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AND PSEUDO-IMAGING SYSTEMS, AND ITS QUANTIFICATION
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ABSTRACT

Over the last two decades, an extensive body of knowledge has been
devéloped concerning the effects of atmospheric turbulence on optical prop-
agation. Much of this is directly relevant to astronomical imaging, and
with proper interpretation, to the type of pseudo-imagery that is of concern
to us at this 'conference. This paper will provide an overview of this matter,
hopefully with sufficient insight developed that the reader will be able to
quickly estimate the nature and magnitude of the turbulence effects to be ex-
pected in a pseudo-imagery process. The paper starts with a review of tur-
bulence effects on conventional imagery, reviewing the ''nondimensional
nature of the turbulence statistics, presenting the local measure of the opti-
cal strength of turbulence, CNQ , and developing the resolution scale, r,

It presents a statistical view of the nature of the wavefront distortion geom-
etry, indicating the dominance of the random wavefront tilt component. The
MTEF for conventional imagery and for speckle in‘terfefometry (Labeyrie) is
presented with comments concerning their relationship. Following that, the
foundation of the speckle imagery concept (Knox-Thompson) is presented.
Results are then set forth for the allowable spectral bandwidth in speckle
techniques, as well as results defining the allowable field-of-view size
(isoplanatism) and the allowable exposure time for speckle techniques.
Taken all together, these results provide a basis for estimating most of the
significant effects of atmospheric turbulence in speckle interferometry and

speckle imagery.

https://doi.org/10.1017/50252921100118639 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100118639

42

1. INTRODUCTION

The effects of atmospheric turbulence on large aperture and large
baseline imaging and pseudo imaging systems is the underlying fact respon-
sible for this meeting, and as such, needs no general explanatory comments
here. However, the circumvention of these effects, which is our real con-
cern here, calls for a sound and to some extent, quantitative understanding
of the processes involved. It is the objective of this paper to provide just
this type of understanding. As such we shall, for the most part, avoid ana-
lytic development, presenting only those bits that will provide a quick
glimpse of what is involved, and generally shall simply present results and
their interpretations. We shall be particularly interested in presenting

results which lead to quantitative estimates of what is to be expected.

We shall start with a general description of the nature of atmospheric
turbulence, of its optical effects, and of the measure of the optical strength
of turbulence, C_? , and its distribution in the atmosphere. We shall then
turn to an examination of the statistics of wavefront distortion, which will
lead us to introduce the general wavefront distortion scale length, r, .
From this, we shall then be able to move on to a discussion of the shape of
the distorted wavefront and a statistical description of these shapes, noting

along the way the significant role played by tilt-like wavefront distortion.

With these results in hand, we will then move on to a presentation of
the effect of turbulence on the optical transfer function of conventional
imagery for long and for short exposures, and for a two aperture, (i.e., a
Michelson stellar interferometer), imaging system. This will then lead
naturally into our presentation of the L.abeyrie speckle interferometry con-
cept and an examination of the optical transfer function to be associated with
that technique. In conjunction with this, we will also consider the Knox-

Thompson algorithim, presenting an explanation of the underlaying principles,
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Consideration of these two speckle based pseudo imagery processes
introduces the problem of estimating the useful spectral bandwidth, the
allowable field-of-view, and the proper exposure time. We will provide an
estimate of the first of these starting from wavefront distortion statistics.
To treat the latter two matters we shall present some results developed for
adaptive optics and indicate how they can be applied to the speckle based

processes.

Throughout this presentation we shall try to provide the formulas
necessary for a quantitative evaluation. Where possible, we shall present

sample quantitative results.

2. ATMOSPHERIC TURBULENCE STATISTICS

Turbulence is basically a random irregularity in what is otherwise a
smooth, uniform, large scale flow. The Navier-Stokes equation, which
governs fluid flow, is nonlinear. As a consequence, the low spatial fre-
quency components of a flow pattern, which are an almost unavoidable
feature of the process that puts energy into the flow, will give rise to higher
spatial frequency components, and these, inturn, give rise to yet higher

spatial frequency components — and '"'so proceed ad infinitum' , almost. In

this manner the energy associated with the turbulence is continuously
"injected'' at low spatial frequencies and continuously cascades through the
spatial frequency domain toward higher and higher spatial frequencies. Vis-
cous dissipation, which is more severe the higher the spatial frequency,
eventually ""consumes'' all of this turbulent flow energy, limiting the cascade
to this energy to some highest possible spatial frequency. Thus the turbu-
lence can be characterized by a lower spatial frequency limit, at which the
energy is introduced, and a high.spatial frequency limit, beyond which
because of viscous dissipation there is no energy available to support the

turbulent flow. It is customary to refer to the wavelength, Lg associated
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with this lower spatial frequency limit, 2m/L, , as the outer scale of
turbulence, and to call the wavelength, £, , that goes with the upper spatial

frequency limit, 2m/4, , the inner scale of turbulence.

Taking note of the fact that the rate of viscous dissipation rises rapi-
dly with increasing spatial frequency, it was reasoned by Kolmogorov?
that essentially all of the viscous dissipation occurred at the highest spatial
frequencies. He argued that in the broad range of spatial frequencies bet-

ween ZTT/LO and 2n/4 which he called the inertial subrange, viscous

o H
dissipation, (and the viscosity coefficient of the fluid), played no significant
part in determining the turbulent flow pattern. He was then able to show,

from dimensional considerations alone, that the mean square difference of

flow velocity at two points in space, T, and 'i"g , will vary as the two-

1
thirds power of the distance between the two points. He referred to this
mean square difference of velocities as the velocity structure function,

D, (3, , B) = (|V(F) - V()2 . (1)

were V(T) is the flow velocity vector at position T , and the angle brackets
denote an ensemble average. His dimensional analysis allowed him to write

for the velocity structure function

D, (F, , r;) = C,2 |3 -T,|¥° (2)

-

where C,? is introduced as a constant of proportionality and referred to as
the velocity structure constant. Perhaps the most significant aspect of this
result, beyond the two-thirds power dependence, per se, is that there

apparently is no characteristic length in the inertial subrange!
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; The Kolmogorov dimensional analysis provides us with virtually all
of our relevant knowledge of the spatial distribution statistics of turbulence,
as far as work in optical propagation is concerned. But this theory refers
to the statistics of velocity fluctuations in turbulence — and velocity fluctu-
at-ions, per se, do not effect optical propagation! In fact, it is possible to
have strong mechanical, (i.e., velocity fluctuation), turbulence with essen-
tiaily no optical effects. What couples atmospheric turbulence to optical
propagation is temperature (and thus density and refractive-index) fluctua -
tions induced by the turbulent mixing of "parcels'" of warmer air from

lower/higher altitudes with '""parcels'' of cooler air from higher/lower

altitudes.

To couple the statistics of this random temperature mixing to the
Kolmogorov statistics of turbulent velocity, the concept of a '"conserved
passive additive'' was introduced by Tatarski® He argued that, although
it was not strictly correct to consider the vertical gradient of mean atmos-
pheric temperature as a passive additive, (since the vertical gradient can,
itself, give rise to convective turbulence cells), it was a reasonable approx-
imation to consider the variations in temperature to be a conserved passive
additive. Accordingly, we would expect the difference of the local atmos-
pheric temperature at two points to have a mean square value that was
proportional to the two-thirds power of the distance between the two points.

Thus Tatarski reasoned that the temperature structure functions,
D, (%, , Ty) = ([T(@) - T(¥,)1%) , (3)
could be written as

) = G2 |? -7, (4)
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where C.? 1is a constant of proportionality called the temperature struc-
ture constant. Experimental evidence® bears out the general validity of
Tatarski's argument concerning the treatment of the atmospheric temper-
ature gradient as a conserved passive additive. The mean square difference
of atmospheric temperature measured at two points is observed to vary as

the two-thirds power of the separation.

The magnitude of the temperature structure constant, CTQ , is pro-
portional to the local vertical temperature gradient, and thus C.? can be
almost zero despite the fact that the local wind velocity turbulence is quite
strong — and conversely, the temperature structure constant can be rela-=
tively large under conditions where the wind velocity turbulence is weak.

The magnitude of C.® and of C,? are not significantly coupled.

Since atmospheric density, and thus the refractive-index, are inver-
sely proportional to atmospheric temperature, it follows from Eq. (4),
together with the fact that we are dealing with small perturbations in the

absolute temperature, that the mean square difference of refractive-index

at two points ?1 and '1"2 , called the refractive-index structure function,
-
D,(r, , T,) = ([n() - n(2,)]2) , (5)

where n(?) is the refractive-index at position T , can be written as

T,) = C2 |F, -T,|¥° . (6)

Here Cy? 1is a constant of proportionality called the refractive-index
structure constant. It is our basic measure of the optical strength of
atmospheric turbulence. It can, of course, vary from place to place and

with time, though generally not too rapidly*. In Fig. 1 we show a sample

% It is of interest to note that for microwave propagation not only tempera-
ture but also water vapor play a role in determining (continued on next page)
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of the temporal variation of the path-average refractive-index structure

constant as measured by Wang, et al * over a relatively short path near

the ground.
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Figure 1. Time Dependence of the Refractive-Index Structure

Constant Near the Ground.

Results represent the average value of C, 2 over a 500 m path,
(at a height of 1.5 m), and over a 5 minute interval. (From Ting-i
Wang, G. R. Ochs, and S. F. Clifford*.)

the refractive-index. However, the water vapor relative density, like the
temperature varies with altitude and so is mixed as a conserved passive
additive just like temperature. It follows from this this that Eq. (6) remains
valid for microwave as well as optical (and infrared) propagation. The
value of the refractive-index structure constant, C, 2, will, however, vary
with the wavelength of the electromagnetic radiation.
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In Fig. 2 we show what we believe is currently our b‘e st estimate of
the nominal value of the refractive-index structure constant as a function of
altitude. This data was assembled by Greenwood® . This data for the ver-
tical distribution of C_? is merely our current best estimate. We are by
no means certain that these are accurate estimates of the mean value of
C,? at each altitude and we have no basis for estimating such things as the
variability of C® with time or with geographic position either synoptically
or locally. A significant amount of data gathering remains to be done in this
area, Our certainty of the value of even the mean value of C ? at altitudes
above 10 km is particularly weak. Nonetheless, Eq. (6) and data such as
that in Fig. 2 provide the basis for the existing analysis of the effects of

atmospheric turbulence on optical propagation.
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Figure 2. Vertical Distribution of the Refractive-Index Structure

Constant.

(From data assembled by D. Greenwood.?)
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Before we leave this subject of the turbulence statistics to take up
the matter of propagation effects it is worth remarking on certain facts.
First, we recall that Eq. (2) and thus Eq. (6) are both only valid within the

inertial subrange, i.e., when
-—d
Ly < |7, - T,|< Ly | (7)

For pairs of points, T, and ?2 , closer together than {, we expect very

1
little variation in refractive-index, while for pairs of points farther apart
than L, we have no well founded idea of what the mean square difference

of refractive-index is. The size of the inner scale turbulence, £, , depends
on such things as the local kinematic viscosity and the rate at which energy
is delivered to the turbulent process. Though it varies with locality and
with altitude, it is generally estimated that £, is of the order of one or two
centimeters or less. Near the ground the outer scale of turbulence, L, ,

may be only a few meters in size but at higher altitudes there is evidence

that it can be hundreds of meters in size, or even larger.

Second, it is worth recalling that within the inertial subrange there is
no natural scale size characterizing the turbulence! This, in effect, pre-
vents us from developing any analytically more tractable expression for the
refractive-index structure function, D, (?1 - ?2) , than Eq. (6). While
characteristic scale sizes for such things as wavefront distortion can be
developed these depend on such other things as the wavelength and the prop-
agation path length and so, although they are length scales, they are not

characteristic of the turbulence, per se .

Third, it is worth remarking on the two-thirds power law. This
power law arises as a direct consequence of Kolmogorov's dimensional
analysis. Though this particular power law seems a bit unusual it should

be noted that a three-thirds power law would represent nothing more than
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a random walk. Apparently the turbulent mixing process results in a bit
more correlation than a random walk., The presence of the two-thirds
power law governing the refractive-index variations will make itself felt in
the propagation results where we shall see other fractional powers such as
five-thirds, seven-sixths, eleven-sixths, etc. All of these would have much

more ordinary values if the two-thirds power in Eq. (6) were a unity power.

Fourth and finally, it is worth remarking on the use of the structure
function rather than a correlation function to define the turbulence statistics
and the refractive-index statistics. This is directly related to the fact that
we know nothing about the very low spatial frequencies in the turbulence.
With our inability to place a bound on the contribution of these low spatial
frequencies to the random velocity or refractive-index variations we have,
in effect, allowed the variance to have an infinite value. Fortunately, this
infinite standard deviation has no physically observable implications in our
propagation calculations and in that sense, the infinite variances can be
ignored. From a mathematical point of view the use of the structure func-
tion, (rather than the use of a correlation function), has the explicit effect
of allowing us to ignore this infinite standard deviation. The value of the
structure function does not go to infinity except for infimnitely lJarge separations

-t -t
between r, and r, , a case of no concern to us here.

1 2

3. WAVEFRONT DISTORTION STATISTICS

Wavefront distortion statistics are generally measured in terms of the
mutual coherence function, a quantity calculated directly from the electro-
magnetic field function, per se, or else in terms of the log-amplitude,
phase, and wave structure functions — quantities calculated from the com-
plex phase shift denoting the wavefront's intensity and phase variations
induced by turbulence. We shall restrict our attention to these latter

quantities, and work with the statistics of the complex phase. We may
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define the complex phase shift, §(T), at position T on a plane nominally

parallel to the wavefront, by the equation
u® = w@expliy (B , (8)

where u, (¥) is the wavefront that would exist at T if there were no tur-
bulence in the propagation path, and u(r) is the randomly distorted wave-
front that actually exists because of the random turbulence pattern in the

propagation path.

The complex phase, ¥(T) , can be separated into real and imaginary
parts corresponding to the ordinary phase shift, ¢(¥) , and the log-

amplitude, £(¥) . We can write,
V(T) = ¢(B) + iL(®) . (9)

Theoretical arguments? confirmed by experimental evidence®7 indicates
that both the ordinary phase shift and the log-amplitude are Gaussian random
variables. The statistical quantities of interest to us are the second
moments as measured by the structure function, namely the log-amplitude

structure function,
Df,(?l ‘?g) = <[f:(-1‘.1)-£(?2)]2> ’ (10)

the ordinary phase structure function,

-p -

Dy(r, -T,) = ([¢(F) -¢(F,)1%)y (11)

and the wave structure function

Dy (%, - Tp) = (|v(F) - ¥(F)]®y . | (12)
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It can be shown that the wave structure function is just the sum of the

log-amplitude and the ordinary phase structure functions, i.e.,
Dw(?l - T,) = Dy(® -_1"2)+D¢("r'1-'i"2) . (13)

In analysis of the performance of various imaging and pseudo imaging con-
cepts it is found that so long as the process does not involve fourth moments
of the wavefunction, then the wave structure function provides a complete
definition of the relevant statistics of turbulence effects. This is the quan-
tity of basic interest to us. We find that in most all propagation scenarios
of interest the log-amplitude structure function is small compared to the
phase structure function. Moreover, we find that if we calculate the phase
structure function, D¢ , ignoring those diffraction/interferences effects
which give rise to intensity variations the result is identical to the wave
structure function, D‘l’ . Accordingly, it is generally quite accurate to
ignore intensity variations in analysis of wavefront distortion sensitive
systems, and use the ordinary phase structure function calculated in accord-
ance with this suppression of intensity effects, as though it completely
‘defined the wavefront distortion statistics. This not only greatly simplifies

the system analysis, but also insures the easy interpretability of the results.

Accordingly, we shall proceed in this way in all of the following.

For propagation from a point source at range, R , to an aperture plane
. . . . vy -t .
on which we define a two-dimensional position vector, r , it can be shown?8

that the phase structure function is
R .
Dy(?) = {2.91 k® [ds C,2 (s/R)5/3} r&/3 (14)-
o .

Here the variable of integration, s , runs along the propagation path taking
the value 0 at the point source and the value R at the aperture plane. The

refractive-index structure constant, C,? , can vary along the propagation
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path. The quantity k denotes the optical wave-number, 2n/A In the case

of an infinite plane wave source Eq. (14) is replaced?® by the expressioﬁ,
R
Dg(F) = {2.91k?3 bj‘ds C,2} r5/® (15)

which is the expression of basic interest to us in considering propagation of
star light down through the atmosphere. [It is perhaps worth noting that
Eq. (15) can be easily obtained from Eq. (14) by considering, instead of an
infinite plane wave source at the origin, a point source at minus infinity and
a turbulence free propagation environment, (i.e., C ® = 0), from minus
infinity to the origin.] The significant thing about these expressions for the
phase structure function is the r®2 dependence, the five-thirds power
deriving its form directly from the two-thirds power dependence of the

refractive-index structure function of Eq. (6)
It is convenient® to define a length p, in accordance with the equation
R
Po = {2.91k? ‘f ds C 2 (s/R)5/2}~%8 | (16)

0

for a point source, or as
R
P = {2.91k? [dsCy2}7%5 (17)
0
for an infinite plane wave source. With the length ¢, so defined we can

write the phase structure function for both cases as

Dy(T) = (x/pg)%/° . (18)
It should be noted that while the turbulence in the inertial subrange lacked
a length scale, the introduction of a propagation path length, R , and of an
optical wavelength, A , makes it possible to define a length scale charac-

- teristic of turbulence induced wavefront distortion.
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For our purposes the length scale, p, , is not the most convenient
that could be defined. It can be shown!© that if we are interested in the
effect of wavefront distortion on circular aperture optical systems then the

quantity, r, , defined by the equation

r, = [288 YT (1175) ] p,
~ (6.88)3/8 o, (19)

is a basically more convenient property. Using r, in place of p, we

rewrite the phase structure function of Eq. (18), as
Dy (T) = 6.88 (r/r,)%3 . (20)

The convenience of the use of r, derives from the fact that it ''represents"
an aperture diameter for which the conventional optical system diffraction
limits on an infinite diameter optical system. Anticipating results which
will be discussed in more detail later, in Fig. 3 we show the turbulence
limited resolution of a conventional imaging system. As can be seen, the
resolution achieved by a very large aperture system in the presence of
turbﬁlence is just equal to the resolution that would be achieved if the
aperture diameter were r, , but there were no turbulence induced wave-

front distortion.

Another way to infer the practical physical significance of the coher-

ence diameter, r. , is to note, as will be discussed later, that over a

0

circular aperture of diameter r, the rms wavefront distortion is almost
exactly one radian. Because of its obvious direct physical significance in
optical system performance, we shall generally use r, as our measure

of wavefront distortion.
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Figure 3. Resolution of a Turbulence Limited Optical System as a
Function of Aperture Diameter.

The aperture diameter, D, is normalized by dividing by r, - Resolution,

R, (measured in inverse steradians), can be thought of as antenna gain

or the inverse of transmitter or receiver beam width. For values of
aperture diameter smaller than r, the resolution to the square of
asymptotically approaches proportionality the diameter, which corresponds
to diffraction limited performance. For diameters much larger than r,

the resolution is virtually independent of the diameter and asymptotically
approaches a value of 1.27 x 102 sr™ , corresponding to A = 0.55x 107 m
and r, = 0.07 m, The knee of the curve, i.e., the point of intersection

of the two asymptotic curves, (i.e., straight lines) occurs at D = rj

The turbulence limited optical resolution is clearly of the order of

AM/r, -~ Making use of Eq.'s (16) or (17) and Eq. (19) , we can see that the
coherence diameter, r, , is proportional to, A®% , the wavelength to the
six-fifths power. From this, it follows that the turbulence limited angular
resolution, A/r, , is proportional to A71/® | The turbulence limited
resolution of conventional imaging is almost, but not quite, independent of
wavelength. Between the visiblé and ten micron region there is a factor of
(0.55 x 1072 /10.0 x 1078)"/6 = 1,79 difference in the turbulence limited

angular resolution. With a large enough aperture we obtain almost twice
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as good resolution at the longer wavelength — though what constitutes large
enough apertures differ by a factor of (10.0 x 1078 /0.55 x 10786)8/5 = 32,5

in diameter between the two wavelengths.

Before leaving this section it is useful to apply the data of Fig. 2
to a calculation of a nominal value of r, . Simple numerical quadrature

indicated that for the data of Fig. 2,

Jds C 2 = 3.57x 10712 , m¥/3 | (21)
0

so that
r, = 0.0420 (A/0.55x 1078)8/8 , m | (22)

This value is only in fair to poor agreement with our general observation,

corresponding as it does to A/r, = 13.1 yrad in the visible.

The coherence diameter, r, , is not a constant but rather a slowly

0
changing random variable. Experimental evidence?!! based on measure-
ments of the width of the image of a star, shows that from night to night
the value of the coherence diameter fluctuates as a log-normal random
variable with a medium value of r, = 0.0752 m for zenith viewing at a
wavelength of A = 0.55x 107® m?%*. The log-normal distribution for r,
is such that a one-sigma deviation corresponds to a change in the value of

r, by a factor of 1.36 , i.e., about 16% of the time we expect r, to be

0
larger than 1.36 x 0.0752 = 0.102 m, and 16% of the time we expect it to

be smaller than 0.0752/1.36 = 0.0553 m. These values apply about equally

well to the two observatory sites at which the measurements were made.

* The difference between this value of r, (i.e., 0.0752 m) and the value
(0.0420 m) calculated from the data in Fig. 2 may simply reflect the
difference between sites.
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If the strength of turbulence varies significantly with the site, then different

values may apply elsewhere.

With these results defining wavefront distortion statistics thus in hand
we are now ready to take up the questions of providing a geometric interpre-
tation of the wavefront distortion. This is presented in the rather brief

next section.

4, WAVEFRONT DISTORTION GEOMETRY

At first it would seem impossible to discuss in a quantitative manner
the '"shape'' of the randomly distorted wavefront. All that we would seem to
be able to say is that the wavefront is distorted with some mean square
deviation between pairs of points of various separations. In fact, however,
we can apply quantitative techniques to the assessment of the shape. This
is done by considering a circular region of diameter D, within which we
wish to analyze the statistics of wavefront shape. At any instant we have a
circular sample of the randomly distorted wavefront. Using a set of func-
tions defined so as to be orthonormal over the circle we can decompose the
random wavefront sample. We obtain a set of coefficients, one for each of
the orthonormal functions, which taken together define the wavefront shape.
Just as the distorted wavefront is a random function, these coefficients are
random variables. We can calculate the mean square value of these coef-

ficients from our knowledge of the phase structure function. '

In order to be able to associate shapes with these random coefficients
and their mean square values, it is convenient to choose the series of ortho-
normal functions to correspond to polynomials of increasing order. The
preferred choice is the Zernike polynomials, for which the first term in the
series is constant over the cirCI;.lar aperture, the next two correspond to
the two degrees-of-freedom to be associated with the concept of tilt, and the

next three to spherical (i.e., focus) and the two degrees-of-freedom of
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cylindrical shaped wavefront distortion (i.e.,'"astigmatism''). The mean
square values of the random coefficients associated with these functions
define the amount of tilt, of focus error, and of cylindrical wavefront dis-
tortion in the wavefront's shape. It can be shown that the ratio mean square
strength of tilt-to-focus-to-cylindrical shaped wavefront error is as
1/0.0239/0.0521, or measured per degree of freedom, as 1/0.0478/0.0521.
Clearly the tilt aspect of the wavefront distortion shape is the dominant
aspect of the shape. Detailed analysis!® extending to very high order
Zernike polynomials has shown that none of the higher order wavefront
distortion shapes is any more significant than the spherical (focus) or

cylindrical shapes.

A somewhat different view of the problem, but leading to the same
conclusion, i.e., the dominance of the tilt aspect of the wavefront distor-
tion , is obtained if we consider the residual wavefront error, if we had
adaptive optics capable of perfectly compensating for various of the lower
order wavefront distortion shapes. With no adaptive optics type correction,
(except to ignore the fluctuation in time of the average phase across the

circular aperture), the mean square (residual) wavefront distortion will be

A, = 1.030(D/ry)%2® . (23)

If the adaptive optics can compensate for the random wavefront tilt, then

the residual error will be
Ay = 0.134 (D/r,)%2 . (24)
If tilt and focus errors are corrected, the residual wavefront error will be

A, = 0.111 (D/r,)%® . (25)
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If the correction compensates all wavefront distortion shapes that are linear

or quadratic in nature, the residual wavefront distortion error will be
Ag = 0.0648 (D/r,)5/3 . (26)

With all cubic shapes also included in the correction, the residual error

will be
A, = 0.0463 (D/ro)E/‘3 , (27)

while if the correction can also accomodate quartic shapes, the residual

wavefront distortion error will be
A, = 0. 0328 (D/ro)5/"3 (28)

Clearly, the major reduction in the residual wavefront error is that pro-
duced when we correct for the random tilt. Correcting with the two degrees-
of-freedom associated with tilt gives a reduction in the residual wavefront
error of A, /A‘.3 =7 69 , while the next ten degrees-of-freedom only provide

a further reduction of the residual wavefront error of A, /A,, =4.09.

It is significant to note that in many cases random tilt is not observ-
able during a period shorter than that in which the wavefront distortion
changes. For such cases the correction for tilt is in a sense automatic. It
is useful to note that while the mean square wavefront error with no tilt cor-
rection is A1 =1.030 (D/ro)5/3 , if tilt is corrected, the residual error is

D
A, = 1.030 —-——-——>5/3 . 2
3 ( 3.40 ry (29)
When the tilt shaped portion of the wavefront distortion can be ignored, (as
for example, in short exposure imagery), a substantial increase in the

allowable aperture diameter is possible for the same mean square residual

wavefront error.
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With this presentation of the shape analysis of wavefront distortion in
hand, and with the major role of random wavefront tilt thus clearly indicated,
we are now ready to turn to an examination of conventional imaging systems.

We take this up in the next section.

5. CONVENTIONAL IMAGERY

In the analysis of the quality and resolution of conventional imagery,
it is customary to approach the problem from the point of view of the optical
transfer function. For our purposes, the simplest definition of the optical
transfer function is that it is the Fourier transform of the image of a unit
strength point source. Inasmuch as the image is defined on a two-dimen-
sional (focal plane) space, g , the Fourier transform and the spatial
frequency, ? , must also be two-dimensional, As a matter of convenience,
we shall consider the focal plane space to be measured in an angular coor-
dinate system corresponding to the optical system's field-of-view space.

Accordingly, the spatial frequency space is measured in units of cycles per

radian field-of-view.

It is well established!“+16 that for conventional long-exposure imagery

with a circular aperture of diameter D operating at a wavelength A , the

optical transfer function at spatial frequency f is

TLE (?) TDL (?) exP [—% D¢(}\-f-.)]
= 7, () exp [-3.44 (\f/r,)5/3] (30)

where T, (f) is the diffraction-limited transfer function of the imaging

system, with value given by the expression

TDL(?) = ;Zr- .{cos"1 <%> - (-Z\D—f>[l - <-)]-‘5£'/2:il/2]r . (31)
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[y

We can see from a consideration of Eq (30) that the spatial frequency f

can be associated with a distance, T, - T, = Af , on the aperture. The

1 2

degradation of the optical transfer function from its diffraction-limited value

is a function of the mean square phase difference for that separation distance.

For a short exposure image, the random wavefront tilt will displace
the image of a point source, but it will not blur it. There ‘will,’ of course,
be some amount of blurring of the image, but this will be due to the higher
order shapes in the wavefront distortion. If we ignore/suppress the random
displacement of the image and take the average of a series of short expo-
sures, it can be shown!® that the resultant point source image gives rise to

a short exposure optical transfer function which can be written as
T F) = 1, (F) exp {-3.44 (\i/x,)%/2 [1 - \E/D)V/2]] . (32)
The term in the square brackets represents the tilt suppression effect.

A particularly interesting way to consider the overall imaging perfor-
mance of a conventional imaging system is to define the resolution of the
'system as the integral of the optical transfer function over the spatial fre-
quency domain. Since the optical transfer function is normalized to unity
at £ =0 (i.e., at d.c.), the resolution so defined is a measure of the
"bandwidth'" of the imaging system. Because the spatial frequency is a two-
dimensional vector, the integration should also be two-dimensional. Thus
the resolution has the dimensions of inverse steradians, corresponding to

one over the '""resolution beam width''.

We define the resolution by the equation

R = [d& t(f) . (33)
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It can be shown that for a very large diameter circular aperture long expo-

sure imaging system, the resolution is

R = zm(ry/A)? . (34)
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Figure 4. Normalized Resolution as a Function of Normalized Aperture
Diameter for Very Long and Very Short Exposures,

The resolution normalization factor is ?w =3n (ro/k)a

In Fig. 4, we show normalized resolution, /?//800 , as a function of nor-
malized aperture diameter, D/r, , for both long and short exposure im-
agery. In general, the results speak for themselves, However, it is per-
haps worth noting that the peak of the short exposure curve occurs rather
near D~ 3.4 r, — a fact interesting in its relationship to Eq. (29). The
decrease in the short exposure resolution as larger aperture diameters are
considered may be attributed to the fact that for these very large diameters,
the wavefront distortion components of higher order than tilt are large

enough that they, themselves, can limit the resolution.
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Before leaving the subject of resolution for a conventional imaging
system, it is worthwhile to consider the optical transfer function that is to
be associated with a Michelson stellar interferometer system. Such a
system can be considered to be an imaging system, except that the spatial
frequencies associated with the separation of the two apertures may be
"translated'' to an apparently different spatial frequency on the image plane.
If the separation of the two apertures is L and the diameter of each aper-
ture is D , then the system will have a non-zero optical transfer function
for spatial frequencies with magnitude less than D/A , and those spatial
frequencies around (i.e., with a distance D/A of) + L/n . Itis only

these spatial frequencies around % L/\ that are of any real interest.

For short exposure operation of the interferometer, the optical trans-

fer function at frequency * L/A will be of the order of
T(+ L/\) =~ % exp (-24,)
~ % exp [-2.06 (D/r,)5%/2] . (35)

It should be noted that 24, is the mean square random phase difference
between pairs of points, one in each of the two apertures of the interfero-
meter. This fact is the basis for writing Eq. (35). [The reason A, rather
than A, appears in Eq. (35), even though this is a short exposure problem,
is that the system is sensitive to wavefront tilt within each of the two aper-
tures. If the two tilts are not equal, fringe contrast is lost.] The factor of
one-half in Eq. (35) simply has to do with the d.c. normalization. For high
contrast fringes, it is obvious that the diameter of the individual apertures,

D , must be less than the coherence diameter, r, .

For long exposure operation, the transfer function will be of the order
of % exp [-3.44 (L/r,)%2] . Clearly, for any interesting aperture sepa-

ration distance, L , the transfer function will be very small and there will
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be essentially no fringe contrast. It will provide useful insight into speckle
techniques for us to consider here why the optical transfer function for long
exposure is so much poorer than for short exposure operation of a Michelson
stellar interferometer, and to consider why the short exposure operation of
the interferometer gives so much better an optical transfer function than we
would obtain at the same spatial frequency with a lens whose diameter was

large enough to accommodate that same spatial frequency.

For long exposure operation of the interferometer, at each instant,

assuming that the individual apertures are relatively small i.e., that D <<r,,
there is a sharp sinusoidal intensity pattern on the focal plane corresponding
to the spatial frequencies =+ L/A» . The phase of this sinusoidal intensity
pattern is equal to some constant plus the phase difference associated with
the wavefront at the two apertures. As the randomly changing wavefront
distortion changes this phase difference, the phase of the sinusoidal intensity
pattern will vary and the pattern will appear to shift back and forth. For a
change in the phase difference of 7 radians, the sinusoidal intensity pattern
will shift by half of a cycle, replacing bright by dark and dark by bright.
This continuous random shifting of the pattern during a long exposure period
will tend to wash out the inherent contrast in the fringes. It can be shown
that if the rms shift of the fringes is S (measured in fringe wavelengths),
then the long exposure fringe contrast will be reduced by exp [-3 (2m S)2 ]
It is this that gives rise to the factor of exp [-3.44 (L/r,)%2 ] quoted pre-
viously The long exposure fringe loses contrast because averaging of the
intensity pattern over random phase shifts drives the long exposure image
to a uniform, nearly zero contrast pattern. The average is of intensity,

and so the contrast is driven to zero.

In comparing short exposure imagery using a large circular aperture,
with short exposure imagery using a Michelson stellar interferometer, we

run into a different kind of averaging. In this case, the key matter is the

https://doi.org/10.1017/50252921100118639 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100118639

4-25

recognition that every pair of points in the total aperture with a separation

of AT gives rise to a sinusoidal signal in the focal plane corresponding to
the spatial frequency f . Because all pairs of aperture points contribute

at the same time, and because there is temporal coherence across the aper-
ture, i.e., the electromagnetic field from different pairs of points can
interfere with the field from other pairs of aperture points, we get a differ-
ent kind of averaging than we did in averaging over time for a long exposure.
Pairs of points that are sufficiently proximate on the aperture will produce
spatially sinusoidally varying electromagnetic fields that are spatially co-

herent with respect to each other, providing proximity is taken to mean a

separation on the aperture plane of much less than r, .

For a single large aperture imaging system, there are many pairs of
aperture positions with separation Af which pairs are not proximate to each
other. If we group pairs into proximate pair groupings, we can argue that
there are of the order of (D/r,)? 7, (?) such pairs. Within each grouping,
the sinusoidal pattern generated by each pair will interfere more or less
constructively with that generated by all the other pairs. However, between
groupings the interferences will have a random phase shift and the result-
ant spatially varying sinusoidal pattern, while it will not average to zero,
will only grow in intensity as the square root of the number of groupings
combined. The random sum of the sinusoidal patterns gives rise to a sinu-
soidally varying intensity pattern which has an rms amplitude down by about
a factor of [(D/ry)? 7, (f)]¥2 from the value of T, (f) which it would
have if there were no wavefront distortion and everything combined coher-
ently. Thus, while the optical transfer function for short exposure operation
of the Michelson stellar interferometer (with small individual apertures) is
near unity, the short exposure optical transfer function of comparably large

spatial frequencies for a very large aperture will be a random sum with an
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rms amplitude of the order of [(r, /D)2 TDL(-f.’)]l/g It is to be noted that
this is not the amplitude of the intensity sine wave in a sum of short expo-
sure images, but rather is the ''quadrature sum'' of the amplitude of the
intensity sine wave in each short exposure image. As such, it is larger than
the conventional short exposure optical transfer function given by Eq. (32) ,
and will be seen to be more directly related to a speckle system optical

transfer function.

6. SPECKLE SYSTEM

The basis for understanding of speckle system performance, such as
defined by Labeyrie?® and by Knox and Thompson!”, is contained in the
preceding discussion. For a large circular aperture, there are many [of
the order of (D/ry)® T, (-f')] groupings of pairs of aperture points contri-
buting to the spatial frequency f in the focal plane pattern. These group-
ings interfere randomly with each other, producing a sinusoidal intensity
pattern which is not only reduced in amplitude compared to the possible sum,
but also randomly phase shifted. In the ordinary short exposure imagery
concept, where we add up the several short exposure images, the random
phases of the sum cause the sinusoidal intensity patterns to average to zero.
In a speckle system, it is the square of the amplitudes of the sinusoidal
component in each short exposure that is summed. There is no phase shift
problem, and the sums accumulate constructively. As indicated previously,
and as demonstrated by Korff'®, if we consider the rms amplitude of the
spatial frequency as defining the optical transfer function, then we get for

the (Labeyrie) speckle (interferometry) system optical transfer function
Tg, (£) = (|71 (£)]|2y2/=

~ 0.66 (r, /D) [T, (F)IVe . (36)

https://doi.org/10.1017/50252921100118639 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100118639

4-27

This indicates the expected amplitude of the basic signal developed by the

Labeyrie speckle interferometry technique for a single large aperture.

Knowledge of these amplitudes, generated by the Labeyrie technique,
allow the power spectrum and correlation function to be determined for the
object being viewed. For a pair of somewhat smaller apertures, but each
with diameter D significantly greater than the coherence diameter, r, ,
and with a center-to-center spacing of I. between the apertures, we can
infer the optical transfer function for spatial frequencies of the order of

- -t
f = £ L/X . We estimate the optical transfer function in this case as being

T, (T)

(| (@) |22
~ % (r, /D) : (37)

This corresponds to the square-root of the number of groupings of pairs of
aperture points matching the spatial frequency. The factor of one-half
arises from the fact that at d.c. (very low) spatial frequencies, there are
twice as many groupings of ''pairs' of points, since each of the apertures

contributes separately — and this defines the normalization.

For the Knox-Thompson speckle imaging technique, the amplitude of
each spatial frequency is essentially the same as given by Eq. (36) for
speckle interferometry. The key to the Knox-Thompson technique, that
provides its ability to recover a true image rather than merely a correla-
tion function, is the recovery of the target-object induced phase shift of each
spatial frequency component. Because of the very large (i.e., several
times 21 ) random phase shift introduced by turbulence into each spatial fre-
quency component in the individual image recordings, it is not possible
(practical?) to try to extract the component of phase shift introduced by the
object pattern from a study of the spatial frequency component as they

appear in the focal plane image — at least not directly. However, it was
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noted by Knox and Thompson that for nearly equal spatial frequencies, -1-'.1

and ?2 , the groupings of pairs of aperture points that contribute to the one
frequency are almost the same as the groupings that contribute to the other

frequency, providing
|f, - £,] <<z /2 : (38)

If this condition is satisifed, then in any short exposure the turbulence-
induced phase shift on the ?1 component will be almost identical to that
induced on the -f..z component. The difference in the apparent phase of the
two components for that short exposure will contain only a small contri-
bution (i.e., much less than % T ) due to turbulence. The difference in the
apparent phase of the two components will be almost entirely due to the
difference in the object pattern induced phase shift for these two spatial

frequencies.

The Knox-Thompson algorithm involves the calculation of these phase
shift differences and the averaging of the difference over many short expo-
sures. In this average, the turbulence contributions, which varies from
frame to frame but are generally less than £ m , averages to zero so that
the result represents only the phase difference between spatial frequency
components of the object pattern. With an array (two-dimensional) of these
phase difference measurements covering the entire spatial frequency domain
of interest, it is then possible to ''integrate' the differences to obtain an

absolute phase shift to be associated with each spatial frequency.

The underlying concept behind the Knox-Thompson algorithm is basi-
cally straightforward. Our quantitative understanding of it, however, is
restricted to Eq. (38) . No theory has been developed to indicate the extent
to. which turbulence effects are not completely compensatable in the recov-
ered image, and for the present, we can only assume that these effects are

not significant.
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With this understanding of the Labeyrie and Knox-Thompson speckle
technique in hand, we are now ready to take up consideration of spectral

bandwidth constraints. This is treated in the next section.

7. SPECTRAL BANDWIDTH CONSTRAINTS FOR SPECKLE SYSTEMS

No carefully developed theory for the allowable spectral bandwidth in
the formation of a speckle photograph has yet been published. However, it
is possible to form an estimate of the allowable spectral bandwidth simply

by considering some general aspects of the process.

We start by remarking that for some spatial frequency, f , and
corresponding separation of a pair of points on the aperture, Af , the

mean square turbulence-induced phase difference is
Dy(Af) = 6.88 (Af/r,)%/3 (39)

Here, however, it is more convenient to consider the mean square path

length variation for the separation L = Af , which we can write as

b 2 -
Dy (L) = (5) Dy (D)

6.88 L 8/3
= . . 40
(211) 2 (ro }\"6/5> (40)
Expressed in this form, and recalling the A%5 -dependence of r, , itis

obvious that the turbulence-induced path length variation is wavelength-

dependent.

Our requirement determining the é.llowable spectral bandwidth, A\ ,
in forming' the speckle photograph (somewhat arbitrarily chosen) is that over
the wavelength range A to A + % AA , the mean square difference of the
phase differences associated with a pair of points giving rise to the spatial
frequency f should be no greater than (3 m)2 . It is important to note

that while for the wavelength A , the spatial frequency f is associated
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with pairs of points on the aperture separated by a distance L , where
L = \f , (41)

for the wavelength A + % A\ , this spatial frequency is associated with pairs

of aperture points separated by a distance L + 3 AT , where
AT = m ¥ . (42)

The difference of path length variations in the one case is g(T) - &T + f.:) R
and the corresponding phase shift is (2m/A)[Q(F) - 9T + ﬁ)] , while in the
other case the difference of path length variations is 2(2 - %Aﬁ)-ﬁ(?+ﬁ+%AIj) ,
and the corresponding phase shift is [21‘r/(>\+%-A)\)][9(?-%AITJ)-Q(?+%A-I‘J)]

The mean square difference of these two phase shifts is

217
>\+12=M

9= <{(%\3) [8(F)-2(Z+D)] - ( )[s('r’-i.Ai) - SZ(?+I-_:+%AI__:)]}2). (43)

After a bit of manipulation, this can be recast in the form

-t 2 - -
9 = DyIL) + Kﬂj\%ﬁﬂ Dg(L + 24L)

-2< A >D¢(L’+i-Aﬁ)+2<

T ) Dg (3 L) (44)

A+50A
where all of the Dg-terms are to be understood as applying for a wavelength
A , but with the two-point separation arguments shown. Making use of Eq.
(39) and introducing approximations as appropriate, based on the assump-

tion that AA << A , we can obtain from Eq, (44) the result that

Q = 6.88(2‘—
r

\:Z‘Wa(ﬂ>5/3 _ A (.ﬂk >2] (45)

18 A

Thus the requirement that O be less than or equal to (4m)2 , applied at the
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upper range of spatial frequencies leads to the requirement on allowable

spectral bandwidth that

- 0.48997 <-A-4->2 = 1.8074 (%)5/3 (46)

AM\B/3
( :

.

For large values of D/r, , which is normally the case, the (AA/A)? term
is relatively inconsequential, and we can approximate that
AN r
— = 1.4264 2 . 47
A D (47)
Thus for D/r, = 20 , we would get an allowed spectral bandwidth of

AAN/A ~ 0.0713 , or for A =5500& , AN ~392 A .

It should be noted that in developing this result, we have not actually
made use of the fact that the aperture is a large diameter circle. Rather,
we have only used the fact that the highest spatial frequencies the aperture
can pass are of the order of D/A . As a consequence, Eq_ (47) is equally
applicable for a Michelson stellar interferometer aperture, except that in
this case we would replace D by L , the distance between the two aper-

tures of the interferometer.

With this result in hand for allowable spectral bandwidth, there remain
only two more questions of constraint in implementing speckle techniques
that we wish to treat here. These concern the allowable field-of-view, i.e.,
the isoplanatism problem, and the allowable exposure time. We shall treat

these in the next two sections.

8. ISOPLANATISM

The term '"'isoplanatism'' was originally used to describe a region in
the field-of-view of a lens within which the resolution is essentially constant,
i.e., independent of the field-angle. In applying the term to the subject of

atmospheric turbulence, we expand the definition to relate to more than
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merely resolution as defined by the sharpness of the image of a bar chart,
or the size of the image of a point source. In applying the term 'isoplana-
tism' to the subject of atmospheric turbulence, we intend to characterize
the equivalence of the wavefront distortion for wavefronts coming from dif-
ferent directions. The key term here is '"characterize'. According to

what our system interest was, we would emphasize different aspects of the
wavefront distortion, and accordingly, would arrive at somewhat different
detailed definitions of isoplanatism. We shall consider isoplanatism in
regard to three system concepts, and comment on the nature of isoplanatism
for each. We shall consider 1) short exposure conventional imagery men-

suration, 2) adaptive optics, and 3) speckle techniques.

In conventional short exposure imagery, we know that random wave-
front tilt effects are suppressed. It is this that enhances the sharpness of a
short exposure image as compared to a long exposure image. But for a
point source, though the image may be sharp, its exact location, being con-
trolled by the random tilt, is uncertain. For precision mensuration of the
separation between two point sources, we take note of the fact that if the two
point sources are sufficiently close together, they will be subject to the same
random angular tilt, while if they are far enough apart, their tilts will be
statistically independent. In the one case, the separation measurement will
be uninfluenced by the random tilt, while in the other case, the measured
separation will contain a random contribution due to the turbulence-induced
tilt. We say that in the first case, the same effective wavefront distortion
applied and the two point sources were within an isoplanatism region, while
in the latter case, the two sources were not in the same isoplanatic region.
We refer to this as angle-of-arrival isoplanatism. It is convenient to mea-
sure angle-of-arrival isoplanatism in terms of the mean square variation to
bé expected in the individual, i.e., single short exposure measurements of

-l
the separation of a pair of point sources whose angular separationis ¢ .
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-—d
If o(6) denotes the random variation from frame-to-frame in the
Py
component along the direction of, ¢ , of the apparent angular position of

- . - - “
a point source whose actual position is € , then the mean square separa-

tion error is

Dy () = ([a(p) - (6 +5)12) . (48)
It can be shown?!® that

D,(8) = D™%2 [ds C .2 F (#s/D) (49)

where the function, F , can be approximated as

5.98
1 + (0.864/x)2

F(x) (50)

Here D is the aperture diameter of the telescope used to form the short

exposure images., It is easy to see that for larger values of ¢ , we get

lim
S0

D, (3) = D, ()

5.98 D72 [ ds C,? (51)

Using the data in Fig. 2, we find that [ ds C,® =3.57 x 10712 m!/® for

propagation vertically through the atmosphere, so that
D (=) = 2.13 x 10712 D7¥/3 | (52)

On the other hand, when # is not very large and/or D is assumed to

be very large, we can reduce Eq. (49) to the form

D,(8) = 8.01D~73 [ds C,® s® 82 . (53)

https://doi.org/10.1017/50252921100118639 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100118639

4-34

Noting from the data in Fig. 2, that Ids CN2 s® =1.31X 1075 m7”® | we

can rewrite this as

D) = Dy(=) (57— (54)
. ¢ D/H,, A ,
where H, , =2.22 x 10°m . If we wish, we can consider H,, to be the

turbulence scale height for angle-of-arrival isoplanatism, and D/H,, as
the angle-of-arrival isoplanatic patch size. But these results are directly

applicable only for angle of arrival isoplanatism.

For adaptive optics, the isoplanatism conditions are quite different.
In this case, instead of being interested in the aperture average wavefront
tilt for wavefronts coming from two directions, in the case of adaptive optics,
we are interested, on a point by point basis, in how well the wavefront dis-
tortion of a reference wavefront matches the distortion of the wavefront to
be compensated — a wavefront which is coming from another direction.
Actually, our concern is with the matching of the phase difference wave-

front against the difference for the wavefront to be compensated.

It has been shown® that in this case, the mean square residual phase
error after wavefront compensation, and thus the optical transfer function
of the adaptive optics system, will be a function of the separation of the pairs
of points on the aperture, and thus, of the spatial frequency in the image
which we are concerned about. After wavefront distortion compensation by
the adaptive optics, the optical transfer function is not quite at its diffrac-

tion-limited value, being less than that by a factor of

Ry (3,T) = exp [-m(3,T)] . (55)

Here & is the angular separation between the direction of the reference

source and the direction of the object whose wavefront is to be corrected for
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imaging purposes, and the function 7 can be written as
m(3,E) = 114.7172 [ ds C,2 {(A)5/2 + (985)5/3
-3 [(AM)2 +2As S -T + (8s)2]5/8

-3 [(M)2 -2As3 -T +(9s)2]5/8] . (56)

For spatial frequencies, f , very much larger than #s/A , the quantity in

the curly brackets can be approximated by (#s)%/2 , and we can write
MB,T) ~ 114.7172 95/3 [ ds C,2 s5/° | (57)
Making use of the fact that

r

o /% = 16.70172 [ds C® , (58)

we can rewrite Eq. (57) as

- - ) B/3
m@,f) = (T (59)
(ro /HAO> ,
where
g 3/6
[ ds C 2 s5/2
H, = {6.88 . (60)
[ ds G2

\

From the data in Fig. 2, we find that [ ds C,® s5/2 = 7,28 x 1077 m® , and
that [ ds C 2 =3.57X 10722 m¥3 | so that H,, =4.88 X 10® m . Not
only is this scale height about twice as great as for angle-of-arrival iso-

planatism, but because r

o 1s in general much smaller than the aperture

diameter, D , the isoplanatic angle ¥, = r, /H,; is much smaller for

adaptive optics than it is for angle-of-arrival short exposure measurements.
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In the application of speckle techniques, isoplanatism problems again
show up, altering the fringe contrast of the high spatial frequency compon-
ents of basic interest to us. The problem here, just as in the case of adap-
tive optics, is that the phase difference across pairs of points in the aper-
ture is not the same for wavefronts from two different directions — only in
this case, this results in two different speckle patterns being formed, one
for each source's direction. But the key to the proper functioning of the
speckle techniques is that the two sources should produce the same random
speckle pattern, merely shifted with respect to each other by an amount
indicative of the angular separation of the two sources. It can be shown that
because of anisoplanatism effects, at high spatial frequencies the speckle

pattern amplitude for that spatial frequency component will be different from

the value we would expect in the absence of anisoplanatism. This unreli-
ability of the information* can be shown to become significant when 7)((3,?) R
the quantity defined above for the adaptive optics case, gets to be of order
unity or greater. Thus the isoplanatism conditions for speckle techniques

are basically the same as for adaptive optics.

This result is, in a sense, somewhat surprising, particularly for the
Knox-Thompson technique (to which the above conclusion can be shown to
apply). For a large object speckle pattern, we would expect to be able to
recover valid speckle data at least by masking the pattern so as to process
a small region at a time. One might hope that for the Knox-Thomspon tech-
nique this would somehow occur automatically. Yet our isoplanatism analy-
sis has given no indication of the potential of the basic Knox-Thompson tech-

nique to achieve anything nearly equivalent to what we would expect to

% This unreliability effect can not only make a component that should appear
strong in fact appear weak, but it can also make a component that should
appear weak appear to be strong. Thus, it can make the results obtained
from a pair of equal intensity stars appear to be due to a pair of unequal
intensity stars.
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accomplish by masking so as to reduce the field-of-view and thus get around

the isoplanatism problem a bit at a time.

With these results in hand, we now turn to our final subject, the allow-

able exposure time. This is treated in the next section.

9. TIME DEPENDENCE

The random wavefront distortion introduced by turbulence is a time-
varying function. Wavefront distortion samples taken at widely separated
times are essentially uncorrelated, while wavefront distortion samples
taken at closely spaced times are highly correlated. For adaptive optics to
operate successfully, it is obvious that wavefront distortion measurements
must be made and wavefront corrections implemented in a time which is
short compared to the time in which the wavefront distortion changes signi-
ficantly. Obviously, the same sort of considerations must apply for speckle
techniques in the sense that the exposure time must be brief enough, or else
we will be recording the superposition of two uncorrelated speckle patterns.
Because the basic analysis of time dependence has been performed for adap-
tive optics, it will be convenient to discuss the time dependence in adaptive
optics first, and then indicate how these results may be applied to selecting

an exposure time for recording a speckle pattern.

A particularly compact discussion of the effect of the time dependence
of wavefront distortion on adaptive optics system performance has been
developed by Greenwood. 21 Starting with the fact that the time dependence
of wavefront distortion is due to the wind '"'transporting'' the turbulence pat-
tern through the propagation path, it can be shown that the high temporal
frequency end of the power spectrum associated with phase fluctuation at

some point on the aperture is given by

lim - -
fim Fylf) = 1.287A72 £7%/2 [ ds C,2 V&/3 | (61)
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where f is the temporal frequency and V 1is the component of wind veloc-
ity perpendicular to the propagation path. The velocity, V , like the
refractive-index structure constant, Cy 2 , is a function of position, s ,

along the propagation path.

If the adaptive optics servo system has a closed loop transfer function,
H(f) , then it can be shown that the residual phase error due to the finite
servo bandwidth, (i.e., the portion of the wavefront distortionthat is not
corrected because the adaptive optics servo lags behind the more rapidly

changing aspects of the wavefront distortion), has a mean square value of

(o ]

o2 = [ df |1-H(f)| ® F(f) : (62)
0

Making use of the fact that for a fast enough servo system, the only portion
of the phase fluctuation power spectrum, F¢(f) , that contributes signi-
ficantly to this integral is well described by Eq. (61), and noting that for
most servos the closed loop transfer function, H(f) , is nearly equal to
unity up to a cut-off frequency, f. , at which point the transfer function be-

haves like an R-C electronic filter, (6dB per octave), with its 3dB-point at

f. , i.e., it behaves as (1 +if/f)7! , it can be shown that

G.2 =4.03 )" fc—S/a J" ds C,?2 VE/3 . (63)

R

Thus the required servo bandwidth, f, , needed to insure that the rms

residual wavefront error is Og 1s
c

3/6
f, = 2.31\7¢/6 o "6/6 {j ds cNevsfa} . (64)

We infer from typical data on wind speeds aloft®?® that wind speed var-

ies nearly linearly with altitude, and can be approximated by the expression

V = 5+0,00912 h (65)
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where h denotes altitude, in meters, and the additive value of 5 is intro-
duced to correspond to a nominal low level wind velocity. Using the data in

Fig. 2, we can approximate

[ ds G2 V83 »~ 3,42 X 10710 m?-sec™®/3 (66)
so that
f, ~ 4.83 x 107® \78/5 ¢ /5

-6 \ 6/6
= 157 (0'5“ L ) o o/8 : (67)

1f we wished the adaptive optics servo to provide an rms residual wavefront
error of a twentieth of a wave, i.e., Op = /10 , then the required servo

bandwidth for operationat A = 0.55X 10™° m would be f. = 630 Hz

The same general approach can be applied to the problem of defining
an allowable exposure time for the recording of a speckle pattern. In this
case, our concern is with the rms change in the wavefront pattern during
the exposure. This change is associated with the high temporal frequency
portion of the wavefront variations, with the meaning of high temporal fre-
quency being defined by the exposure time. If the shutter opens sharply,
remains open for a time T , and then closes sharply, it may be considered
to '"pass' temporal frequencies in accordance with the transfer function

sin (1 £ T)
mfT

H(f;T) (68)

In the higher frequency range, i.e., £ > T™! |, the fluctuations will be aver-
aged over a significant range of variations, while at the lower frequencies

the variation will '"'stand still"' during the exposure time.
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It is clear that we can apply Eq. (62), with the transfer function as
defined by Eq. (68), to determine the mean square phase variation during

an exposure. Thus we can write

. .
sinfnf1) 1® 1 287072 £79/2 [ds C 2 V&/3 . (69)

o2 = Idfll-

mifT
Noting that
o . 2
[axx™s/2 |1 - ﬂ%i&)ﬂ = 1.416 (70)
o]

and making use of Eq. (66), we obtain the result that

2

i

0.2 =6.23 X 1070 ) "2 T&/3

-6 \ 2
2.06 x 102 (0'55;‘10 ) TS2 | (71)

It thus follows that if we are prepared to allow a wavefront distortion vari-

ation of o, during each short exposure, the exposure time, T , must be

A o/ 6/8 2
T = 0.0103 (555x o) %% sec . (72)
Thus if we will allow a phase shift of #m during the exposure, working at
a wavelength of A =0.55X 107 m , the allowable exposure time is 17.6

msec .

It should be noted here that we may have been overly generous in
allowing an rms phase variation of #m , and allowing the same phase vari-
ation with wavelength in selecting the allowable bandwidth for speckle tech-
niques. The formulas we have presented will allow evaluation of the useful
spectral bandwidth and the allowable exposure time for other estimates of

what is a tolerable phase variation. It is unfortunate, however, that the
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necessary theory does not exist to permit us to relate the spectral bandwidth
and exposure time to the optical transfer function directly and quantitatively

— and thus we are forced to use a plausible value for the allowable phase

error.- Nonetheless, the formulas presented here do provide a reasonably

sound basis for estimation of spectral bandwidth and exposure time.
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DISCUSSION

J.C. Dainty: Whilst I agree that the classical resolution is not affected

by non-isoplanicity (in speckle interferometry), the signal to noise ratio

of a measurement is reduced.

D.L. Fried: Certainly.

R.Q. Twiss: Michelson never saw the secondary maxima of |I'|2 in his
interferometric measurements of the Galilean satellites. Is it not possible
that this was due, in large part, to the fact that the angular sizes of the

satellites were greater than the isoplanatic patch?

D.L. Fried: While we are not certain of the exact size of the isoplanatic

angle 90, it is probable that, although the satellite angular diameters are
smaller than 60, they are comparable to it, so that there would be some (mild)
anisoplanatism effects. Extrapolating from my results for a pair of point
sources to a disk source, I would estimate that anisoplanatism would result
in spurious limb darkening of the disk. This could account for Michelson's

failure to observe secondary maxima.
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