The glycaemic index: importance of dietary fibre and other food properties

Inger Björck* and Helena Liljeberg Elmståhl
Department of Applied Nutrition and Food Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden

An increasing body of evidence suggests that a low-glycaemic-index (GI) diet has a therapeutic as well as a preventive potential in relation to the insulin resistance syndrome. The implementation of a low-GI diet, however, will require an extended list of low-GI foods to be available on the market. The tailoring of low-GI bread products offers a particular challenge due to their generally high GI and abundance in the diet. Low-GI bread products can be tailored by, for example, enclosure of cereal kernels, sourdough fermentation and/or addition of organic acids, or use of cereal genotypes with elevated contents of amylose or β-glucans. Low-GI cereal foods appear to vary in effect on ‘second-meal’ glucose tolerance in healthy subjects. In addition to the slow-release properties of such foods, the content of dietary fibre appears to play a role. The low glycaemia to starch in a pasta breakfast (GI 54) promoted a higher glucose tolerance and lowered triacylglycerol levels at a standardized lunch ingested 4 h later, compared with a white-wheat-bread breakfast (GI 100). The metabolic benefits of the low GI properties per se have been demonstrated also in the longer term. Thus, a reduction in dietary GI improved glucose and lipid metabolism and normalized fibrinolytic activity in type 2 diabetics, while maintaining a similar amount and composition of dietary fibre. However, the higher dietary fibre content frequently associated with low-GI foods may add to the metabolic merits of a low-GI diet. Consequently, a low-GI barley meal rich in dietary fibre (GI 53) improved glucose tolerance from evening meal to breakfast, whereas an evening meal with pasta had no effect (GI 54). The exchange of common high-GI bread for low-GI high-fibre bread, as the only dietary modification, improved insulin economy in women at risk of type 2 diabetes. These results are in accordance with epidemiological evidence of a reduced risk of type 2 diabetes with a low-GI diet rich in cereal fibre. It is concluded that low-GI cereal foods developed should preferably be rich in dietary fibre.

Glycaemic response: Product tailoring: Diabetes mellitus: Dietary fibre

Diseases related to insulin resistance are common causes of death in Western societies, and the current increase in type 2 diabetes is being referred to as an epidemic. During the last 10 years an important number of studies have identified a low-glycaemic-index (GI) diet as beneficial in relation to the insulin resistance syndrome. Several semi-long-term dietary interventions are available for healthy subjects and for subjects with metabolic disease. With a few exceptions, these studies have shown that a low-GI diet not only improves certain metabolic consequences of insulin resistance, but also reduces insulin resistance per se (Del Prato et al. 1994). In addition to improvements in glucose and lipid metabolism (Jenkins et al. 1987; Brand et al. 1991; Järvi et al. 1999) there are indications of improvements in the fibrinolytic activity (Järvi et al. 1999), suggesting a beneficial role in diabetes and cardiovascular disease. Based on this evidence, the Food and Agriculture Organization/World Health Organization (1998) expert consultation on dietary carbohydrates strongly advocates the relevance of the GI concept, in particular for subjects with impaired glucose tolerance.

In relation to mechanisms for the metabolic advantages of low-GI foods, these may derive from the slow-release properties in the upper gastrointestinal tract, and in particular to the lowered insulin demand (Jenkins et al. 1990). Another possible mechanism relates to their generally higher content of indigestible carbohydrates, for example, dietary fibre and resistant starch (RS), which increases the fermentative activity in the colon. Consequently, propionic acid has been implicated as a moderator of hepatic glucose (Venter et al. 1990) and lipid metabolism (Wolever et al. 1989).

The therapeutic value of a low-GI diet in diabetes has been demonstrated in both type 1 and type 2 patients (Brand et al. 1987; Brand et al. 1991; Järvi et al. 1999) and suggests a beneficial role in conditions associated with insulin resistance such as the insulin resistance syndrome.

Abbreviations: GI, glycaemic index; RS, resistant starch.
*Corresponding author: Professor Inger Björck, fax +46 46 222 4532, email inger.bjorck@inl.lth.se

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 21 Feb 2019 at 11:36:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1079/PNS2002239
Miller, 1994). Dietary interventions with low-GI foods thus appear to lower the glycated haemoglobin fraction HbA1c and the incidence of hypoglycaemic episodes in juvenile (Gilbertsson et al. 2001) and maturity-onset diabetes (Giacco et al. 2000). However, in some of the semi-long-term metabolic studies performed the low-GI regimens are characterised by a higher dietary fibre content (Giacco et al. 2000), making it difficult to assign the beneficial effects entirely to the low GI properties per se. With the purpose of addressing this issue, an intervention study was performed in type 2 diabetics where differences in GI between the high- and low-GI diets were achieved in the absence of differences in nutrient composition (Järvi et al. 1999). The GI differences between test periods were obtained by modifying the structural features of the foods; thus maintaining approximately identical amount and composition of dietary fibre in the low- and high-GI dietary periods. Apart from the facilitated control of blood glucose and lowered LDL-cholesterol, a dramatic lowering of plasminogen activator inhibitor 1 levels was observed during the low-GI period. These data suggest that the GI characteristics of the diet per se are indeed important, and that the low-GI period normalized a risk factor for thrombosis, in the absence of a change in dietary fibre intake. It should be pointed out, however, that even in the absence of a difference in dietary fibre low-GI foods frequently contain a higher amount of RS (Björck et al. 2000), which may add to the metabolic advantages of low-GI diets.

As for the preventive potential, prospective studies indicate that a low-GI diet, and/or a diet rich in whole-grain products reduce the risk of type 2 diabetes (Salmerón et al. 1997a,b). There are also data to suggest a negative correlation between serum HDL-cholesterol and dietary GI (Frost et al. 1999). In fact, in the study by Frost et al. (1999), dietary GI was a stronger predictor of serum HDL-cholesterol than dietary fat. Moreover, there is evidence that a low-GI diet may reduce the risk of myocardial infarction in women (Liu et al. 2000).

The findings of Salmerón et al. (1997a,b) raise the question whether dietary fibre, or at least cereal fibre, could be a more important preventive factor than the GI characteristics, and the most commonly consumed whole-grain products, such as flour-based bread and breakfast cereals, have high, rather than low, GI (Foster-Powell et al. 2002).

Accumulating data thus substantiate the therapeutic and preventive efficacy of low-GI foods in general in relation to the metabolic syndrome, and that cereal fibre may have a preventive effect. However, the implementation of the GI concept in dietary advice will require a much wider range of low-GI products. In particular, there is a shortage of low-GI cereal foods. On the basis of the experimental and epidemiological evidence referred to earlier, the development of low-GI high-fibre cereal products seems particularly relevant from a metabolic perspective.

Tailoring of low-glycaemic-index cereal foods with focus on bread products

In most European countries, bread constitutes a major source of dietary carbohydrates. Consequently, there is a need for new technologies that can be used to modulate the GI of bread, with the focus on wholegrain bread. One obvious alternative would be to encourage the use of more or less intact cereal kernels and kernel-based breads are usually characterised by a low GI (Liljeberg & Björck, 1994). The mechanism for this effect is an obstructed amyolysis, due to botanical encapsulation of starch and/or a limited extent of starch swelling. However, the challenge for the food industry will be to find technologies that can be used to lower the GI of meal-based bread, since the difference in GI properties between wholemeal bread from common cereals and white bread is usually marginal (Jenkins et al. 1986; Liljeberg et al. 1992).

Potential of barley genotypes

In a study by Åkerberg et al. (1998) wholegrain barley flours with different amylase contents were subjected to conventional baking (45 min, 200°C), or low-temperature long-duration baking conditions (20 h, 120°C), i.e. pumpernickel-baking conditions. An increased holding temperature with a wet temperature of 100°C, as during low-temperature long-duration baking, promotes growth of crystalline amylase, a phenomenon known as annealing (Eerlingen et al. 1993). Using high-amylase barley flour and these baking conditions it was possible to reduce the GI predicted from the in vitro rate of starch hydrolysis and the measured GI by approximately 30 % (Table 1). It was also found that baking at annealing conditions increased RS content to a high level (10 % on total starch basis). The use of high-amylase barley thus makes it possible to produce a low-GI bread from flour-based ingredients. Moreover, such bread products can be produced with elevated contents of RS, with potential beneficial effects on colonic health (Scheppach et al. 1992).

The development of whole-grain low-GI foods could also involve cereal genotypes with high levels of viscous fibre. One example of such a genotype is Prowashonupana barley, which contains as much as 190 g β-glucans/kg. Such flour was included at different levels in mixtures with white wheat and baked into flat bread (E Rossi, H Elmståhl, H Larsson and I Björck, unpublished results). The levels were 0 (i.e. pure wheat), 350, 500 and 750 g Prowashonupana barley/kg. In parallel with the measurement of GI in healthy subjects, the fluidity index of the corresponding in vitro enzymic digesta was measured using a very simple Bostwick consistometer. The digesta were prepared by incubating the products with enzymes in simulated in vivo conditions (Granfeldt et al. 1992). The lower the fluidity index, the higher the viscosity. The results showed that the inclusion of Prowashonupana flour lowered the fluidity index of the digesta, and as a consequence lowered GI compared with the flat bread with no added Prowashonupana flour by 30, 40 and 50 % at the 350, 500 and 750 g/kg levels of inclusion, respectively. By including Prowashonupana flour in flat bread it was thus possible to substantially lower GI compared with white bread or a product containing 500 g common barley/kg in a mixture with white wheat. However, the commercial dehulling and desprouting procedure must be carefully controlled to maintain the viscosity of the β-glucans, and with some
commercial batches, inclusion of Prowashonupana at a level of 500 g/kg failed to affect either the fluidity or the glycaemic properties of the bread. Consequently, the amount of β-glucan added to a product may be a poor predictor of the glycaemic effect associated with a processed food product. However, the study shows that the GI of barley bread containing variable amounts of β-glucans can be predicted with good accuracy from measurement of fluidity in an in vitro system. It also demonstrates a potential for cereal genotypes rich in β-glucans.

Sourdough baking and addition of organic acids

Another process that could be used to lower the GI of wholegrain bread is sourdough fermentation. In a study in which white bread was used as a vehicle for organic acids, white bread with vinegar was given in a breakfast meal to healthy subjects, using white bread with no acid as a control (Liljeberg & Björck, 1998). The amount of acetic acid added was selected to mimic the level reached during sourdough fermentation, and the presence of acetic acid delayed the postprandial metabolic responses (GI 64, insulin index 65). A lowered rate of glucose delivery to the blood may be secondary to a lowered rate of gastric emptying. Paracetamol is used as a marker of gastric emptying, as it is not absorbed in the stomach but instead rapidly absorbed in the upper duodenum. The appearance of paracetamol in the blood was slower following ingestion of the bread with acetic acid, suggesting that this acid delays gastric emptying rate (Liljeberg & Björck, 1998). When added to wholegrain barley bread lactic acid also appears to lower glycaemia in healthy subjects, when tested at a level similar to that during heat treatment lowered the predicted GI, but only in the presence of lactic acid (Liljeberg et al. 2002). A decrease in pH per se had no impact. Furthermore, the addition of lactic acid after heat treatment was not effective, suggesting that lactic acid does not act as a classical enzyme inhibitor. Homogenisation of the mixture removed the enzyme barrier, and it is possible that lactic acid induces interactions between starch and gluten, leading to reduced starch availability.

Table 1. Effect of barley genotype and baking conditions on resistant starch (RS) content, in vitro starch hydrolysis rate (hydrolysis index; HI) and predicted and determined glycaemic index (GI) (from Granfeldt et al. 1992; Åkerberg et al. 1998)

(Values are means with their standard errors of the means)

<table>
<thead>
<tr>
<th>Amylose content of wholemeal bread* (%)</th>
<th>RS* (%)</th>
<th>Predicted GI</th>
<th>Determined GI</th>
<th>Predicted GI</th>
<th>Determined GI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>Waxy† (BZ-489-30)</td>
<td>3</td>
<td>0·6ab</td>
<td>112·3a</td>
<td>105·0</td>
<td>–</td>
</tr>
<tr>
<td>Ordinary† (8775)</td>
<td>23</td>
<td>2·4c</td>
<td>109·3a</td>
<td>102·4</td>
<td>–</td>
</tr>
<tr>
<td>Ordinary† (Glacier)</td>
<td>33</td>
<td>1·6d</td>
<td>95·1ab</td>
<td>90·2</td>
<td>–</td>
</tr>
<tr>
<td>High-amylose† (Glacier)</td>
<td>44</td>
<td>3·5e</td>
<td>92·8ab</td>
<td>88·2</td>
<td>99·4a</td>
</tr>
</tbody>
</table>

Note: Mean values with unlike superscript letters were significantly different (P<0·05).

*Content on a total starch basis.
†Wholemeal barley–white wheat (70:30, w/w).

Fig. 1. Serum paracetamol responses in healthy subjects following a breakfast meal with wholegrain barley bread alone (●) or with the addition of lactic acid (△) or sodium propionate (▲). Mean values with unlike superscript letters were significantly different (P<0·05). (From Liljeberg & Björck, 1996.)
Thus, sourdough fermentation or the addition of organic acids represent other methods that can be used to lower the GI of bread products.

Importance of glycaemic index properties v. dietary fibre content

Second-meal effects

Which types of low-GI cereals are preferable, and could there be differences in metabolic advantages between low-GI products? One mechanism that could account for the metabolic benefits of a low-GI diet might be secondary to the so-called ‘second-meal phenomenon’. The finding that a low-GI meal improves glucose tolerance to the following meal was reported first by Jenkins et al. (1980). The phenomenon can be seen from breakfast to lunch (Jenkins et al. 1982), but also from the evening meal to breakfast (Wolever et al. 1988). In a study by Liljeberg et al. (1999) the effects of three different cereal breakfasts on glucose tolerance at a standardized lunch ingested 4 h later was measured in healthy subjects (Table 2). The test breakfasts had GI in the lower range (from 52 to 64) and consisted of pasta, a fibre-rich mixed barley meal or white bread with vinegar. A breakfast consisting of a carbohydrate-equivalent amount of white bread was used as reference. In the case of the spaghetti and the mixed barley-based breakfast, the lunch produced only 60 or 70% of the corresponding glycaemic response after the reference breakfast. The pasta breakfast also significantly lowered the insulin response at lunch (P<0.05). In contrast, no significant effect was noted at lunch in the case of the breakfast with white bread + vinegar. The net increment in glycaemia when commencing the lunch in the case of the pasta and the barley breakfasts was an indicator of a prolonged absorption. This finding might suggest that in addition to low GI properties, as calculated by the 90 (Liljeberg & Björck, 1998) or 120 min (Wolever et al. 1991) glucose areas under the curves, the presence of a late glycaemic response may promote a 4 h second-meal effect. It seems that even though the dietary fibre and RS contents are low (Liljeberg et al. 1999), the pasta breakfast is capable of lowering glucose tolerance at lunch (Liljeberg et al. 1999; Liljeberg & Björck, 2000). The pasta breakfast also lowered triacylglycerol levels after the standardized lunch (Liljeberg & Björck, 2000). Similar

| Table 2. Incremental blood glucose and insulin areas under the curve (AUC) in healthy human subjects after a standardized lunch meal following various cereal breakfasts |
|----------------------------------|------------------|------------------|
| **Breakfast** | **GI** | **Standardized lunch incremental (AUC) (%)** |
| White bread | 100 | 100 |
| Spaghetti | 52 | 64* |
| Barley, rich in amylose and β-glucans | 60 | 72* |
| White bread + vinegar | 64 | 79 NS |

[GI, glycaemic index; II, insulin index.]

Mean values were significantly different from those for subjects receiving white bread as breakfast. *P<0.05.

Metabolic potential of low-glycaemic-index fibre-rich bread products in women at risk of type 2 diabetes

Another important issue in relation to product tailoring and optimisation of dietary GI relates to the magnitude of the dietary change necessary to achieve the required metabolic effect. To address this question, the semi-long-term potential of modulating only the GI of the bread products was studied in women at risk of type 2 diabetes (H Liljeberg Elmståhl, A Frid, L Groop and I Björk, unpublished results). The bread products were commercial high-GI products or two types of modulated low-GI bread, one light and one dark. Both low-GI bread products were based on intact rye kernels and baked using sourdough fermentation. The
lighter bread contained fewer intact kernels, and instead had added oat β-glucans. Both the light and the dark bread had similar GI of about 55. The commonly-consumed high-GI bread products were thus replaced by experimental bread products with lower GI and a higher content of indigestible carbohydrates. The test subjects were women (about 31 years of age) with a history of gestational diabetes. These women showed a genetic disposition for type 2 diabetes during pregnancy, with a high risk of developing diabetes later in life. An oral glucose tolerance test was performed before inclusion in the study. Subjects diagnosed with diabetes were excluded, and only those with impaired glucose tolerance were recruited. Seven of the eight women participants completed the study. The bread was included in the breakfast, lunch and late-evening meals, and the amount of carbohydrates provided during the two test periods was standardized for each individual. A crossover design was used, with 3-week intervention periods and a 3-week washout period. The glucose and insulin responses to an intravenous glucose challenge were measured before and after each intervention period. No significant difference was reported with the high-GI bread. In contrast, all women displayed a decrease in insulin response over the period with the low-GI bread. The mean decrease was substantial (about 40 %). No differences were noted in the corresponding blood glucose responses to the intravenous glucose challenge, and the results indicated that replacing the usual high-GI bread with the modified low-GI high-fibre bread improved insulin economy in women at risk of type 2 diabetes. It remains to be established whether these low-GI bread products may actually postpone development of type 2 diabetes. These experimental data are, however, in line with epidemiological evidence of a lowered risk for type 2 diabetes with a low-GI diet rich in cereal fibre (Salmerón et al. 1997a,b).

References

