G(w) is more readily available as compared to similar 
information concerning G and G. Still, computing exactly, e.g., the norm of G(w) (con­
sidered as a linear map from £2^) into itself) might appear as a hard task. However, 
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estimating this norm (either from below or from above) in terms of the Fourier trans­
forms of the functions in the generating set O is quite easy. This subsection is devoted 
to the discussion of such estimates. 

To this end, we let /be a countable (or finite) index set, and let M be a complex-valued 
non-negative Hermitian matrix with rows and columns indexed by /, and considered as 
an operator from £2(I) into itself. We use the following estimates of \\M\\: 

(1.6.1) s u p f e | M 0 j ) | 2 V < ||M|| < sup£ |M(/J ) | . 

Combining these estimates with Theorem 3.2.3, we obtain our first estimate for || % | | : 

COROLLARY 1.6.2. Let O be a countable (orfinite) subset ofL2(R
d). 

(a) If the function 

BY:Jd x O - > R: (w, 0) »-> £ I E <£(w + a)0'(w + a)| 

is essentially bounded, then E<& is a Bessel set, and H^H2 < \\B\ HL^FXO)-

(b) IfE$> is a Bessel set, then the function 

( I - \2\\ 
B2:J

d X O - + I R : ( W , 0 ) H - > I £ ]T </>(w + a)<t>'{w + a)\ ) 

is essentially bounded, and ||1i>||2 > H^HL^FXCD)-

On the other hand, combining (1.6.1) with Theorem 3.3.5, we obtain different esti­
mates: 

COROLLARY 1.6.3. Let Q>bea countable (orfinite) subset ofL2(R
d). 

(a) If the function 

o^TrZ^eO 

is essentially bounded, then E$> is a Bessel set, and ||1i>||2 < \\B\ Wi^^dy 
(b) IfE® is a Bessel set, then the function 

is bounded and W^W2 > H^IL^R*)-

For the estimation of the other frame bound, we need a bound on \\M~X ||. In what 
follows we employ the estimate 

(1.6.4) \\M~l\ / - — -< s u p ( | M ( z , 0 | - i : | M ( / j ) | ) , 
tel 

which is valid for any Hermitian diagonally dominant M. An application of this estimate 
to Theorem 3.2.3 yields the following: 
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COROLLARY 1.6.5. Let O C L2(R
d) be countable (orfinite), and assume that E® is 

a Besselset. Then E$> is a stable basis if the function 

bï.V*x<b:-+R\M)>->( £ |<Kw + a ) | 2 - £ I £ ^(w + a ^ w + «)!)" 
^ae2irZd <f>'eO\^ae27Tld *' 

is positive and essentially bounded. Furthermore, in this case 

Finally, an application of (1.6.4) to Theorem 3.3.5 yields the following: 

COROLLARY 1.6.6. Let d> C L2(Rd) be countable (orfinite), and assume that E® is 
a Besselset. Then E® is a fundamental frame if the function 

<£GO 

is positive and essentially bounded. Furthermore, 

ii2r,ii2<iML(*)-

The simplest example that follows from the above results (and can also be checked 
directly) is the following. 

EXAMPLE 1.6.7. Suppose that, for every <f> G O, for every a G 27rZrf, and for almost 
every w G Rd, 0(w)$(w + a) = 0 (e.g., each $ is supported in some cube fy + [0,27r)^, 
fy G IR )̂. Then, the (square root of the) function Ë\ can be replaced by the function 

g:Rd^R:w^(j:\4>(w)\2Y. 

Similarly, the function b\ can be replaced by 1 jg. Consequently, we obtain that E® is a 
fundamental frame if the two functions g and 1 jg are essentially bounded. In fact, the 
results of this paper will show that the converse of this last statement is valid as well. 

2. Finitely generated SI spaces. 
2.1 General. While general SI spaces are best analysed with simultaneous use of the 
Gramian and dual Gramian matrices, this is not the case for FSI spaces. The reason is 
easy to inspect: for a finitely generated SI space, the dual Gramian matrix is infinite, while 
the Gramian matrix is finite. This explains to a large extent the prevalence of Gramian 
analysis in the study of FSI spaces. Moreover, in the principal case, the Gramian matrix is 
reduced to a single function, providing thereby a further significant simplification in the 
course of study of such spaces. Therefore, we will first present (in the next subsection) 
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a detailed analysis of bases for PSI spaces, and only then discuss the FSI counterpart of 
that theory. The present subsection is devoted to some simple initial observations and 
estimates. 

In the PSI case, the generating set O is a singleton ((/>), and the operator %£ := 1^} 

then takes the particularly simple form 

%:f^{{f,E«4>)}a^. 

From Parseval's identity, and the 27r-periodicity of the exponentials ea, oc G ïd, we 
obtain that 

(2.1.1) ( / " , £ » - (27rrd(/J,ea) = (2ir)-d([fJlea)L2{Jdy 

Therefore, T£f is the set of Fourier coefficients of the Li(T^)-function [f9 0], that is 

(2.1.2) <%f=\f,fa 

In particular, 

PROPOSITION 2.1.3. Given <£,/ G L2(R
d), 

IW/ll^(z-) = (2^/2||^«lli2(T-)-

Some coarse estimates can be derived directly from the above. By Schwartz inequal­

ity, 

Thus, for O C L2(R
d), 

\\fM <\fM,fa 

\\^mi{E^<(^rd\\if,f]j:^^] 
11 </>GO 

Since ll/H2 = (2iryd\\[fMLl{j^ we conclude that 

Li(Jd) 

Denoting 

WmiuE.) < 11/11 £[<M] 

<fr:=(£[^]) \ 
V0GO J 

2 

Loom' 

we have proved the following result. 
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PROPOSITION 2.1.4. Given O C L2(R
d), £$ is a Bessel set in case O G Ioo(TJ), and 

we then have 

\\%\\ < ii^iiwF)-

We will show later that equality holds in the above in case O is taken from some PSI 
subspace ofL2(R

d). Further, we will show that for & finite O the boundedness of Ô is not 
only sufficient for E$> to be a Bessel sequence, but also necessary. However, the bound 
provided by ||0|| Ioo(T^ is, in general, not sharp. 

2.2 Frames in PSI spaces. Throughout this subsection, S is a PSI subspace ofL,2(Rd) 
generated by some (fixed) function. 

Motivated by the search for an explicit representation for the orthogonal projection 
onto shift-invariant spaces, [BDR1] introduces and studies the notions of quasi-stable 
and quasi-orthogonal bases for FSI spaces. For PSI spaces, in the terminology used in 
the present paper, its definitions are as follows: 

DEFINITION 2.2.5 ([BDR1]). Let </> G L2(R
d), and let % be the operator 

%'• Wld) — Stf): c^->^Ea<j) c(a). 
aeld 

Then <j> is called a quasi-stable generator if % is a well-defined bounded map, and pro­
vides an isomorphism between Cq- := (ker rZ )̂-L and S(<t>). If, further, that isomorphism 
is an isometry, <j> is termed a quasi-orthogonal generator. 

In view of (b) of Proposition 1.3.4, and Definition 1.3.5 of frames and tight frames 
we obtain the following Corollary. 

COROLLARY 2.2.6. Let <j> G L,2(Rd). Then E^ is a frame if and only ifcf) is a quasi-
stable generator ofS((j)). Further, this frame is tight if and only if(j> is a scalar multiple 
of a quasi-orthogonal generator ofS((f)). 

Thus, implicitly, [BDR1] contains an extensive discussion of frames in PSI spaces. 
Furthermore, as we had learnt from the referee of this paper, frames for PSI spaces were 
(explicitly) studied by Benedetto and Li [BL]. Indeed, Theorem 7.7 of [BW] (which is 
attributed there to [BL]) is essentially equivalent to Theorem 2.2.7. 

We recall the definition of the spectrum aS given in (1.4.5), and recall the notation 

l = tiM = ( E \k-+P)\2Y-

THEOREM 2.2.7 ([BDR1], [BL]). Let<\> G L2(R
d) be given, and let S be the PSI space 

generated by <j>. 
(a) The shifts E<j> of <j> form a Bessel sequence in S if and only if </> is essentially 

bounded. 
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(b) The shifts E^ of 4> form a frame for S if and only if<\> and l/(j> are essentially 
bounded on aS. Furthermore, 

\\%\\ = I I ^ I L o o ( K ) = H < £ l L o o ( ^ > 

and 

u^r'iMiiAÀikow-
Therefore, for a frame E^, the inequalities 

ril/||i/0IL(^ < ( E l</W>l2)* < Uhu^llfl fes, 

are valid and sharp. 
(c) E^ is a tight frame if and only if(f> = const (a.e.) on its support. 
(d) With if) := (0/</>)v, the setE^ is a tight frame for S{(j)) (and hence every PSI space 

is generated by some PSI tight frame). 
(e) The frame (tight frame) E^ is a stable (orthogonal) basis for S if and only if 

aS = Jd. 

PROOF. By Corollary 2.2.6, the shifts of <j> form a frame (tight frame) if and only if 
0 is a quasi-stable (quasi-orthogonal) generator of S((j>). Therefore, the theorem follows 
from the corresponding results in Section 2 of [BDR1]. • 

We observe that the above (d) and (e) imply that S contains an orthonormal basis 
E^ if and only if aS = Jd. That case was termed regular in [BDR1]. Thus (e) above 
shows that the notions of a stable basis and a frame coincide for a principal shift-invariant 
Ef, provided that £(</>) is regular. It is worth mentioning that, in case <f> is compactly 
supported, £(</>) is always regular. 

The spaces ker 1^ and C? were described explicitly in [BDR1] as follows: 

ker % := {c G £2(l
d) ' suppc C (Jd \ aS)}9 

and hence 

(2.2.8) C% := {c G l2(L
d) : suppc C aS}. 

Next, we need the following characterization of the Fourier transforms of the elements 
o f £ ( # 

RESULT 2.2.9 ([BDR2]). Let </>,/ G L2(R
d). Then/ G S(</>) if and only iff = T<j> for 

some 27r-periodic function r. 

COROLLARY 2.2.10. Let S := £(</>) be a PSI space, and assume that E^ forms a 
frame for S. Then, given c G ti{J-d\ there exists f G S such that 

c(a) = (f,Ea$), aeZd 
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if and only ifc is supported in the spectrum ofS. The unique solution/has the form 

(2.2.11) f=^Ea4>cf(a), 
aeld 

with the sequence Cf G Cq being the solution of the discrete convolution equation 

[0, </>]V * Cf — C. 

PROOF. By the definition of ^*, a solution/ exists if and only if c lies in the range 
of T£, i.e., if and only ifc G Cq. Therefore, in view of (2.2.8), we only need to prove 
the statements concerning the nature of the solution/. Since E^ is a frame for S, then, 
given any / G S, there exists a unique Cf G Cq that satisfies (2.2.11). Taking Fourier 
transforms, we obtain that/ = c}<j). Invoking (2.1.2), we see that 

(2.2.12) t = 'ty=$M = '£AkM 

where, in the last equality, the periodicity of Cf was used. The desired result then follows 
by inversion. • 

Given a frame E^, Proposition 1.3.10 asserts that there exists a function R(/> G £(</>), 
such that E^ is the dual frame of E^. Further, we can compute R</> as follows: first, we 
seek c<j> G Cq such that T^c^ = <j>. Applying Fourier transform, then multiplying by 0, 
and periodizing over 27rZ ,̂ we obtain the equation c^>[0,0] = [</>, $]. Since c^ is in Cq-, 
it is supported on supp[0,0] = aS, and so c^ is the characteristic function x of crS. Let 
c be the solution of [0, <̂ >]v*? = c^, and R</> := c<\>. Then ER(f> is the dual basis of E^ by 
the fact ^ 0 = c^ and by Corollary 2.2.10. Hence c is defined by 

4 l 

and R</> is given by 

(2.2.13) R4> = ]>/[lfa 

This representation of R</> is detailed in [BDR1] (using a different approach) and is well-
known in the special regular case mentioned above (in which a frame becomes a stable 
basis). 

The redundancy offered by frames does not really exist for principal shift-invariant 
ones. Yet, given a PSI space, one may use several functions from S to generate a shift-
invariant frame for S. The details of that case are given in the next theorem. 

THEOREM 2.2.14. Let S be a PSI space, and O C S be a countable (or finite) set. 
Then 
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(a) E® is a Bess el set if and only if the function 

(2.2.15) 0:=(£[<M]V 
>G0) 

is essentially bounded. Furthermore, ||1i>|| = II^IL^F)-
(b) £$ is a frame for S if and only if<$) and I /O are essentially bounded on the 

spectrum uS. In such a case, ||1i>|_1|| = || 1 /<I>||z,00(criS)-
(c) E(& is a tight frame if and only if<& is constant a.e. on its support. 

PROOF. By Proposition 2.1.3, given/ G L2(R
d)9 

\%f\\\ 2(£o) (27T)- T,\\fM 
Li(Jd) 

Let ty be a generator of S. For / G S and <j> G O, Result 2.2.9 implies the existence of 
27r-periodic r^, 7y such that 

Therefore, 

Consequently, 

/ = T/ijj, <j> = r ^ , (/> G 0>. 

|[/,0]|2 = \Tf\
2\^\2MM = WfMMl 

proof of the theorem relies on the comparison of 
Since \\f\\2

L ,Rd) = (27r) J |H / , / ] | |LJ (F) 5
 a n d since [f,f] is necessarily supported on aS, the 

llt/iill £i("S) 

and 

WlfM2u'2 
Li(aS)' 

Further, we note that Result 2.2.9 also implies that for any closed Q C aS, there exists 
/ G S for which [f,f] is the characteristic function of Q. The proof can be then completed 
by a routine argument (cf. e.g., the proof of Theorem 2.16 in [BDR1 ]). • 

The final theorem of this subsection provides the details concerning the dual frame of 
the above E® and a complete description of ker % and CŶ  : 

THEOREM 2.2.16. Let $>bea countable subset of a PSI space S, E® its corresponding 
shift-invariant set. IfE$> is a frame then: 

(a) Let ip be any generator of S (i.e., S — S(ijj)), and c = (c^)^® G ^2(^0) (with c^ 
the restriction ofc to E^). Then c G CV̂  if and only if 

(c^)<t> = T ( [ V > , <£])*, 

for some In-periodic function r, that is supported on aS. 
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(b) The map Rfrom the frame E® to its dual is given by 

R: /~( f /Ô 2 ) v . 

(c) The orthogonal projector (P\ L,2(Rd) —* S can be written in the form 

Tf= £ (/•,£a((0/Ô2)v))£Œ^. 
<t>e<b,aEZd 

PROOF. Claim (c) is immediate from (b) and Proposition 1.3.8. To prove (b), we 
need to show that the map R inverts %>%£, and this will follow as soon as we show that 
(% V£f) = Ô 2 / on S. For that, note first that Result 2.2.9 implies that, for every/, g G S, 

(2.2.17) tf,ë]Ê=\Ê,Ê]f. 

Now, given/ G S, we first recall that, by (2.1.2), for every (j> G <X>, 

This, together with (2.2.17) and the fact that %T^ = Ê ,e<i> %%?, implies that 

This proves (b) and thereby (c). 
To prove (a), we compute C7^ using the identity 

For/ G S, there exists, by Result 2.2.9, a function Tf supported on aS, such that/ — r/fy. 
By (2.1.2), 

Since CV̂  is the range of 1J , this shows that the Fourier transform of each c = ( c ^ e o G 
Cr^ is of the form c^ = T[\JJ, $], V</> G O, for some 27r-periodic r supported on aS, i.e., 
Cq^ contains only sequences of the required form. 

Conversely, assume that c = (ĉ >) satisfies €$ = T([0 , 0]). We consider the nature of 
%>c — E</)G<D %£<$>• Applying Fourier transform, and invoking (2.2.17) once again, we 
obtain that 

%c = £ ^ = E T^M = E TW>4W = TO2!/;. 

Since % is bounded, r ô 2 ^ G Z^C^)- On the other hand, since E® is a frame, then, by 
Theorem 2.2A4, <& is bounded below on (aSf D supp^, and therefore rxjj G L2(R

d). 
Thus,/ := (r0)v is in Z^C^)» and hence, by Result 2.2.9, is also in S. Since the proof of 
the previous implication shows that T^f = c, we obtain that c G ran 1J , as needed. • 
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From (a) of Theorem 2.2.16, it easily follows that 

ke r% = Uc+)+ G £2(£o) : £ 0$,$] = o) , 

with i/> some (any) generator of S. 

2.3 Frames in FSI spaces. In order to lift the results of the previous section from PSI 
spaces to FSI spaces, we need first the following FSI analog of Result 2.2.9 (cf. Theo­
rem 1.7 in [BDR1]): 

RESULT 2.3.1. Let O be a finite subset of L2(R
d). A function/ G L2(R

d) is in S := 
»S(0) if and only if there exists r := ( T ^ ^ O , with eachr^ a 27r-periodic function, such 
that 

(2.3.1) / = £ > ^ . 

Several different approaches are available for the analysis of frames in FSI spaces. We 
have chosen here the one which incorporates efficiently the results on PSI frames that 
were established in the previous subsection. We do that by studying first the straightfor­
ward case when the finite generating set O of S induces an orthogonal decomposition of 
S into the sum ©^eo S(</)) of PSI spaces. We then reduce the general setup to that simple 
case. 

Recall that, by (1.2.3), the space S(<t>) is orthogonal to the space S(I/J) if and only if 
[0, V>] = 0, a.e. Thus, the sum E ^ o S(</>) is orthogonal if and only if the Gramian matrix 
G is diagonal. 

PROPOSITION 2.3.3. If the Gramian matrix G is diagonal, then: 
(a) E® is a Bessel set if and only if for each <j> G O, </> is bounded on a<\> — a(S(<l))\ 

Furthermore, 
\\%\\ = max \\%\\ = max | |0| | Ioo (F ) . 

(b) E® is a frame for S(<$>) if and only if for each </> G O, </> and 1/0 are bounded 
on o<\). The frame is tight if and only if for every </>,<[> = const on a<f) (with const 
independent of4>). Furthermore, 

\\%\-x\\ =max | |0 ; | - 1 | | =max | | l /0 |U o o M ) . 

PROOF. The orthogonal sum decomposition 0^5(0) of S(<$>) implies that <2J agrees 
with ^* on S(<j>) (recall that we naturally embed the target space t2(E^) of the latter 
into the target space ^(E®) of the former). Since £2(E®) is (always) the orthogonal sum 
00l2(E$), we conclude that, indeed, 

\\%\\ = 11*4*11 - m a x ||<Z?|| = max \\%\\, 
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and 

ii^rii = ira- iii=^ii^i- ,ii = Taxii'z;i-iii. 
The result then follows by an application of parts (a-c) of Theorem 2.2.7. • 

In accordance with the definitions of Section 1.4, we define here 

A(w) 

to be the largest eigenvalue of G(w), 

X(w) 

to be the smallest eigenvalue of G(w), and 

A+(w) 

to be the smallest non-zero eigenvalue of G(w). Then, both A(w) and X+(w) are non-
negative and well-defined on aS. Further, Proposition 2.3.3 can be stated as follows: 

If G is diagonal, then E<& is a Besselset if and only if\\ I^L^iaS) < °°- E<& is a frame 
for *S(0) if and only if 

(2.3.4) A and 1 / A+ are (essentially) bounded on the spectrum ofS, 

and, moreover, the frame bounds ofE® are HAH^^s) and || 1/A+ Hz^s)-
As Theorem 2.3.6 below asserts, the above characterizations are valid for general FSI 

spaces. 
The proof of Theorem 2.3.6 is based on the following (technical) lemma: 

LEMMA 2.3.5. Given a finite order Hermitian matrix G, whose entries are measur­
able functions defined on some domain Q, there exists a matrix U := U$>XQ> whose entries 
are measurable functions defined on Q, such that LTGU is a diagonal matrix, and U(w) 
is unitary for every w G Q. 

Prior to proving the lemma, we state our theorem and show how it follows from that 
lemma. Part (d) of the theorem is due to [BDR1] (and was previously proved, under 
certain decay conditions on O, in [JM]). For the special case of quasi-regular FSI spaces 
(a notion that will be defined in the next subsection), Theorem 2.3.6 in its entirety was 
already proved in [BDR1] (cf Corollary 3.30 there. In a quasi-regular FSI space S, X+ = 
X on aS, and hence the [BDRl]-analysis, which is based only on the functions À and A, 
can still go through). 

THEOREM 2.3.6. Let O C L,2(Rd) be finite with corresponding Gramian matrix G, 
and corresponding eigenvalue functions A, X, andX+. Then 

(a) E® is a Bessel set if and only if A is essentially bounded. Furthermore, 

\\%\\2 = l|A|k<«-
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(b) A Bessel set E® is also a frame if and only ifl/X+ is bounded on the spectrum of 
S(0). In such a case, 

^ni2Hii/A+ik (<rsm> 

(c) E$> is a tight frame if and only if A — A+ = const on crS(<&). 
(d) The Bessel set E® is a stable basis for £(0) if and only if 1/À is essentially 

bounded. 

PROOF. Let U := (w<^')<^'eo be the unitary matrix from Lemma 2.3.5 (with respect 
to G := Go). Define 

4> := JW : VV := ( ^ < % := £ ity,^', </> G O 

Since U(w) is unitary for every w G Jd, it follows that U, considered as an endomorphism 
ofLf, is also unitary. From that it easily follows that ¥ C L2(R

d) (in fact, E^G^ | |$| |2 = 
E</>eo ll^ll2). Thus,^ C S(<S>) by Result 2.3.1. Similarly, sinceé = T7*,0 C SO?), and, 
consequently, SQ¥) — S((£>). Further, Gy — IPG&U, hence G<& and Gy have the same 
eigenvalue functions. 

To prove (a), we let Jo and Jy be defined as in (1.4.3). Then J^ — J&U. Since U is 
unitary, J^> is bounded if and only if J$> is, and the two maps have the same norm. There­
fore, Ey is a Bessel set of SQ¥) = S(<$>) if and only if E® is so. Consequently, (a) follows 
from Proposition 2.3.3 and the fact that, for each w, {^(w)}^^ are the eigenvalues of 
the diagonal matrix GV(w). 

The proofs of (b), (c) and (d) are similar. • 
Now, we turn to proof of the Lemma. 

PROOF OF LEMMA 2.3.5. Since, for each w e Q, the Hermitian matrix G(w) can 
certainly be unitarily diagonalized, the actual goal of the proof is to achieve the required 
measurability. 

Let Ay(vv), w G £l,j = 1 , . . . , n := # 0 denote they-th smallest eigenvalue of G(w). 
Our first goal is to show that Ay is a measurable function. For that we need the following 
claim. 

CLAIM 2.3.7. Let {am}^}0 be a set of convergent sequences am: N —> R. Let am(0) 
denote the limit of[am(kyj For each non-negative integer k, let q^ be the univariate 
polynomial 

Assume that each q^ has only real roots, and let A^j denotes thej-th smallest root ofq^. 
Then A*,- —> Ao ;, for eachj — 1,...,n. 

k—>oo 

PROOF OF CLAIM 2.3.7. For each k > 0, let A* be the vector (A^)y= t - It is clear that 
(A*)jt€N is bounded (in Rn), hence it suffices to show that Ao is the only limit point of 
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(A*)*. In this regard, we note that a limit point /y of the sequence (A^-)*, is a zero of qo, 
since £"=0 citf is a continuous function of ao,..., an, t. 

To prove that the sequence (Ak)keN has only one limit point, we let / := (/y)jLi be 
a limit point of (A*)*. Then, it is clear that (/y)Li is non-decreasing, and, as observed 
above, all the n entries of / are roots of qo. Since qo has only n roots, / will be proved to 
equal A0 as soon as we show the following: "if 0 occurs m times in /, then its multiplicity 
as a root of qo is at least nC\ 

Assume, therefore, that, ls+\ = 4+2 = • • • = ls+m — 0, for some s and m. Let (£/)ïïi be 
a set of increasing integers for which (A*,.)/ converges to /. By Rolle's theorem, for each 
fixed r = 0 , . . . , m — 1, the r-th order derivative q^ of the polynomial q^ would have a 
zero zk. in the convex hull of {A*.,s+y}i</<m- Since, as / —> oo, that convex hull shrinks to 
9 (since each (A^+y),- converges to /5+/ = 0), z*. converges to 9. Thus, 0 is a limit point of 
roots of (q^)i, r = 0 , . . . , m — 1, hence 9 is a root of qo of multiplicity > m, as claimed. 

After establishing the claim, we can prove the measurability of the eigenfunctions 
Ay as follows. We approximate the matrix G by Hermitian matrices Gk whose entries 
are simple measurable functions that converge (say, pointwise) to the entries of G. Let 
qo(w, •) be the characteristic polynomial of G(w), and qk(w, •) the characteristic poly­
nomial of Gk(w), k — 1,2, Since the coefficients of qk(w, •) are simple measurable 
functions, so is they-th smallest eigenvalue function Akj(w) of G^w). On the other hand, 
the coefficients of #*(w, •) converge to the corresponding coefficients of qo(w, •). Since 
G(w) and G^(w), k G N are Hermitian, their characteristic polynomials have only real 
roots. By the previous claim, this implies that, for everyy = 1, . . . , n, and for every w, the 
eigenvalue functions (A^y(w)V converge to Ay(w). Thus, each Ay is the pointwise limit 
of measurable functions, hence is measurable. 

Finally, we construct the columns of U inductively. Assume by induction that we 
already found V — {v\,..., vy_i} vectors whose entries are measurable functions, such 
that Gvt — A/V/, for each / = 1,.. . J — 1, and such that {vi(w),..., v7_i(w)} is an 
orthonormal set for every wGfi . 

For each w, let k(w) be the largest integer that satisfies Ay(w) = Ay_*(w)(w). For k = 
0, . . . , n — 1, set Kk := {w G Q : k(w) = k}. Then (Kk\ forms a measurable partition of 
Q. On each set Kk, we augment the matrix Ay/— G by adding the row vectors vy_jt,..., vy_ i 
and obtain in this way a matrix R with measurable entries, that satisfies ranki^w) < n, for 
every w G Kjç. Precisely, rankR(w) = n — m(w) + k, where m{w) > k is the multiplicity 
of Ay(w). Applying the proof of Lemma 2.4 of [JS], we obtain a measurable vector v, 
such that RVJ = 0 on Kk, and for every w E Kk, v7(w) (considered as vector in R") has 
norm 1. Since R(W)VJ(W) = 0, w G K^, Vj(w) is an eigenvector of G(w), and is orthogonal 
to {vj-k(w),..., vy_i(w)}. It is also orthogonal to v,(w), / < j — k as well, since v,(w) 
is an eigenvector that corresponds to the eigenvalue A,(w) which is different from the 
eigenvalue Ay(w) of v,(w). Hence, vy is (pointwise) orthogonal to each of its predecessors. 
This completes the inductive step, thereby the proof of the lemma. • 

Incidentally, the proof of Theorem 2.3.6 shows that every FSI space can be written as 
a finite orthogonal sum of PSI spaces. This fact was established before in [BDR1] {cf. 
Theorem 3.5 there). It leads to the following interesting corollary. 
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COROLLARY 2.3.8. Given any FSI space S, there exists a finite subset *F C S whose 
corresponding shift-invariant set Ey is a tight frame for S. 

PROOF. We write S as a finite orthogonal sum of PSI spaces {5(r/)}T/GH. By (d) of 
Theorem 2.2.7, each S(r]) contains a function i/^ whose shifts E^ form a tight frame for 
S(j]% say, with frame bound 1. The totality {^T/I^GH is the required VF. • 

In general, there are many ways to write S as an orthogonal sum, and, therefore, S con­
tains many tight frames. Though the norms of the individual generators V> G *F depend in 
general on the specific *F chosen, the sum T,^ev \\^\\2 depends only on the space S, that 
is: it is the same for all tight frames Ey whose frame bound is 1, and whose corresponding 
S(X/J), t/> E *F form an orthogonal decomposition of S. 

2.4 Frames in quasi-regular'FSI spaces. We had proved in the last subsection that every 
FSI space contains a shift-invariant tight frame. However, not every FSI space contains 
a shift-invariant stable basis. A partial solution to that difficulty was offered in [BDR1] 
via the more general notion of quasi-stable generating sets. That notion was defined in 
(3.16) of [BDR1], and is closely related to the notion of frames. In fact, Definition 1.3.5 
here allows us to rephrase Definition 3.16 of [BDR1] as follows: 

DEFINITION 2.4.1. Let <X> be a finite generating set for the FSI space S. We say that 
(the shifts E® of) <D is (are) a quasi-stable generating set, if (i): E<& is a frame for S; (ii): 

c% - ic = (c<f>)<!>e<t> € li{E^) : s u p p c ^ C crS, V</> G O } . 

Note that quasi-stability coincides with stability whenever aS = Jd, i.e., whenever S 
is regular (indeed, if S is regular and O is quasi-stable, then CV̂  = ^i{E^), and hence 
ker'Ti = {0}). Even with this weakening of the stability notion, [BDR1] shows that 
not every FSI space has a quasi-stable basis (we have proved, in Corollary 2.3.8, that 
every FSI space has a shift-invariant frame, and even a tight one, therefore, the existence 
of a quasi-stable basis really relies on the structure of CV )̂. Spaces that do have quasi-
stable bases are termed in [BDR1] as quasi-regular. We discuss here several properties of 
frames in quasi-regular FSI spaces, which may not be valid in more general FSI spaces. 
One of these is an explicit representation for the orthogonal projector onto S: [BDR1] 
obtains such formulas for quasi-regular spaces by a Cramer-rule-like expression (see 
(1.9) there). On the other hand, we know from Proposition 1.3.8 that the orthogonal 
projector can also be represented by using a frame for S and its dual frame, and this will 
lead us to an alternative representation of this projector. 

Before we state our first result, we recall the definition of a quasi-basis from [BDR1 ] : 
The finite 0 is a quasi-basis for the FSI space S if det G<& is non-zero a.e. on aS. We 
mention, [BDR1], that the existence of a quasi-basis for S is equivalent to the quasi-
regularity of S, and that every quasi-stable basis is also a quasi-basis but not vice versa. 
The cardinality of the quasi-basis is the length lenS of S and is shown in [BDR1] to 
depend only on S. 
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PROPOSITION 2.4.2. Let O be a finite quasi-basis for the (quasi-regular) FSI space 
S. Assume that E® is a Bessel set. Then, 

(2.4.3) C% = {c = ( c ^ 6 o G £2(E^) : suppc^ C ctf}. 

PROOF. Denoting the right hand side of equation (2.4.3) by Co, we will show that 
(i): Ccj^ C Q>, and (ii): ker % D Co = {0}. Since C ^ is the orthogonal complement of 
ker %), (2.4.3) would then follow from (i) and (ii) combined. 

The required (ii) was proved in [BDR1]: Corollary 3.11 there asserts that, since O is 
a quasi-basis, the map 

£i(E<t>) 9 c •—> %c = Yl ^ 

is 1-1 on Co. 
As for (i), given/ G S, supp/ lies in the 27r-periodic extension (crS)° of aS. Thus, if, 

for some c = (c^)^eo G ^2(^0), each suppc^ is disjoint of aS, we have 

%c = ZÎ ̂  = °-
</>ea> 

This means that the space 

K® := {c G ̂ 2(^0) • suppc^ n aS is a null-set, V</> G <£} 

lies in k e r ^ . Since Co is clearly the orthogonal complement of K<&, we obtain (i) by 
applying orthogonal complements to the inclusion K® C ker %>. • 

THEOREM 2.4.4. Let O be a finite generating set for the quasi-regular FSI space S. 
Then O is a quasi-stable generating set if and only if it is a quasi-basis and its corre­
sponding shifts E^form a frame for S. 

PROOF. If E<& is quasi-stable, then, by definition, it is a frame, and it is also a quasi-
basis by virtue of Proposition 3.18 of [BDR1]. 

Conversely, if O is a quasi-basis and E<& is a frame, then, for the quasi-stability of O, it 
remains to show that Cq^ has the required structure. This follows from Proposition 2.4.2 
and the assumption that O is a quasi-basis. • 

We mention that, given à quasi-regular FSI space S, there exist shift-invariant frames 
E® for S which are not quasi-stable (hence do not form a quasi-basis). For example, the 
length of a PSI space is 1, and hence any quasi-basis for it is formed by the shifts of 
single function <j>. At the same time, frames for PSI spaces that consist of the shifts of 
several functions exist, and, in fact, were discussed in detail in Section 2.1. 

The proof of the second implication in the above theorem could also be done through 
eigenvalue functions. The argument is as follows. Since £0 is a frame, Theorem 2.3.6 
implies that the eigenvalue function A(w) (A+(w)) is essentially bounded above (away 
from zero) on aS. However, since Go(w) is invertible a.e. on aS (since O is a quasi-
basis), it follows that X(w) = A+(w), a.e. on aS, where \(w) is the smallest eigenvalue 
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function. Thus A(w) is essentially bounded above and X(w) is bounded below on aS. By 
Corollary 3.30 of [BDR1], O is a quasi-stable generating set. 

In the rest of the subsection, we consider frame-dual frame representations of the 
orthogonal projector onto a quasi-regular FSI space S. The idea is to use the fact that, 
given a general frame X for H and a dual frame RX, the map 7 ^ 7 ^ is always the identity 
on H. Before we develop that direction further, we point out a relevant result. If X is a 
stable basis, then the condition 7 R ^ 7 ^ = IH is not only necessary but also sufficient for 
RXto be the dual of X. The result below shows that, in the shift-invariant setup, that 
sufficiency assertion extends to quasi-stable sets: 

COROLLARY 2.4.5. Let E® be a quasi-stable basis for the FSI space S, and let R be 
some map from Q> into S(0). IfE^® is a Bessel set, then ER$> is the dual frame ofE® if 
(and only if) TRCDIJ is the identity on S, that is, if 

(2.4.6) / = £ {f,Ea<j>)EaR<j>, Vf eS. 

PROOF. After extending R from O to E® by the rule REa(f) := £aR</>, we appeal to 
Proposition 1.3.7. That proposition validates the "only i f implication, and reduces the 
proof of the " i f implication to proving that C? = Cq^. Furthermore, Proposition 2.4.2 
asserts that Cq- is the same for all quasi-bases *F of S. 

Since O is already known to be a quasi-basis (by virtue of its quasi-stability, cf. The­
orem 2.4.4), it suffices to show that RO is also a quasi-basis. The proof of this statement 
goes as follows. Since RO C S, we have S(R<I>) C S. This, together with (2.4.6), shows 
that £R<D is fundamental in S, and hence S(RO) = S(Q>). Since O is a quasi-basis for S, 
its cardinality is the length, lenS, of S. Therefore, #(RO) < # 0 = lenS. However, as 
asserted by Theorem 3.12 of [BDR1], every generating set of a quasi-regular FSI space 
S that contains no more than len S elements must be a quasi-basis. • 

THEOREM 2.4.7. Assume that the shifts E® of the finite <&form a quasi-stable basis 
for the FSI space S. Then the Fourier transforms of the generators R<D of the dual quasi-
stable basis are given, on aS, by 

RÎ> = G^O. 

with Gj1 the (pointwise) inverse of G^. 

PROOF. Since R should invert ^CZJ, we compute first %><%£$>. Here, we use (2.1.2) 
(and the fact that %>T£ = E</><E<D %*!£) to conclude that 

(%%0) = ( £ & 4fW) = G^ô. 

Since G® is invertible on aS (and is zero elsewhere), the claim follows. • 
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By Proposition 1.3.8, ^ o ^ is the orthogonal projector (Ps ofL,2(Rd) on S. The last 
result thus allows us to write 

with (#< '̂)</>,(/>'GO — G^1. Instead, we could have solved the equation Go>R<I> = 6 by 
applying Cramer's rule. That attempt would have resulted in the form for 2^ that was 
discussed in [BDR1]. 

3. Infinitely generated SI spaces. 
3.1 General The study of FSI subspaces of L,2(Rd) is pertinent to Approximation The­
ory, where one attempts to approximate from small, simple spaces of approximants. In 
other areas (such as wavelets) the main goal is to find an attractive basis for the entire 
L2($ld) or to a "big" subspace of it. We therefore analyse in this section shift-invariant 
subspaces of L,2(Rd) generated by a countable set of generators. 

Our results on FSI spaces were stated in terms of the matrix spectrum of each of the 
"fiber" matrices G(w), w G Jd. We pause here momentarily in order to have a closer 
look at the potential practical value of the obtained characterizations. Assuming we hold 
in hand the Gramian matrix, the characterization of stability and of the Bessel property 
are of a more favorable nature than those of frames and tight frames: in many cases, the 
estimation of the largest eigenvalue A(w) and the smallest eigenvalue \{w) of G(w) can 
be done directly in terms of the entries of G(w) (as we did in Section 1.6). However, 
estimating the smallest non-zero eigenvalue A+(w), would, almost certainly, require the 
application of a costly iterative process. Consequently, the kind of characterization of 
FSI frames that was obtained in Theorem 2.3.6 seems to be practically less useful than 
its stability counterpart. This can also be viewed as follows: the invertibility of a certain 
operator is a more accessible property than its partial invertibility. 

A partial solution to the above problem is obtained with the addition of the comple­
mentary dual Gramian analysis that will be developed. Indeed, as was already explained 
in the introduction, the Gramian analysis is engaged with the decomposition of the oper­
ator ' 2^%, while in the dual case the operator l^T^ is the object. In two respects, there 
is a significant difference between these two operators: the stability of a Bessel set E® is 
equivalent to the invertibility of %£ %>, but is not so nicely reflected by l i ^ (this latter 
operator should be partially invertible and onto ^(EoX tw° hard-to-verify properties). 
On the other hand, a fundamental frame for L,2(Rd) is characterized nicely through %>(T£ 
(should be invertible), and is hard to be analysed via (T^%). In summary, Gramian analy­
sis is best suited for the study of s table bases, while dual Gramian analysis is particularly 
good for fundamental frames for L2(Rd), hence, indeed, the two approaches complement 
each other. 

In view of the above, one may wonder why we have not employed the dual Gramian 
analysis for the study of frames in FSI spaces. The answer for that is as follows: since an 
FSI space is always a proper subspace of Z^O^X a frame for it is never fundamental in 
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L,2(Rd). For the analysis of frames which are not fundamental, both Gramian analysis and 
dual Gramian analysis require the (hard-to-verify) partial invertibility of their associated 
operator, hence the switch from the finite-order Gramian G to infinite-order dual Gramian 
G provides no gain. 

Throughout the section, we use the notation IA for the spectrum of the operator A; 
namely, given a bounded linear endomorphism^ of a Hilbert space //, we denote 

IA := {À G C : the inverse of XI — A is undefined or unbounded}. 

To make a clear distinction between this notion and the spectrum oS(<&) of S(0), we will 
always refer to the former as the the operator spectrum. 

3.2 Gramian Analysis: SI spaces as the limit o/FSI spaces. Two different approaches 
for the study of SI spaces are employed here. The first, that we discuss in the present 
subsection, attempts to extend the results from Section 2 on FSI spaces to general SI 
spaces, by viewing the latter as a certain limit of the former. That approach leads to 
the desired characterizations of the Bessel property and of the stability property, but is 
short of characterizing frames. Therefore, we will develop, (in Section 3.4) an alternative 
method, where we inspect directly the operator spectrum of each of the "fibers" G(w). 
This latter direction is more powerful, alas, much more involved, whence our decision 
to present both approaches. 

The "going-to-the-limit" argument is almost self-suggestive, and is based on an el­
ementary observation. Let X be a countable subset of the Hilbert space H. Given any 
subset Y C X, let H y be the closure in H of the finite span of Y (that is, Y is fundamental 
in Hy). As before, the operator 7> is defined on £Q{Y), and, if bounded, is extended to 
the entire £i(Y) by continuity. Further, ^{Y) is isometrically embedded in li(X) in the 
usual way. 

For a setX C H, a chain 

• • • C X„-\ C l „ C Xn+\ C • • • 

that satisfies UnXn = X is called a filtration of X. 

THEOREM 3.2.1. Let Xbea countable fundamental set of the Hilbert space H. Sup­
pose that {Xn}n is a filtration ofX, i.e., Xn C Xn+\ for all « 6 N , and UnXn = X. Denote 
T := Tx, Tn := TXn, Hn := HXn. Then: 

(a) Xis a Bessel set if and only if the following condition holds "eachXn is a Bessel 
set, andsup„ ||r„|| < oo". In such a case, \\T\\ = sup„ ||r„|| = lim„_,oo ||rn||. 

(b) Assume Xis a Bessel set. Then, Xis a stable basis for H if and only if the following 
condition holds t(eachXn is a stable basis for Hn, and supn \\Tn~

l\\ < oo ". In such 
a case, \\T-l\\ = sup„ \\Tn-

l\\ = lim„_oo H^"1!!. 
(c) Assume Xis a Bessel set. Then, X is a frame for H if the following condition holds 

'for infinitely many n, Xn is a frame for Hn, and lim infw || Tn\~
l || < oo ". In such 

a case, \\T\~l\\ < limine IIT^I-1!!-

https://doi.org/10.4153/CJM-1995-056-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-056-1


FRAMES AND STABLE BASES 1079 

PROOF. The boundedness and invertibility of T (Tn) is determined by its action on 
the finitely supported sequences lo(X) (^o(Xi)) in ti(X) (hÇ^n))- Assertions (a) and (b) 
thus follow from the fact that, since {Xn}n is a filter ofX, l0(X) is the union of (£o(^«)) • 

(c): Without loss, we may assume that eachX„ is a frame for//„, and that (|| Tn * | _ 1 1 | = 
II^HI"1 ||)« converges (otherwise, we take a subsequence). Set A := lim | |7^|_ 11|_ 1 . Since 
T is bounded, A < oo. More importantly, by our assumptions here A > 0. Now, let 

/ G H. Given e > 0, we can find, for all sufficiently large k, an element^ G //* so 
that \\f-fk\\ < ^ 1 1 ^ , - i n - , ) . Then, \\rj]\ > \\r/k\\ - s > | | 7 ^ | | - e. Also, 

\\TJfk\\ > \\T*k\~
l\\~l\\fk\\ >\m\"1 H""111/11 -e. In summary, for every/ G Hand for all 

sufficiently large A:, 
l | 7 7 | | > | | 7 î | - I | | - 1 | l ^ | - 2 e . 

By taking A: —* oo, we obtain that ||7*/|| > A\\f\\ — 2e. Since e > 0 is arbitrary, the 
desired result follows. • 

Let S be a shift-invariant space generated by the countable set O. Let (Ow)„ be a filtra­
tion of O by finite sets. Then, (E„ := £o„)« is a filtration of E& that employs FSI sets. Let 
A„, Xn and A* be the eigenvalue functions of £w (c/ the paragraph after Proposition 2.3.3). 
Combining Theorem 2.3.6 and Theorem 3.2.1, we obtain the following result. 

COROLLARY 3.2.2. With O C L2(R
d) a countable set, with (<DW)W a filtration of® 

that is made of finite sets, and with A„, X„ and A* as above, we have 
(a) E<& is a Bessel set if and only if the function set {An}n is bounded in Loo(Td). 

Furthermore, \\%\\2 = sup„ H A , , ^ ^ . 
(b) Assume E$> is a Bessel set. Then it is also a stable basis for S if and only if 

the function set {1/A„}W is bounded in Loo(\d). Furthermore, \\T~X\\ — 
supw ||l/Aw | |Ioû(F). (Here, 1/0 := oo.; 

(c) Assume E<& is a Bessel set. Then it is also a frame if the following holds: 'for 
each n, the function 1 / A* is bounded on the spectrum an of the FSI space S(<bn), 
andlimmfn ||l/A;||Loo(aw) < oo. " 

The analysis of E® for a finite O was done by a spectral-like decomposition of %> 
into the simpler fiber operators. For a countable O, we can still derive from (a) and (b) 
of the last corollary similar decomposition results. 

We recall the functions A(w), A(w) and X+(w) that were defined in the introduction. 
Note that for a finite O these definitions coincide with the definitions of A(w), X(w) 
and A+(w) as eigenvalue functions. Given now a filtration (Ow)„ of O, Corollary 3.2.2 
implies that | |%||2 = lim^oo ||Aw||Ioo(T^. Moreover, it is straightforward to show that, 
monotonically, An(w) —» A(w), and X„(w) —> X(w) a.e. on Jd. This implies that A and A 
are measurable, and, further, since the convergence An —> A and A„ —> A is monotone, 

l l A I L ( T ' ) = ^ l|A«lko(T«)> 

and 

H1/A|L^) = JHn||l/A„|Loo(T.). 

Thus we obtain the following extension of (a) and (b) of Theorem 2.3.6: 
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THEOREM 3.2.3. Let Q>bea countable subset ofL2(Rd) with Gramian matrix G. Let 
A(W) := \\G(w)\\ and\{w) := HG^r1!!"1 . Then: 

(a) E® is a Bessel set if and only if A is essentially bounded. Moreover, we have 

\\%\\2 = l |A|L«F, 
(b) Suppose E® is a Bessel set. Then E® is a stable basis if and only if\/\ is essen­

tially bounded. Moreover, we have | | 1 i - 1 | | 2 = || l/A||Loo(Tj). 

Theorem 3.2.3 provides characterizations of the Bessel property and the stability prop­
erty that, though were derived with the aid of the FSI results, are stated explicitly in 
terms of the fiber operators G(w), w G Td. Such a characterization is valid for frames, 
but, cannot be derived with the aid of the filtration argument. Therefore, we develop in 
Section 3.4 a direct approach that decompose G without the use of a filter. Since the 
proofs there are lengthy and technical, we postpone that development until after the dual 
Gramian analysis is presented. 

3.3 Dual Gramian analysis. The starting point of the Gramian analysis is the fact that 
both G and its fibers [G(wfj can be viewed as densely defined operator on Lf and 
t,i(Q>\ respectively. An analogous statement about the dual Gramian is less obvious, and 
we need surmount here new obstacles. 

The first (though, minor) difficulty that one should note is the well-definedness of the 
entries of the dual Gramian: while the Gramian entries [</>,i/>], <£» V> £ ^ a r e m L\(Jd) 
hence well-defined a.e. regardless of the choice of the set O, the same cannot be said 
about the entries 

£ & • + <*)#+/3), a,(3e2irZd 

of the dual Gramian G. We start our discussion by settling that question. 
Assume that E<$> is a Bessel set. Then, since E^eo | | ^7 l | 2 = ||<2J/1|2 < oo, and since 

the Fourier transform is an isometry on Li(^d\ we conclude from (2.1.2) that 

£IIMII^)<~, WeL2(R
d). 

Choosing now / as the inverse Fourier transform of the characteristic function of the 

cube a + [—7r, 7r]d, a G 27rZ ,̂ we compute that [/", ̂ >] = $(• — a)\c, and therefore, 

\\\f^]\\l2^) = U2\\L^C)-

Thus, we have proved that the sum 

j:\k-+<*)\2 

is L\ (T^)-convergent, hence is also convergentpointwise a.e. Since that sum is the (a, a)-
entry of the dual Gramian, we conclude the following: 
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PROPOSITION 3.3.1. Let <bbea countable subset ofL2(Rd), and assume that E<& is a 
Bessel set. Then, for each a,/3 G 27rZ ,̂ the (a, f5)-entry 

of the dual Gramian matrix converges absolutely a.e. to an element ofL\(Jd). 

PROOF. For a = (3, the assertion was proved in the paragraph preceding the propo­
sition. The extension to a general pair (a, /3) follows from Schwartz' inequality. • 

Since the Bessel property of the set E$> is the weakest property of that set of interest 
to us here, we may assume hereafter that, for all a, f3 G 27rZ ,̂ the sum that defines the 
(a, /?)-entry 

Ga,f3 

of the dual Gramian converges absolutely a.e. 
Another, more substantial, difficulty occurs upon attempting to prove that dual 

Gramian operator can be evaluated, i.e., that, under "reasonable assumptions" 

(Gf)(w) = G(wY\w, for a.e. w G Jd. 

Here, as before f\w := f\w+2-Kid- Recall that the dual Gramian operator G is defined as 
G '.= JipJq), i.e., 

If EQ is a Bessel set, the above sum must converge in L2(R
d), for every/ G L2(R

d). 
However, interpreting the above sum in the non-Bessel case is a non-obvious task. On 
the other hand, the connection between G and its evaluation G(w) is important even when 
E® is not Bessel, since, otherwise, we will not be able to use the fibers {G(w)}wejd for 
the characterization of the Bessel property. For this reason, we view, to this end, G as a 
quadratic form rather than as an operator, i.e., make use of the connection 

(&f J) = E \\(%*M2 = I E \lfM2\, ,¥, • 

Assuming / is compactly supported, we may use the a.e. finiteness of 
£<£<E<D |<W* + &)<!>(' + P)\ to sum by parts as follows: 

E I \f, 01W = E E / ( " + <*)f{w + PWW + /WW + «) 
4>GO <j>e<S> a,f3e2irld 

= £ / ( w + aV(w + p)J2 ^ + PM™ + a) 

= (^U)*G(w/|vv. 

Therefore, we conclude that 
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LEMMA 3.3.2. Let Q)bea countable subset ofL2(W
i). 

(a) If, for some cr,/3G 27rZJ, the sum X^eo |0(- + ot)<j)(' + (3)\ is infinite on a set of 
positive measure, then E® is not a Bessel set. 

(b) If the above sum is finite a.e.for every a, (3 G 2irZd, then, for every band-limited 

f> 
i r a i 2 = (2*)-* Jld(fUyG(Wy\wdw. 

The dual Gramian analysis can now be developed along lines parallel to the devel­
opment of the Gramian analysis. For that, we set, for a G 27rZ ,̂ Sa to be the subspace 
of L2(R

d) consisting of those fonctions whose Fourier transform is supported (up to a 
null-set) in a + [—7r,7r]̂ . Sa is a translation-invariant space. In fact, it is also a PSI 
space, and is generated by x«v> with \ a the support fonction of a + [—7r, ir]d (cf. Re­
sult 2.2.9). We consider the restriction %a, a G Td oi% to the space Sa, and observe 
that, for w £ Jd a n d / G Sa, the quadratic form f\w*G(w)f\w, w G Jd, is reduced to 
f(w + a)Ga?a(wy(w + a) = Ga,a(w)\f(w + a) |2 , and therefore 

ll^c/H2 = (2*)^||G«,«|fr + a)|2||, l(F). 

Since also l l /H/^) = (27r)~'/||[/,(- + aO|2||z,,(Trf) (since/ G Sa), the norm bounds on the 
restricted operator rQa and its inverse are the same as those of the map 

Li(Id) 3 r i—>Ga,ar. 

Thus, in complete analogy with Theorem 2.2.7 (cfi the argument used in the proof of 
Theorem 2.2.14) we have the following. 

PROPOSITION 3.3.3. Let <D C L2(R
d) be countable (orfinite), and assume that the 

sum E^eo \(f>\2 converges a.e. Then, for every a G 27rZ^; 
(a) The restrictedoperator,CT£ a is bounded if and only if the function Ga,a is essen­

tially bounded. Furthermore, 

\\%,a\\ = ll^alL^T^)-

(b) Assume T& a is bounded. Then it is also invertible if and only if the function 
1 / Ga,a is essentially bounded. Further, 

II^-'II2 = 111/̂ 11 -̂). 
(c) Assume T^ a is bounded. Then it is also partially invertible if and only if 1 / Gaa 

is essentially bounded on its support âa C Jd. Further, 

II^J-'ll^lll/Ga.alk^). 

The dual Gramian analogue of the FSI results (i.e., Theorem 2.3.6) is obtained by 
restricting *2J to a larger space of band-limited fonctions. Here, we take Z to be any 
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finite subset of 2ifLd, and define Q.% := Z + [—7r, n]d. We then consider the restriction 
fT^z of 1J to the space 

S z : = { / e Z 2 ( ^ ) : s u p p / c Q z } . 

Given g defined on Q^, and w G TJ, we denote by 

gz(w) 

the vector (g(w + z) : z G 2J). Also, 

stands for the finite-order matrix obtained from the dual Gramian Go by deleting all rows 
and columns not in Z. From Lemma 3.3.2, 

| |T^ | | 2 = (2ir)-d\fzGzfz\\Ll(V), V/ G Sz. 

Then, following the arguments in Section 2.3 (that is, establishing the analogous result 
of Proposition 2.3.3 and invoking then Lemma 2.3.5), we obtain the following analogue 
of Theorem 2.3.6: 

PROPOSITION 3.3.4. Let <D C L2(R
d) be countable and assume that E ^ o |< |̂2 is 

finite a.e. Let Z be a finite subset of2irZd, and let ^ zbe the restriction ofT^ to Sg,. 
Let Az, A £ and X+

z be the eigenvalue functions defined as A, A and A+ of Section 2.3, 
but with respect to the dual Gramian 0%. Then: 

(a) T£ z is bounded if and only if A% is essentially bounded on Jd. Furthermore, 

\\%,zW2 = llAzlll00(T'')-
(b) Assume %£ z is bounded. Then it is also invertible if and only ifl/Xz ^ essen­

tially bounded on Jd. Furthermore, U ^ ^ H 2 = W^/^zllL^cfy 
(c) Assume %£ z is bounded. Then it is also partially invertible if and only ifX+

z is es­
sentially bounded on âz := {w Eld : Gz(w) ^ 0}. Furthermore, H^^l - 1 ! ! 2 = 
ll i / \+ II 
\\[/Az\\Loo(àZ> 

To extend Proposition 3.3.4 from spaces of the form S% to the entire L2(Rd)9 we use 
some filtration 

ZoCZnCZzC---

of 2ifLd. It induces a corresponding filtration of Rd: 

Q 0 C Q i C Q 2 C - - - , 

where Clj \= Z>j + [—7r, 7r]̂ . In this way we obtain the increasing space sequence 

SZo C SZn C SZz C ' ' • 

whose union S is dense in Z^O^)- Denoting by T* the restriction of %£ to 5 ^ , we con­
clude that the boundedness and invertibility of 'TJ are completely determined by its re­
striction to S (which is the space of all band-limited functions). Therefore, we have the 
following analog of Theorem 3.2.3: 
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THEOREM 3.3.5. Let O be a countable subset ofL2(R
d). Then: 

(a) If the sum E</>eo |0|2 diverges on some positive measure set, E® is not a Bess el 
set. 

(b) Assume that E^eo \<t>\2 is finite a.e., and let G be the dual Gramian ofE®. Further, 
let A and À be defined by 

A(w) := ||G(w)||, A(w) := l/HGCw)-11|, w G Jd. 

Then: 

(bl) E$> is Besselset if and only if A is essentially bounded. Furthermore, 

\\%\\2 = I|A|L (T,, 

(b2) Assume that E® is a Bessel set. Then E® is a fundamental frame if and 

only if the following condition holds: 'for a.e. w, G(w) is boundedly in-

vertible, and the hence-well-defined function 1/À is essentially bound­

ed". Furthermore, H^*-1!!2 = IIV^Lc»^)-

Theorem 3.3.5 leads to an interesting conclusion concerning tight frames. Tight 
frames E® are characterized by the equality ||*Zi>||||1i>|_1|| = 1. The theorem shows 
that the latter condition is equivalent to the equality 

k{w) — X(w) — const, for a.e. w G Jd. 

The equality A(w) = \(w) says that the operator spectrum of G(w) consists of a sin­
gle point, which can happen if and only if G(w) is a scalar operator. This leads to the 
following: 

COROLLARY 3.3.6. Let $>bea countable subset ofL2(Rd). Then E$> is a fundamental 
tight frame for LiiW*) if and only if there exists a constant const such that, for every 
a, a' G 2ix~Ld, and for almost every w G Jd, 

(3.3.7) 5Z 4>(w + (*)<i>(w + a') — const8a^. 

PROOF. If the sum in (3.3.7) does not converge absolutely for some a, a' and on a 
set of positive measure, then, by Theorem 3.3.5, E® is not a Bessel set. Otherwise, the 
condition in (3.3.7) implies, Theorem 3.3.5, that E<& is a Bessel set. Also, that condition 
implies that E® is fundamental: if not, there exists/ G L2(Rd) so that <7J/ = 0, hence 
Gf — 0, implying thus that G{w)f\w = 0, a.e., in contradiction to the assumed structure 
of G(w) in (3.3.7). 

Therefore, when proving the required equivalence, we may assume, without loss, that 
E<x> is a fundamental Bessel set. The claim then follows from the arguments preceding 
the present corollary. , • 
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If X is a tight frame, then, up to a scalar multiple, it forms its own dual. The above 
result is thus a special case of a general relation between a shift-invariant fundamental 
frame and its dual (cf. Corollary 4.2). 

3.4 Analysis offrantes which are not fundamental in Li(^d). Theorems 3.2.3 and 3.3.5 
provide us with the desired characterizations of the Bessel property (twice), the stability 
property, and the property of being a fundamental frame for L,2(Rd). It fails to provide 
similar characterizations for frames of a shift-invariant proper subspace ofL,2(Rd) (unless 
that frame happens to be a stable basis). The present subsection is aimed at settling this 
remaining problem. After a brief introduction, we state the main theorem that will be 
proved here. The proof details then follow. 

Let B be a bounded operator from a Hilbert space H into a Hilbert space H\ and let 
A := B*B. Let TA be the operator spectrum of A. We define 

X+(A) := inf{/x : /x G TA \ 0}. 

The operator^ is partially invertible if and only if X+(A) > 0, and the norm of the partial 
inverse is l/X+(A) (the "only i f implication is quite clear. The argument for the " i f 
statement can be found in the proof of the implication (b) =» (a) of Theorem 3.4.1). 

Given a Bessel set E& with Gramian G and dual Gramian G, our two objectives are 
to connect (a): between the function 

X+(w):=X+(G(w)), w<Eld, 

and the number X+(G); (b): between the function 

X+(w):=X+(Ô(w)), weld, 

and the number A+(G). Since A+(G) = A+(G) = H^l - 1 ! ! - 1 (with oo"1 := 0), we will 
obtain in this way two characterizations of frames. In fact, we will prove the following: 

THEOREM 3.4.1. Let <£> be a countable subset ofL2(R
d), and assume that E$> is a 

Bessel set. Let crO := supp G = suppG C Jd. Then the following conditions are equiv­
alent: 

(a) E<$> is a frame, and the norm of the partial inverse of%) is K < oo. 

(b) The function X+ is bounded away from zero on crO, and || 1/A+||/,OO((T<D) = K2. 
(c) The function A+ is bounded away from zero on crO, and || 1 /A+||z/00(acD) = K2> 

The equivalence of (b) and (c) is quite straightforward. (Since E® is Bessel, then, 
by Theorems 3.2.3 and 3.3.5, both G(w) and G(w) are bounded for a.e. w. Since G(w) 
is the product J^(w)J<&(w), and G(w) is the product of the same matrices in reversed 
order, Z(G(w)) and E(G(W)) can differ only by the single point {0}. Thus, A+ and A+ 

are equal pointwise.) We will prove here the equivalence of (a) and (b). The proof of the 
implication (b) => (a) is based on the following lemma. 
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LEMMA3.4.2. Let E® be a Bessel set, andletreLf, G := G#. 77ze«, 
(^) r G ker G //a«d o«/y ifr(w) G ker G(w)for almost every w. 

(b) T G Cg := (kerG)1 if and only ifr(w) G Cw := (kerG(w)) , for a.e. w. 

PROOF. The first assertion is obvious, since (Gr)(w) is G(w}r(w). As for (b), assume 
first that T(W) G C^ for a.e. w. Then, for an arbitrary r' G ker G, 

(r>r')z* = jld{
T(w^T'^^mdw = °> 

since, by (a), T'(W) G kerG(w) = Cw
x, a.e. Therefore,r G (kerG)1 = C^. 

Conversely, assume that r G CQ. If r G ran G, then r = Gro, for some TO, hence, for 
a.e. w (precisely, whenever G(w) is bounded, andro(w) G ^(^X), T(W) = G(w)ro(w) G 
ran G(w) C Cw. If r ^ ran G, it can still be approximated in Lf by a sequence (rw)„ C 
ran G (since ran G is dense in CG)- By switching to a subsequence, if necessary, we may 
assume that, for almost every w, (rn(wfj converges in ^ ( ^ to T(W). Combining this 
with the argument in the beginning of the paragraph, we conclude that, for almost every 
w, (T„(W)) is in Cw and converges in the ^ (^ -norm to T(W). Since Cw is certainly 
closed, we obtained that r(w) G Cw, a.e. • 

PROOF OF THE IMPLICATION (b) => (a) IN THEOREM 3.4.1. We will prove that, 
assuming (b), E® is a frame, and | | % | _ 1 1 | < || 1 /A+||Loo(a(D). 

Assume that 1 /A+ is essentially bounded on crO, and let T £ CG \ 0. By Lemma 3.4.2, 
T(W) G CW, a.e. on TK We claim that, a.e. w, if G(w) ^ 0, it is partially invertible, i.e., 
bounded below on Cw. Indeed, the restriction G(w)\ of G(w) to Cw is (always) injective. 
Furthermore, since X+(w) > 0, the operator spectrum of G(w) is disjoint from the non­
empty interval (0, A+(w)). Therefore, the operator spectrum of G(w)| is also disjoint from 
(O, A+(w)). Since G(w)\ is non-negative and injective, 0 cannot be an isolated point of 
its spectrum, hence it must be invertible. The argument also shows that ||G(w)|_11| = 

1 /AV). 
This means that, for a.e. w, if r(w) ^ 0, then 

(3.4.3) | |G(wMw)| |W ) > l i ^ F Î ] [ > | | 1 / A + | k ( V 

ForrGlf, 

hence also 

hence (3.4.3) implies that 

\L* ~ /Tjr'V"7lli(<D)> L 11̂ ) 

IML* 
\\GA\L* > I l /^+ |Uoo(crO) 

Therefore, G is partially invertible, and hence, Proposition 1.4.11, E® is a frame. Also, 
H^l"1!!2 = ||G|_1|| < ||l/A+||Ioû(a(I>), with the inequality by the proof above, and the 
equality by Proposition 1.4.11. • 
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PROOF OF THE IMPLICATION (a) => (b) IN THEOREM 3.4.1. Since we will need, in 
the next section, a closely related result, we will prove herein the following more general 
statement: 

THEOREM 3.4.4. Let G be a non-negative self-adjoint bounded endomorphism of 
iff. Let (G(w)J be a collection of non-negative self-adjoint bounded endomorphisms 
ofl2(^>\ that satisfy, for every T G Lf, andfora.e. w G Td, (Gr)(w) = G(wjr(w). Let 
A(w) := ||G(w)||, and assume that A G L^ÇT*). Let \+(w) := inf{/z G S(G(w)) \ 0}. 
Let Q be the set Q := {w e Jd : G(w) ^0}.IfG is partially invertible, then l/A+ is 
essentially bounded on Q, and 

\\l/\+\\Lua)<\\G\-l\\. 

The fact that Theorem 3.4.4 is a generalization of the required implication (a) => (b) 
is clear. To this end, we prove Theorem 3.4.4. 

In the proof, we use the following lemma, whose proof is postponed until after the 
proof of Theorem 3.4.4 is done. 

LEMMA 3.4.5. Under the conditions of Theorem 3.4.4, there exists a countable dense 
subset D of^{^>\ and a null-set Z C Q, such that, for every c G D, for every w1 £ Q.\Z, 
and every e > 0, the set 

Kcy,6 :={weQ: \\(G(w) - (K^))4tm < e\\c\\tm) 

has a positive measure. 

PROOF OF THEOREM 3.4.4. Let D and Z be the sets specified in the above lemma. 

Recall also the notations CQ := (ker G)1, Cw := (ker G(w)) . 

Choose any W ££l\Z, and let [i > 0 be any point in the operator spectrum E(G(M/)) . 
We will construct an element r G Co, for which 

(3.4.6) HO||i?<(l+£)MlML», 

with 6 positive and arbitrarily close to 0. This would yield that ||G|~' || > 1 j\i, implying 
thus that \+(w') > 0, and that 

IIGI-'H^I/AV). 

Since Z is a null-set, we will then conclude that 

IICr'U^Ul/Al^n), 

which is the desired result. 
The actual construction of r in (3.4.6) is as follows: we will find O ^ r G Lf, supported 

in A x O, where A C CÏ is some set of positive measure, such that (i): r(w) G Cw, for 
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every w G T ,̂ and (ii): || G(w)r(w) ||£2(o) < ( 1 +<$)MIlr(w)lk2(<i>)- Condition (i) would imply 
(as in Lemma 3.4.2) that r G Ce, while condition (ii) is needed for the conclusion that 
\\GT\\L* < (1 +5)/i||r||Lo {cf. the two displays after (3.4.3)). 

In general, for the sake of (i) above, it might be hard to know whether a particular 
sequence lies in Cw. The most efficient way is, probably, to select elements in ran G(w) 
(and use the fact that ran G{w) is dense in Cw, by virtue of the self-adjointness of G(w)). 
Indeed, our element r will be defined as 

( . f G(w)c, w G A, 
T(W) := { « 

[0, otherwise, 

with c some fixed sequence in ^(Œ)-
Here are the details: since \i G I (G(H>')) , G{W') — \il has no bounded inverse, and so 

we can find an element c G ti(<&\ such that ||c|| ̂ 2(o) = 1 /// , and 

(3.4.7) | | G ( w > - H k ( 0 ) < £ , 

with e > 0 arbitrarily small. It follows then that 

(3.4.8) | |G(H/)c|k («,)<l+e. 

Since G(wf) is bounded andD is dense in £2(^)9 we may assume that spanc H D ^ I J . 
Therefore, by Lemma 3.4.5, there exists a subset^ of Q with positive measure, such that 

|(G(w) - GW))c\tim < el ii, Vw e A. 

We define T G Lf by 
T ( w ) . = ( G(w)c, w e ^ , 

(0, otherwise. 

Thus, condition (i) (/.e., that r{w) G Cw, all w) is satisfied. Also, the uniform boundedness 
of the operators {G{w)}weJd easily implies that T £ Lf. Thus, to complete the proof, it 
remains to show that, for almost all w G Td, 

\\G(w}r(w)\U2m < (1 + ^ | | T ( W ) | | , 2 ( 0 ) . 

This last claim is trivial for w G T^ \ A, so we may assume that w G A. We first choose 
w — w'. For that specific choice, we get 
(3.4.9) 

||G(vt/)r(w')IU2(<t>) = l|G(w/)G(w')c||^(<j)) 

Denoting 

C := WMlui.V) < °°> 

we obtain from (3.4.9), (3.4.8), and (3.4.7) that 

\\G(w')r(w')\\(2(<t>)<»(l+E) + Ce. 

https://doi.org/10.4153/CJM-1995-056-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-056-1


FRAMES AND STABLE BASES 1089 

On the other hand, by (3.4.7), 

(3.4.10) 1 - \\r(w%m = n\\c\\im - ||G(n/)c||/2(o) < e. 

Altogether, we obtained for that case the inequality 

\\G(w'y(w')\\hm < ^^^.\\r(w')\\(2m. 

By choosing e sufficiently small (and adjusting A if necessary to that e\ we obtain that 

(3.4.11) \\G(w'y{w')\\hm < (1 +è)ii\\r{W')\\tm. 

To extend that to a general w G ^ , w e show that both r(w) — T(W), and G(wfyr(wf) — 
G{w)rr(w) can be made arbitrarily small (in norm), and then invoke (3.4.11). First, by the 
choice of A, 

(3.4.12) ||T(M,) - T(w')\\em = \\(G(w) - G(w'))c\\em < S/LI. 

Therefore, j|7-(w)||̂ 2t<j>) > ||T(VI/)||<2(CD) — e/n > 1 — e — e//x, the second inequality by 
(3.4.10). This verifies that T(W) — T{W) is, indeed, small, and also means that, on A, T(W) 
is being kept away from zero, a consequence that will be required shortly. Second, to 
estimate G(w)r(w) — G(w')r(w'), we write 

(3.4.13) G(w)2 - G{w')2 = G(H>)(G(W) - G(w')) + (G(w) - G(w'j)G(w'). 

Now, since | (G(W) — G(w'))c| < e/ix, we have that 

|G(w)(G(vv) - G{w'))c\tm < Ce In. 

Also, due to (3.4.7) and the fact that |(G(w) - G{W))c\ < e/ii, 

|(G(w) - G(W'))G(w')c\\e2m < |M(G(w) - G(W'))c\\e2m 

+ \\(G(w) - G{W'J)(LIC - G(W')c)\\e2m < e + 2Ce. 

So, we conclude from (3.4.13) that 

||G(w)r(w) - G(w'jr(w')\\hm = \\G(w)2c - G(u/)2c|k(*) < (C/LX + 2C+ l)e. 

Therefore, by (3.4.11) and (3.4.12), 

\\G(Wy(w)\\eim < \\G(w'y(w')\\em + (Clix + 2C+ l)e 

< (l+6)Li\\T(w')\\e2m + (C/n + 2C+ l)e 

<(l+6)»(\\T(w)\\hm + elii) + (C/n + 2C+l)e 

= (1 + S)n\\r(w)\\tim + (CI ix + 2C+2 + S)s. 
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Since we have already proved that ||T(W)||^2(O) is kept away from zero, we can modify e 
(hence A) to guarantee that, say, 

\\G{wY{w)\\i2m < (1 +2^)M | |T(W)|U2(O), 

and the desired result then follows. • 
Finally we prove Lemma 3.4.5. For that we first recall the definition of measurable 

maps: 

DEFINITION 3.4.14. Let M be a measure space, and B a topological space. A map 
/ : M —» B is measurable provided that/_1(Q) is a measurable set in M for every open 
set Q in B. 

Clearly, iff: M —» B is measurable, thenf~x(U) is measurable for every Borel set 
[ / C B . 

PROPOSITION 3.4.15. Let M be a positive measure space and B be a separable 
normed space. If the mapf: M —» B is measurable, then, there exists a null-set Z C M, 
such that, for every w' G M \ Z and for arbitrary e > 0, there is a positive-measure set 
A := Awf^£ C M, such that for arbitrary w G A, 

\\f(w) - / (W' ) | |B < e. 

PROOF. All norms in the proof below are B-norms. 
LetXbe a countable dense subset of B, and let " < " be some well-ordering ofX. Given 

n G N, let 
Ox,n := {u G B : ||w—*|| < l / / i} . 

Then (0Xi„)xex is an open covering of B, and, defining 

uXtn:=oxA ( u o J , xex, 

we obtain a partition of B into Borel sets. That partition induces a partition 

of M into measurable sets. We then define a map sn: M —» B (as a matter of fact, rans„ C 
X) as follows: 

s«(w) = X>X4c„(w). 

Then, s„ converges t o / uniformly. Indeed, we have that \\f(w) — sn(w)\\ < \jn for all 
« G N , w G M . 

Let Z be a null-set that contains all those Ax/l (x G X, n G N) whose measure is zero. 
Let w' G M \ Z. For arbitrary e, pick n with 2/« < e. Since w' $ Z, w7 is in some 
positive-measured^. For w G Ax^ 

\\f(w') -f(w)\\ < \\f(W) - sn(w')\\ + \\sn(w') - ^(w)|| + ||^(w) -f(w)\\ < e. m 
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PROOF OF LEMMA 3.4.5. Let D be a dense countable subset of f2(
cl>). Given c G D, 

let Bc be the space of all (bounded) linear operators from span{c} into Iji®)-
Since we know that G(w), w G Q, is a bounded linear endomorphism of ^(^X then, 

certainly, G(w)|span{c} is bounded for every w G Q. This defines a.e. the map 

f:Q-^Bc:wy-^ G(w)\span{c}. 

We need to prove that this map is measurable. 
Given L G Bc and w GQ, one observes that 

\\G(W)-L\\BC = ^ ; L 4 ^ . 
\\c\\hm 

Further, since G is bounded, Gc G Lf, and in particular, its entries are measurable func­
tions (for the sake of applying G to c, c should be interpreted as the element r G Lf 
with constant entries r^ = c ,̂). Also, since ||G(w)c — Z,c||£2(o) is finite, the series that de­
fines ||G(w)c — Zc||̂ 2(0)) converges (unconditionally). Combining that with the previous 
observation, viz., that the entries of Gc — Lc are measurable, we conclude that the map 
w I—» ||G(w)c — Zc||^2(o) is measurable, hence so is our/. 

An application of Proposition 3.4.15 with respect to the map/, yields the existence 
of a null-set Zc C O, such that for every e > 0 and every w ' E Q \ ZC, the set 

{w:\\G(w)-G(w')\\Bc}<£ 

has a positive measure. Defining Z := \Jc£D Zc, we obtain that (a): Z is a null-set, (b) the 
claim of the lemma holds for this Z. • 

4. Dual frames. Let O be a countable (or finite) subset of Z^H^), and assume that 
E® is a frame. Let R: O —> L2(Rd) be some map, and assume that ER<t> is a Bessel set. 
Let Jo and JRO be the pre-Gramian of O and RO respectively. Our objective in this brief 
section is to study the property "£RO is the dual frame of E<$>" via the fiber matrices J®{w) 
and ./RO(W). 

Our initial tool is Corollary 1.3.9. Part (b) of that corollary says that, if ER$> is the dual 
of E$>, then 2i>'Z|£D is an orthogonal projector. On the Fourier domain, this operator is 
represented by J<&J^Q> whose matrix representation is 

The sum above that defines the entries of J^J\^ can be shown to converge absolutely for 
every a, a' G 2irZd, and for almost every w eld (Schwartz' inequality followed by an 
application of Proposition 3.3.1). Corollary 1.3.9 also implies that the operator T&TR® 

is an orthogonal projector. Here, the Fourier transform analogue is J J J R O , whose matrix 
representation is 

The entries of this latter matrix are certainly well-defined (a.e.). 
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LEMMA 4.1. With O and RO as above, 
(a) <2ir2^o is an orthogonal projector if and only if, for almost every w G Td, 

J(D(>V)J^0(W) is an orthogonal projector (on l2(2irZd)). 
(b) *2J1R<D is an orthogonal projector if and only if for almost every w G Jd, 

JJ(W)JR(D(W) is an orthogonal projector (on £2^) = ^ (RO) / 

PROOF. The arguments for proving (a) and (b) are essentially the same, hence we 
prove only (b). 

Since the Fourier transformation is an isometry, we may replace in the proof the op­
erator 'TQTR® by its Fourier transform analogue J^JR®. Also, for the sake of notational 
simplicity, we set G := J^JR®, though, of course, this G is the Gramian of neither O nor 
RO. 

First, one checks that G is non-negative self-adjoint if and only if almost every G(w) 
is so. 

Assume that G(w) is an orthogonal projector for a.e. w. In particular, each G(w) is self-
adjoint, hence, by the above, G is self-adjoint, too. To show that G is an orthogonal pro­
jector, we need to prove that Gr = r for every r G (ker G)x. Let, therefore, r G (ker G)1. 
By a proof identical to that of Lemma 3.4.2, for a.e. w G TJ, T(W) G (ker G(wfj . Since 
G(w) is assumed to be an orthogonal projector (a.e.), we conclude that G(w}r(w) = T(W) 
(a.e.), implying that GT—T. This proves that G is an orthogonal projector, as needed. 

Now assume that G is an orthogonal projector. We want to invoke here Theorem 3.4.4, 
hence need to verify its assumptions. The basic relation (Gr)(w) = G(w)rr(w) is straight­
forward. The fact that each G(w) is non-negative self-adjoint follows from the fact that 
G is assumed to be so. Finally, analogously to the derivation of (a) in Theorem 3.2.3, one 
proves the relation ||G|| = ||A||Loo(T^, with A(w) := ||G(w)||. Since ||G|| = 1 here, we 
conclude that, for a.e. w G Td, Z(G(wj) C [0,1]. 

Now, we invoke Theorem 3.4.4. Since G is partially invertible (being an orthogonal 
projector), and ||G|_11| = 1, that theorem tells us that X+(w) > 1, for almost all w that 
satisfy G(w) ^ 0. This implies that, a.e., X(G(w)) C {0} U [1, oo). Combining that with 
the result of the previous paragraph, we conclude that, a.e., Z(G(W)) C {0,1}. Each 
such G(w) is also known to be self-adjoint, hence must be an orthogonal projector. • 

In case E® is fundamental in L2(R
d), JoJ^® is the identity operator, and this imme­

diately implies that almost every operator J®(w)J^^(w) is the identity. Thus, we get the 
following: 

COROLLARY 4.2. Let E® be a frame and let ER® be its dual Then: 
(a) For every a, a' G 2ixJ.d, and for almost every w G Td. 

]T 4>(w + a)R^(w + a')= J^ ^>(w + <x)<i>(w + <*')• 

(b) If E^ is fundamental in L2(Rd), then, for every a, a' G 2iŒd and for almost every 
w G Jd,  
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PROOF. The first claim follows from the self-adjointness of the J^(w)J^^(w) ma­
trices. The second claim follows from Lemma 4.1 and also directly from the remarks 
preceding the present corollary. • 

Corollary 1.3.9 provides us also with a sufficient condition for /sR(p to be the dual 
frame of the frame E$>. In the shift-invariant case, that corollary, combined with 
Lemma 4.1, leads to the following conclusion: 

COROLLARY 4.3. Let H be a closed subspace ofL2(R
d), and let E<& be a frame for 

H. Let ER<j) be a Bessel set which is fundamental in H. Then ER® is the dual ofE® if 
and only if for almost every w E Jd each of the operators JR$>(W)JQ>(W), J^(W)JR^(W), 

JR®(W)J^(W), and J^(w)J^0(w) is an orthogonal projector 

We have stated Corollary 4.3 primarily for proving our following final result. That 
result, though might look very special, will play a crucial role in the development of the 
duality principle of Weyl-Heisenberg frames in [RS1 ]. 

COROLLARY 4.4. Let E$> be a frame for H c L2(R
d), with a dual ER$>. Let £V be a 

frame for H' C L2(R
d), and let R': *F —> L2(R

d). Assume that, for almost every w E Jd, 

(4. 5) Mw) = J^(w), </RO(w) = <4vp(w). 

(That is, for some indexing® = (<l>a)aç2*zd> and^ = O/^X^TTZ^ <t>a(yv+P) = V^O + <*)> 
etc.) Then ER^ is the dual frame ofE^. 

PROOF. Since ER$> is a frame, the equality JR®(W) — J^,y(w) easily implies (by 
Theorems 3.2.3, 3.3.5, and 3.4.1) that̂ R/vp is a frame, as well. 

Since ER® is the dual frame of E®, then, by Corollary 4.3, for almost every w E Jd 

each of the operators J^iwjJ^w), J®(W)JR®(W\ JR^(W)J^(WX and JOC^VROC^)
 i s a n 

orthogonal projector. By virtue of (4.5), we get that for almost every w Eld each of the 
operators ̂ /^(w)J^(w), ^ ( W ^ / R / ^ W ) , JR>^(W)J^(W), and^(w]4,V}/(w) is an orthogonal 
projector. Therefore, Corollary 4.3 would imply that Ew is a frame dual to Ey as soon 
as we show that ER>^ is a fundamental set of//'. 

Let H" be the closure of the algebraic span of ER^. If H" ^ // ', then, since Ey is 
fundamental in H\ there exists, say, some/ E L2(R

d) such that 1$f — 0, but TK%f ^ 0. 
(Otherwise, there exists/ such that T^f ^ 0, but ' / R V / = 0, and the argument below 
can be adapted to this case, as well). By Lemma 1.4.8, this implies that, while 

A>iw¥\w = 0, a.e. w, 

jR>y(w)f\w ^ 0, on a set of positive measure. 

On the other hand, since ER® is the dual frame of E®, Proposition 1.3.7 implies that 
ker*Zi) == ker'/Ro, and hence that, for a.e. w, kerJ^(w) = ker J<$>(w) — ker JR$>{W) = 
ker J ,̂vp(w), and we have reached a contradiction. • 

ACKNOWLEDGMENT. We are indebted to Asher Ben-Artzi for numerous valuable 
discussions that helped us in the organization and presentation of the material in Sec­
tion 3. 

https://doi.org/10.4153/CJM-1995-056-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-056-1


1094 A. RON AND Z. SHEN 

REFERENCES 

[BDRl] C. de Boor, R. DeVore and A. Ron, The structure of finitely generated shift-invariant spaces in L,2(Rd), 
J. Funct. Anal. 119(1994), 37-78. 

[BDR2] , Approximation from shift-invariant subspaces ofLi^), Trans. Amer. Math. Soc. 341(1994), 
787-806 

[BL] J. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter design, 
preprint, 1994 

[BW] John J. Benedetto and David F. Walnut, Gabor frames for I? and related spaces, In: Wavelets: Mathemat­
ics and Applications, (eds. J. Benedetto and M. Frazier), CRC Press, Boca Raton, Florida, 1994, 97-162. 

[C] C. K. Chui, An introduction to wavelets, Academic Press, Boston, 1992. 
[Dl] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. In­

form. Theory 36(1990), 961-1005. 
[D2] , Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadel­

phia, 1992. 
[DS] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 

72(1952), 147-158. 
[HW] C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31(1989), 62S-666. 
[JM] R. Q. Jia and C. A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: 

Powers of two, In: Curves and Surfaces, (eds. P. J. Laurent, A. Le Mëhautë, and L. L. Schumaker), Academic 
Press, New York, 1990, 209-246. 

[JS] R. Q. Jia and Z. Shen, Multiresolution and wavelets, Proc. Edinburgh Math. Soc, to appear. 
[RSI] A. Ron and Z. Shen, Weyl-Heisenberg frames and stable bases, CMS TSR 95-03, University of 

Wisconsin-Madison, October, 1994, Ftp site f t p . c s . w i s e . edu, file Approx/wh.ps. 
[RS2] , Affine frames and stable bases, manuscript, (1995). 
[Ru] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. 

Computer Science Department 

University of Wisconsin-Madison 
1210 West Dayton Street 

Madison, Wisconsin 53706 
U.S.A. 

e-mail: amos@cs.wisc.edu 

Department of Mathematics 
National University of Singapore 
10 Kent Ridge Crescent 
Singapore 0511 
e-mail: matzuows@leonis.nus.sg 

https://doi.org/10.4153/CJM-1995-056-1 Published online by Cambridge University Press

mailto:amos@cs.wisc.edu
mailto:matzuows@leonis.nus.sg
https://doi.org/10.4153/CJM-1995-056-1

