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Summary

Quantitative trait loci (QTLs) may affect not only the mean of a trait but also its variability.
A special aspect is the variability between multiple measured traits of genotyped animals, such as
the within-litter variance of piglet birth weights. The sample variance of repeated measurements is
assigned as an observation for every genotyped individual. It is shown that the conditional
distribution of the non-normally distributed trait can be approximated by a gamma distribution.
To detect QTL effects in the daughter design, a generalized linear model with the identity link
function is applied. Suitable test statistics are constructed to test the null hypothesis H0 : No QTL
with effect on the within-litter variance is segregating versus HA : There is a QTL with effect on the
variability of birth weight within litter. Furthermore, estimates of the QTL effect and the QTL
position are introduced and discussed. The efficiency of the presented tests is compared with a test
based on weighted regression. The error probability of the first type as well as the power of QTL
detection are discussed and compared for the different tests.

1. Introduction

Quantitative genetic analyses of body weight data in
snails (Ros et al., 2004) suggest genetic differences in
variability. Therefore, QTLs (quantitative trait loci)
may affect not only the mean of a certain character
but also its variability. The analysis of QTL effects on
between-subject variability of a normally distributed
trait was investigated by Weller & Wyler (1992). They
mentioned uniformity of flowering time of plants as
an example of potential economic importance, in
particular when crops are harvested mechanically.
Some phenotypes are repeated several times by the
same individual, such as the size and weight of tom-
atoes from the same panicle of a tomato plant.
Uniformity of such repeated phenotypes may also be
genetically controlled and affected by the individual’s
genotype.

In multiparous species, birth weight of newborns
from the same litter may be regarded as a special case
of a repeated phenotype of the mother. The difference

compared with the tomato example is that the
phenotype of the newborns is not only under maternal
control but is also affected by the father’s genetic
contribution. Högberg & Rydhmer (2000) and
Damgaard et al. (2003) considered the within-litter
standard deviation of piglet birth weight and at-
tributed it to the dam of each litter as a maternal trait.
A low within-litter uniformity was considered as an
effect which was unfavourable for sow productivity.
Heritability estimates for the character were 10%
(Högberg & Rydhmer, 2000) and 8% (Damgaard
et al., 2003). The same trait has also been studied in
rabbits (Bolet et al., 2005).

In this article it assumed that the QTL affects the
within-litter variability of a mother’s progeny, i.e. in
contrast to Weller & Wyler (1992) the focus is on
within-subject variability. This offers the opportunity
to construct a test for H0 : No QTL with effect on the
within-litter variance is segregating versusHA : There is
a QTL with effect on the variability of birth weight
within litter. A daughter design is considered, where
genotyped females are paternal half-sibs. The sample* Corresponding author. e-mail : reinsch@fbn-dummerstorf.de
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variances of birth weights within litter are the traits
to which our model is fitted. First, the QTL effect on
the within-litter variance is described. Then it is
shown that a generalized linear model (GLM) can be
applied for QTL mapping. This GLM is contrasted
with a weighted regression approach in terms of
power of QTL detection by numerical simulation.
Inclusion of sex effects, different experimental designs
and further fields of application are part of the dis-
cussion.

2. Methods

(i) QTL effect on the within-litter variance

It is assumed that a population of pigs has two alleles
at the QTL denoted by Q and q. We consider a fixed
number N of sires in our study, which are drawn by
chance from the population. Every sire is mated with
n unrelated dams. We pick out one daughter per
mating and consider her offspring’s birth weight as a
multiple measurement. We assume that piglet birth
weights are independently and identically distributed
within one litter. The birth weight consists of a fixed
litter mean, the normally distributed mendelian sam-
pling effect N(0, 1

2spolygene
2 ) and the additive QTL ef-

fect, which is dependent on the piglet’s genotype, with
variance sQTL

2 and the normally distributed random
deviation N(0, se

2).
The sample variance of weights at birth within one

litter, that is the secondary observation, is taken as a
trait for every daughter amounting to Nn obser-
vations. Daughters having inherited the QTL allele
Q from the presumed heterozygous sire feature uni-
formity of birth weights. Daughters with a paternal
q allele show an increased variability of birthweight. In
this case, the residual deviation of piglet birth weight
is multiplicatively inflated by the factor c

*
s(0, ‘).

Thus, from the breeder’s perspective, the positive ef-
fect of the QTL (the lower within-litter variance) is
inherited with the QTL allele Q. A detailed descrip-
tion of the model for piglet birth weight and a further
outline on the distribution of the traits are given in
Appendix A.

The within-litter variance, i.e. the sample variance
Si, j

2 of birth weights within one litter, depends on the
paternal QTL allele of the daughter is{1,…,N},
js{1, …,n}. The indicator function 1{Q},i, j takes the
value 1 if the daughter i, j has inherited the allele Q
and 0 otherwise. Later, in Sections 2(ii) and 2(iv), the
probability Pr(1{Q},i, j=1) is determined conditional
on the observed flanking marker alleles. The con-
ditional expectation of Si, j

2 given the inherited pa-
ternal QTL allele is

E(S2
i, jj1{Q}, i, j=1)=1

2
s2
polygene+s2

QTL+s2
e,

E(S2
i, jj1{Q}, i, j=0)=1

2
s2
polygene+s2

QTL+c
*
2s2

e: (1)

The value t2 :=1
2spolygene

2 +se
2 summarizes the variance

of the normally distributed effects of piglet birth
weight under the condition that the sow has inherited
the QTL allele Q. Similarly, t

*
2 := spolygene

2 +(c
*
se)

2

includes the modified residual variance component.
Set

c2:=
E(S2

i, jj1{Q}, i, j=0)

E(S2
i, jj1{Q}, i, j=1)

=
t
*
2+s2

QTL

t2+s2
QTL

: (2)

The parameter c2 is the ratio of the within-litter vari-
ance if the daughter i, j has inherited the QTL allele
q and the within-litter variance if the daughter has
inherited the allele Q. If the QTL effect on the within-
litter variance actually exists, then the sample vari-
ance depends on the inherited paternal QTL allele
and the ratio c2 is different from 1. Otherwise c2 is
equal to 1.

(ii) Generalized linear model

The sires may have the marker genotype of kind
ml, 1, ml, 2, where ls{0,1, …, k} denotes the marker
position on the chromosome. The sire’s two marker
alleles are denoted by ml, 1 on his paternal chromo-
some and ml, 2 on his maternal chromosome for every
marker position. It is not possible to determine which
sire is heterozygous or homozygous at the QTL
a priori. After the sires are genotyped, we suppose that
all daughters are fully informative. Therefore, we
need only to consider the paternal allele of daughters.
The recombination rates are calculated by Haldane’s
mapping function. We consider intervals flanked by
markers Ml and Ml+1 with realizations ml, rml+1, s,
where the subscripts r, ss{1, 2} specify the sire’s
flanking marker alleles transmitted to the daughter.
The transmission probability of the QTL allele Q at
position ds{0,1, …, d} is a function of the flanking
markersMlMl+1 and the paternal QTL allele. Let Ti, j

denote the random variable, which is realized by the
respective transmission probability ti, j,d depending on
the observed flanking marker alleles per daughter i, j
at position d.

First, one presumed QTL position ds{0,1, …, d} is
investigated. The observed value per daughter i, j is
the realized sample variance si, j

2 of the piglet birth
weights within one litter, i=1, …, N, j=1, …, n and
s2=(s1,1

2 , s1, 2
2 , …, sN,n

2 )T. As a result of Appendix A,
the distribution of the sample variance Si, j

2 is ap-
proximated by a gamma distribution. Note that a
gamma distributed random variable has the expec-
tation m and variance m2w

w
with dispersion parameter w

and weight w.
Our aim is to fit a GLM (McCullagh & Nelder,

1989) to the sample variances. To distend we intro-
duce a multiplicative model. If the sire’s genotype is
Qq, then for r, ss{1, 2} the conditional expectation
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of Si, j
2 given the observed marker alleles {Ml=ml, r,

Ml+1=ml+1, s} at position d is

mi, j, d=E(S2
i, jjMl=ml, r,Ml+1=ml+1, s ;d)

=ti, j, d(s
2
QTL+t2)+(1xti, j, d)(s

2
QTL+t

*
2)

=s2
QTL+t

*
2+ti, j, d(t

2xt
*
2)

¼:ui+biti, j, d: (3)

The mean value ui per sire is{1, …, N} is

ui=s2
QTL+t

*
2 (4)

and the parameter bi describes the relation between
the observed trait si, j

2 per daughter and the inherited
paternal QTL allele, i.e.

bi=(t2+s2
QTL)x(t

*
2+s2

QTL)

=(1xc2) (t2+s2
QTL): (5)

In view of (3) the sample variance is described by the
model

S2
i, j={ui+biTi, j}�ei, j: (6)

The ei, j are independently gamma distributed random
variables with expectation 1. The weights are defined
by wi, j=

ni, jx1

2
, where ni, j denotes the litter size of

daughter i, j. The identity link function is used to ob-
tain the linear predictor gi, j,d=mi, j,d. The parameter
vector b consists of the regression coefficients

b=(u1, . . . , uN, b1, . . . , bN)
T: (7)

The application of GLM theory leads to estimates of
the expectations md=(m1,1,d, m1, 2,d, …, mN,n,d)

T as well
as the vector b in (7) at position ds{0,1, …, d}
Consequently, it is possible to construct an appropri-
ate test statistic to check the local null hypothesis
H0,d : There exists no QTL at position d affecting the
within-litter variance, which is equivalent to

H0, d: b1=. . .=bN=0 or equivalently md=m0

vs HA, d: bklbl for some kll: (8)

With (3) the log-likelihood function ‘ of the
modelled gamma distributed random vector S2=
(S1,1

2 , …,SN,n
2 )T can be expressed in terms of md at

position d. It holds

‘(s2, md,wd)=

g
N, n

i=1, j=1

wi, j

wd

x
s2i, j

ui+biti, j, d
xln (ui+biti, j, d)

� ��
+f(s2i, j,wd)

�
¼: l(s2, b,wd): (9)

The f(si, j
2 , wd) summarizes those components where

mi, j,d does not appear and b is the vector (7). The

estimate bbbN, n, d=(buun, 1, d, . . . , buun,N, d, bbbn, 1, d, . . . , bbbn,N, d)
T

may be obtained by iterative procedures (McCullagh
& Nelder, 1989) as implemented in the ‘glm’ function
of the R program (R Development Core Team, 2005).
Using (4) and (5) the parameter cx1 is estimated for
each sire is{1, …,N} at the detected QTL positionbdd by

dcx1
n, icx1
n, i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibbbn, i, bdbuun, i, bd +1:

vuut
For asymptotic investigations of the estimator bbbN, n, d,
some special matrices are needed. The design matrix
Xd, which contains the transmission probabilities at
position d, is

X d=

1 0 . . . t1, 1, d 0 . . .
1 0 � � � t1, 2, d 0 . . .

..

. ..
.

� � � ..
. ..

.
. . .

1 0 � � � t1, n, d 0 . . .
0 1 � � � 0 t2, 1, d . . .

..

. ..
.

� � � ..
. ..

.
. . .

0 1 � � � 0 t2, n, d . . .

..

. ..
.

� � � ..
. ..

.
. . .

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
: (10)

Let W be the diagonal weight matrix with elements
wi, j=

ni, jx1

2
. Then it follows from (9) that the Fisher

information matrix I (b, d) of the conditional distri-
bution at position d is

I (b, d)=xE[rrTl(S2, b,wd)jMl=ml, r,Ml+1

=ml+1, s ;d]=
1

wd

XT
dWX d:

Moreover, let GdsR
2Nr2N be the root of Ix1(b, d)

defined by Gd
TGd=Ix1(b,d). Under some con-

ditions (Fahrmeir & Kaufmann, 1985), which can be
shown to be satisfied (see Supplementary Appen-
dixes), the ML estimator bbbN, n, d is asymptotically
normal, i.e.

GxT
d (bbbN, n, dxb) !DN(0, I 2N) as n ! 1, (11)

where pD denotes the convergence in distribution.
Under the null hypothesis (8) the model reduces

to Si, j
2 =ui .ei, j. It can be shown that the dispersion

parameter wd
0=w0 is approximately 1 under the

null hypothesis for every position d (see Supple-
mentary Appendixes). Thus, the likelihood function
of S2 at w0=1 is constant for every position d
under H0,d.

(iii) Test statistics in the GLM

Four different types of tests statistics differing,
among others, in their treatment of the dispersion
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parameter are described in detail in the following.
Three of them are later compared via simulation
(Section 3).

The estimate of the expectation vector md is defined
by bmmN, n, d=X d

bbbN, n, d. With the log-likelihood function
‘(s2, bmmN, n, d,wd) in (9) the scaled devianceD* for a fixed
value of the dispersion parameter wd is defined by
(McCullagh & Nelder, 1989)

D*(s2, bmmN, n, d,wd) :¼2[‘(s2, s2,wd)x‘(s2, bmmN, n, d,wd)]:

The deviance D is characterized by D(s2, bmmN, n, d) :¼
wdD*(s2, bmmN, n, d,wd). Under the null hypothesis H0,d

and for a fixed value wd the likelihood ratio is
asymptotically x2-distributed with N degrees of free-
dom (Fahrmeir & Tutz, 1994)

2[l(S2, bbbN, n, d,wd)xl(S2, bbb0
N, n,wd)] �!

H0, d

Dx
2
N

as n ! 1, (12)

where bbb0
N, n is the ML estimate under the null

hypothesis. With the log-likelihood function
‘(s2,md, wd)=l(s2, b, wd) in (9), the statement (12) is
equivalent to

D*(S2, bmm0
N, n,wd)xD*(S2, bmmN, n, d , wd) �!

H0, d

Dx
2
N

as n ! 1: (13)

If wd=1 is satisfied, then

D(S2, bmm0
N, n)xD(S2, bmmN, n, d) �!

H0, d

DX 2
N as n ! 1: (14)

The generalized Pearson estimator for the dispersion
parameter wd at position ds{0,1, …,d} is defined by
(e.g. Fahrmeir & Tutz, 1994)

bwwN, n, d=
1

Nnx2N
g
N, n

i=1, j=1
wi, j

s2i, jxbmmN, n, i, j, dbmmN, n, i, j, d

 !2
:

This estimator is consistent and approximately
x2-distributed (Fahrmeir & Tutz, 1994). If wd is re-
placed by a consistent estimator in (12), then this
statement remains valid. According to Jørgensen
(1987) it holds

1bwwN, n, d

[D(S2, bmm0
N, n)xD(S2, bmmN, n, d)] �!

H0, d

Dx
2
N

as n ! 1: (15)

Similarly, the deviance estimator ~wwN, n, d is usually ap-
plied to estimate the dispersion parameter,

~wwN, n, d=
D(s2, bmmN, n, d)

Nnx2N
:

Note that ~wwN, n, d is not necessarily consistent. Using
this deviance estimator the distribution of the

left-hand term in (13) is approximated by the
F-distribution withN andNnx2N degrees of freedom
(Jørgensen, 1987),

D(S2, bmm0
N, n)xD(S2, bmmN, n, d)

D(S2, bmmN, n, d)

Nnx2N

N
�
H0, d

DFN,Nnx2N:

(16)

To test the local null hypothesis in (8) H0,d : md=m0

there are at least four natural test statistics :

according to (13)

Ld*=D*(s2, bmm0
N, n,wd)xD*(s2, bmmN, n, d;wd),

according to (14) Ld=D(s2, bmm0
N, n)�D(s2, bmmN, n, d),

according to (15)

bLLd=
1bwwN, n, d

[D(s2, bmm0
N, n)xD(s2, bmmN, n, d)],

according to (16)

~FFd=
D(s2, bmm0

N, n)xD(s2, bmmN, n, d)

D(s2, bmmN, n, d)

Nnx2N

N
:

If wd=1 is not fulfilled, then the test based on bLLd and
~FFd can be expected to have more QTL detection
power. The threshold value under local investigations
is given by the 95% quantile of the corresponding
distribution in (13), (14), (15) and (16) of the test
statistics Ld

*, Ld, bLLd and ~FFd, respectively.
We now consider the global hypothesis testing

problem H0 : There exists no QTL on the chromosome
with effect on the within-litter variance, which is
equivalent to

H0: b1=. . .=bN=0 or equivalently md=m0

for d=0, 1 . . . , d

vs HA: bklbl for some kll: (17)

The following test statistics are appropriate :

L*= max
d2{0, 1, ..., d}

Ld*, (18)

L= max
d2{0, 1, ..., d}

Ld, (19)

bLL= max
d2{0, 1, ..., d}

bLLd, (20)

~FF= max
d2{0, 1, ..., d}

~FFd: (21)

The null hypothesis (17) is rejected for large values of
the corresponding test statistic. The theoretical dis-
tribution of the presented test statistics is unknown
because of marker dependencies. Thus, to find the
threshold we use the permutation test approach
(Churchill & Doerge, 1994). Properties of these tests
will be given in Section 3.
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Furthermore, the QTL is estimated by maximum
likelihood at that position, where the value of the test
statistic is maximal, e.g.

bdd 2 arg max
d2{0, 1, ..., d}

Ld*: (22)

(iv) Weighted regression

Using ideas from Haley & Knott (1992) we introduce
a weighted regression model and construct the test
statistic for the global null hypothesis in (17). Later, in
Section 3, the two approaches will be compared by
computer simulations. Ros et al. (2004) recommended
the use of a log-transformation on skew distributed
traits (Box & Cox, 1964). Applying the logarithm of
the sample variances the data are approximated by a
normal distribution (see Supplementary Appendixes)
and a linear model (LM) is constructed. Note that
under the log-transformation the multiplicative effect
on the within-litter variance becomes additive.

Considering the observed marker alleles ml, rml+1, s

of individual i, j and the parameter c2 in (2) the con-
ditional expectation given the flanking marker alleles
is

E(ln S2
i, jjMl=ml, r,Ml+1=ml+1, s, ;d)

� ln(t
*
2+s2

QTL)xti, j, dln c
2: (23)

Thus, the LM at a fixed position ds{0,1, …,d} is de-
fined by

lnS2
i, j=ui+biTi, j+ei, j: (24)

Here the ei, j are normally distributed random vari-
ables with expectation null and Ti, j are the trans-
mission probabilities as explained in Section 2(ii). The
parameter ui is the mean value per family and bi de-
scribes the linear connection between the observations
ln si, j

2 and the inherited paternal QTL allele expressed
by the individual transmission probabilities. A stan-
dard (weighted) regression analysis has been carried
out in order to estimate the parameter vector b similar
to (7) for every position d on the chromosome. For
weighted regression we refer to Seber (1977). To check
the local null hypothesis H0,d in (8), a test statistic Fd

is constructed, which is a function of the residual sum
of squares of the full and reduced model. This statistic
is approximately F-distributed under H0,d with N and
Nn – 2N degrees of freedom (Seber, 1977). To test the
global null hypothesis H0 in (17) the permutation test
is used again to determine the threshold value. The
suitable test statistic is

F= max
d2{0, 1, ..., d}

Fd: (25)

Under the assumption that the sire is{1, …,N} has
the genotype Qq, it follows from (23) that bi=xlnc2.

Thus, the parameter cx1 is estimated at the detected
QTL position bdd by

dcx1
n, icx1
n, i =

ffiffiffiffiffiffiffiffi
exp

p
{bbbn, i, bd} for i=1, . . . ,N:

3. Simulation studies

When genotyping the individuals of the population,
we set markers at intervals of 10 centiMorgan (cM) on
a chromosome of length 100 cM (d=99). We thus
have 11 markers at our disposal (k=10) and the local
test statistics are evaluated in steps of 1 cM. Under
the null hypothesis H0, no QTL is segregating in the
population. To model the alternative hypothesis
we placed a single QTL at position 25 cM (between
the third and fourth marker). In the simulation study
we usedN=4 sires and n=200 daughters per sire. The
litter size is Poisson distributed (Thomson, 2003) with
a mean value of 10. The transformed weight at birth
Xi, j,k in (A.4) is simulated. The standard deviation of
piglet birth weight is assumed to be 320 g (e.g. Roehe,
1999). Similar to Roehe (1999) the residual variance is
about 40% of the phenotypic variance, se

2=(200 g)2.
The direct polygenic variance is about 9% of the
phenotypic variance, spolygene

2 =(96.8 g)2. The value of
the transformed additive QTL effect G̃i, j,k is listed in
Table 2 and depends on the piglet’s genotype. Because
the variance of the additive QTL effect takes about
1–3% of the phenotypic variance (e.g. Bidanel et al.,
2001), the additive value is a=61 g. The factor c

*
varies from 1 to 1.4 by 0.1. The gene frequency is as-
sumed to be one-half. Covariances between the ma-
ternal effects and the direct effects of the piglet are
neglected. The marker alleles ml, r, l=0,1, …, 10, are
drawn by chance according to the recombination
rates. The simulation was repeated 100 times for every
investigated factor c

*
. Ten thousand permutations of

the first simulated sample variances were used to de-
termine the chromosome-wise threshold value. This
critical value was also applied for the following 99
repeated simulations of sample variances. The simu-
lations and tests were carried out with ‘glm’ and self-
written functions of the R program (R Development
Core Team, 2005).

Fig. 1a shows the density estimates of the con-
ditional distributions of Si, j

2 obtained from the appli-
cation ‘density ’ with Gaussian kernel in R. This
figure shows how the densities depend on the in-
herited paternal QTL allele as it is pointed out in
Appendix A.

(i) Results based on the GLM

Examples of the results of analysing the simulated
sample variances with use of the GLM theory are
shown for the factor c

*
=1.2 (c=1.177) in Figs. 1b
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and 2a, b. Fig. 1b displays the average values of the
test statistic bLL in (20). The maximum of these values
of the test statistic is attained at about 25 cM, where
the QTL was actually simulated. Fig. 2a is a histo-
gram of detected QTL positions (22) if the null hy-
pothesis is rejected. One can see that the estimated
positions closely surround the correct position and
deviate by only about 5–10 cM. In Fig. 2b it is con-
spicuous that the estimates of dcx1

n, icx1
n, i are split into three

groups. Depending on the linkage of marker and QTL
alleles the values fluctuate around the parameters c or
cx1 for heterozygous sires with genotype qQ and Qq,
respectively. Otherwise, in case of homozygotes, the
estimates vary about 1. When test statistic F̃ is ap-
plied, the results are similar to the application of bLL as
shown in Table 3.

(ii) Results based on the LM

Evaluating the simulated sample variances with use of
the test statistic F in (25), the results differ slightly
from the case of applying the test statistics bLL and F̃.
For the weighted regression model we used a max-
imization as in (22) to estimate the QTL position. Fig.
2c gives a histogram of the estimated QTL positions if
H0 is rejected. The fluctuation around the simulated
QTL position at 25 cM is similar to the GLM. Fig. 2d
displays a histogram of the estimator dcx1

n, icx1
n, i and shows

again that the estimator has a mixed distribution.
Table 3 summarizes the results achieved using the

test statistics L, bLL, F̃ and F in (19)–(21) and (25),
respectively. The empirical QTL detection power is
determined by the relative frequency of rejecting the
null hypothesis. It is obvious that with increasing

factor c
*
the empirical power increases. The empirical

global power should not exceed the value of 90%,
because 10% of the repeated simulations created ex-
clusively homozygous sires at random (all N=4 sires
are homozygous) and therefore a QTL effect on the
within-litter variance could not be detected. Under
the null hypothesis H0 (c=1) and chromosome-wise
investigations the a level of 5% holds for the verified
test statistics except statistic F̃. This may be due to the
approximative permutation test with only 10 000 re-
samples.

For c
*
values 1.2 and larger values, where the QTL

detection power is already very high, all tests perform
equally well. However, for c

*
=1.1 or equivalent

c=1.088 the GLM clearly outperforms the weighted
regression approach and provides an extra gain of
12% empirical global power. From Table 3 we can
see that the tests based on the GLM provide a higher
empirical QTL detection power than tests based on
weighted regression. Similar results are given under
local investigations at d=25 cM (see Table 3).

4. Discussion

(i) LM versus GLM

Applying the test based on the LM requires far less
computing time compared with the tests based on the
GLM (2 hours vs 17 hours for simulating the dataset
and running the tests on a PC with a 3 GHz Intel
processor). The surplus of computing time for the
GLM is, however, not large compared with the total
time and costs usually required for QTL experiments.
The benefit of the GLM with respect to empirical
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Fig. 1. QTL simulated at 25 cM, c
*
=1.2. (a) Estimation of densities separated by paternal QTL allele Q and q ;

(b) average values of test statistic bLL based on the GLM and 100 repetitions.
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global power is obvious when c
*
=1.1; the use of the

test statistics bLL and F̃ should be favoured. The pres-
ented test statistics remain suitable in the case of a
varying number of daughters per sire. To avoid a loss
of QTL detection power, a decreased number of
daughters per sire may be adjusted for by considering
more half-sib families. It may be interesting to

mention that using the log-link instead of the identity
link function leads to slightly less QTL detection
power (Wittenburg, 2005).

Thomson (2003) and Lange & Whittaker (2001)
specified the detection of a QTL for non-normal
traits. Thomson (2003) proposed a model for
non-normal data types using normal-based profile

Table 1. Calculation of genotype frequencies within litter; presumed gene frequency pQ=0.5; dominance effect is
omitted; a denotes the additive value

1 2 3 4 5.1 5.2 5.3 6 7

Realization
of B

Genotype
daughter i, j

Genotype
male i, j

Fraction of piglets
with genotype

mQTL,m

Frequency
of bm under condition
of 1{Q},i,jpweights in
Table 2QQ Qq qq

Q from sire b1 QQ QQ 1 0 0 a pQpQ
2 =1

8

1{Q},i,j=1 b2 Qq, qQ 1
2

1
2 0 1

2a pQ2pQ(1xpQ)=1
4

b3 qq 0 1 0 0 pQ(1xpQ)
2=1

8

b4 Qq QQ 1
2

1
2 0 1

2a (1xpQ)pQ
2 =1

8

b5 Qq, qQ 1
4

1
2

1
4 0 (1xpQ)2pQ(1xpQ)=1

4

b6 qq 0 1
2

1
2 x1

2a (1xpQ) (1xpQ)
2=1

8

q from sire b7 qQ QQ 1
2

1
2 0 1

2a pQpQ
2 =1

8

1{Q},i,j=0 b8 Qq, qQ 1
4

1
2

1
4 0 pQ2pQ(1xpQ)=1

4

b9 qq 0 1
2

1
2 x1

2a pQ(1xpQ)
2=1

8

b10 qq QQ 0 1 0 0 (1xpQ)p
2
Q=1

8

b11 Qq, qQ 0 1
2

1
2 x1

2a (1xpQ)2pQ(1xpQ)=1
4

b12 qq 0 0 1 xa (1xpQ) (1xpQ)
2=1

8

Table 2. Calculation of various expectations of the transformed QTL effect G̃i,j,k,m=Gi,j,kxE(Gi,j,k|B=Bm);
dominance effect is omitted; a denotes the additive value and sQTL

2 denotes the variance of the QTL effect Gi,j,k

1 2 3.1 3.2 3.3 4 5 6

Realization
of B

Value of QTL effect
G̃i,j,k,m of piglets
with genotype

EG̃i, j,k,m
2 =~ss2

QTL,m (EG̃i, j,k,m
2 )2=~ss4

QTL,m EG̃i, j,k,m
4 =~mm4,mQQ Qq qq

Q from sire b1 0 – – 0 0 0
1{Q},i,j=1 b2

1
2a x1

2a – 1
4a

2 1
16
a4 1

16
a4

b3 – 0 – 0 0 0

b4
1
2a x1

2a – 1
4a

2 1
16
a4 1

16
a4

b5 a 0 xa 1
2a

2 1
4a

4 1
2a

4

b6 – 1
2a x1

2a
1
4a

2 1
16
a4 1

16
a4

Weighted sum 1
4a

2=sQTL
2 3

32
a4=3

2
s4
QTL

5
32
a4=5

2
s4
QTL

q from sire b7
1
2a x1

2a – 1
4a

2 1
16
a4 1

16
a4

1{Q},i,j=0 b8 a 0 xa 1
2a

2 1
4a

4 1
2a

4

b9 – 1
2a x1

2a
1
4a

2 1
16
a4 1

16
a4

b10 – 0 – 0 0 0
b11 – 1

2a x1
2a

1
4a

2 1
16
a4 1

16
a4

b12 – – 0 0 0 0

Weighted sum 1
4a

2=sQTL
2 3

32
a4=3

2
s4
QTL

5
32
a4=5

2
s4
QTL
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log-likelihood and solving the generalized estimat-
ing equations. These methods of parameter
estimation are comparable to the techniques de-
scribed above. The essential difference is, that the
present work employs the approximate gamma dis-
tribution of Si, j

2 and develops the appropriate profile
log-likelihood for the estimation of the QTL position
parameter d.

Standard regression interval mapping has been
proved to be a robust method for non-normally dis-
tributed continuous traits in comparison with non-
parametric approaches (Rebaı̈, 1997). Kadarmideen
et al. (2000) found similar QTL detection power with
LM and GLM for binary traits. However, Yin &
Zhang (2006) demonstrated for ordinal data that the
GLM outperformed the LM in terms of QTL detec-
tion power. Therefore, our results provide another

example in which a GLM should be preferred for
QTL mapping.

(ii) Analysis of heterogeneous variances

Several authors have dealt with heterogeneity of vari-
ances. Mixed Gaussian models for the within-litter
standard deviation have already been mentioned
(Högberg & Rydhmer, 2000; Damgaard et al., 2003).
Foulley et al. (1990) put forward a log-linear model
for residual variances in order to identify sources of
heterogeneity, an idea which has been further ex-
tended by SanCristobal et al. (1993), Foulley & Quaas
(1995) and SanCristobal-Gaudy et al. (1998) by in-
cluding heterogeneous genetic components of vari-
ance and random factors affecting variances. A
Bayesian approach jointly considering genetic effects
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Fig. 2. QTL simulated at 25 cM, N=4 sires, n=200 daughters, c*=1.2 (c=1.177). (a) Detected QTL positions based on
the GLM with test statistic bLL ; (b) histogram of estimatordcx1
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on mean and residual variance was developed by
Sorensen & Waagepetersen (2003). Other extensions
comprise mean–variance relationships (Foulley, 2004)
in models allowing also for effects of explanatory
variables on variance components. The latter ap-
proach in particular would presumably be worthwhile
to be investigated as an alternative to the methods
presented.

(iii) Ambiguity of the parameter c2

The parameter c2 denotes the ratio of within-litter
variance of q-daughters compared with Q-daughters.
If the parameter c is significantly different from 1, it is
ambiguous whether the within-litter variance is affec-
ted by a raised residual variance, by an enlarged
polygenic variance or by an increased QTL variance
(see equation (1)). When a non-significant result is
observed, a constant within-litter variance could also
be generated by, for example, an increased residual
variance and decreased polygenic variance. Therefore,
it should be kept in mind that the parameter c2 is just a
cumulative effect for any changes in the components
of the within-litter variance.

(iv) Granddaughter design

The applied model for the daughter design can be
extended, with some modifications, to the grand-
daughter design. Consider a fixed number of

grandsires, which are mated with unrelated grand-
dams of the population. We select one son per mating
and these sons are mated with unrelated dams. One
daughter per mating is chosen to analyse the within-
litter variance. For each granddaughter we have to
calculate the sample variance of observed birth
weights within one litter. We may assign the sample
variances pooled over all daughters as observation
for every sire and apply the techniques of Section 2
with adjusted degrees of freedom (number of total
piglets minus number of daughters) in the matrix of
weights.

(v) Sex effect

Up to now it has been assumed that no sex effect oc-
curs on the piglet’s mean value or on the variability
of phenotypes. But the expected phenotypic value
of male piglets may be larger than for female piglets.
To consider such an effect, the model (A.1) in
Appendix A has to be adjusted. Three different scen-
arios are possible : (i) No sex effect on the mean
and variability of the phenotypic value exists.
Therefore, the observed value per daughter consists of
the sample variance of all weights at birth within one
litter (degrees of freedom: litter size minus 1). (ii) A
sex effect acts on the expected phenotypic value but
not on its variability. Thus, the observed value per
daughter is the sample variance of birth weights
pooled over male and female progeny (degrees of

Table 3. Summary of simulation results (10% of repetitions with exclusive homozygous sires); power_p_emp
denotes the empirical pointwise power evaluated at the simulated QTL position at 25 cM with use of tabulated
quantiles of the x2- and F-distribution; power_g_emp is the empirical global power; mean_detec is the average of
detected QTL positions and variance_detec is the sample variance of estimated positions; the statistic F is based
on the LM and L, bLL, F̃ are based on the GLM

Test statistic

Simulated factor of random deviation c
*

1.0 1.1 1.2 1.3 1.4

power_p_emp F 0.06 0.66 0.90 0.90 0.90
L 0.06 0.74 0.90 0.90 0.90bLL 0.07 0.73 0.90 0.90 0.90
F̃ 0.06 0.73 0.90 0.90 0.90

power_g_emp F 0.04 0.50 0.88 0.90 0.90
L 0.02 0.52 0.87 0.90 0.90bLL 0.03 0.62 0.88 0.90 0.90
F̃ 0.06 0.62 0.89 0.90 0.90

mean_detec F 0.4400 0.3568 0.2552 0.2674 0.2647
L 0.4620 0.3555 0.2732 0.2665 0.2630bLL 0.4619 0.3556 0.2727 0.2656 0.2647
F̃ 0.4620 0.3555 0.2732 0.2665 0.2630

variance_detec F 0.1074 0.0643 0.0158 0.0230 0.0176
L 0.1086 0.0600 0.0280 0.0206 0.0164bLL 0.1088 0.0600 0.0280 0.0207 0.0163
F̃ 0.1086 0.0600 0.0280 0.0206 0.0164

QTL effects on within-subject variability 253

https://doi.org/10.1017/S0016672307008968 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672307008968


freedom: litter size minus 2). (iii) The sex affects the
variability of the phenotypic value. Thus, there are
two observed values per litter : the respective sample
variances of male and female progeny. In this case it is
possible to test a QTL effect as well as a sex by QTL
interaction.

(vi) Other fields of application

A second series of simulations was started with mul-
tiple measurements taken from the genotyped in-
dividuals themselves (i.e. the daughters), such as the
withers height of cows in a daughter design. In this
case the theory simplifies, because the phenotypic
value depends only on the individual’s own genotype
and not on any paternal QTL allele in progeny. Thus,
the model for the primary trait consists only of the
mean value within daughter i, j and the normally dis-
tributed residual deviation, which is modified by
cs(0, ?) if the daughter has inherited the QTL allele
q. The value c appears directly in this model.
Therefore, the parameter c2 still denotes the ratio of
variance within individual of q-daughters to Q-
daughters. Note that in this case the distribution of
Si, j

2 is exactly gamma.
In the simulated example, the withers height of

cows was measured 10 times in a daughter design with
N=4 sires and n=200 daughters per sire. The simu-
lated QTL effect of c=1.2 was detected in 94% of the
repetitions with use of the test statistic F and bLL (six
repetitions created exclusively homozygous sires).
When the withers height was measured three times,
the simulated QTL effect of c=1.3 was detected in
70% of the repetitions based on the test statistic F and
in 85% based on the statistic bLL (seven repetitions with
only homozygous sires).

In plants and laboratory animals, a panel of re-
combinant inbred lines (RILs; e.g. Broman, 2005) can
be produced for QTL mapping purposes. As all
members of a certain RIL share the same genotype
but may vary in their phenotype, RILs can serve as a
well-suited tool for mapping QTL effects on within-
genotype variability. Essentially a panel of RILs
can be treated with the methods presented in this
article, when the data are analysed as a single half-sib
family (or backcross) in the same way as in the cow
example.

There are possible applications in plants which
closely resemble the repeated measurements of with-
ers height of cows. For example, one could examine
some characteristic of tomato fruits as a multiple
measurement of a tomato plant. Again, in this appli-
cation the theory simplifies because of lack of a pa-
ternal genetic effect on the fruits (tomatoes are almost
purely maternal tissue). Moreover, the sample vari-
ances per panicle may be pooled over all panicles to
generate one observation per tomato plant and to

consider some effect of panicle on the phenotypic
mean of the fruits.

(vii) Gene frequency

The GLM (6) and LM (24) do not include a par-
ameter for the gene frequency pQ of the QTL allele Q ;
in the simulations the gene frequency was assumed to
be one-half. Looking at the components which are
affected by pQ, the ratio c2 in (2) is obvious. The par-
ameter c2 depends on the variance of the transformed
QTL effect G̃i, j,k in (A.2) of Appendix A, which
is calculated on the basis of known genotype fre-
quencies within one litter (Table 2). Thus, if pQ
differs essentially from one-half, the condition
E(G̃i, j,k|1{Q}, i, j=1)=E(G̃i, j,k|1{Q}i, j=0)=sQTL

2 is no
longer satisfied. Consequently, the ratio c2 deviates
from 1 even though a QTL effect on the within-
litter variance does not exist. To consider the conse-
quences of a gene frequency being different from
one-half, the simulations under the null hypothesis
(c
*
=1) have been repeated for the statistics bLL in (20)

and F in (25) using gene frequencies of 0.10 and 0.25.
Without giving the detailed simulation results we re-
mark that the a level of 5% was always maintained
in both tests. This can be referred to a relatively small
variance of the additive QTL effect in comparison
with the other variance components (see equation
(1)). Hence in most practical applications with a
possible paternal QTL effect on progeny (piglets),
a gene frequency different from 0.5 can be neglected
and the theory provided may still serve as a good
approximation. In all other cases (tomatoes, withers
height of cows) where repeated measurements are
taken from either the genotyped individuals them-
selves or from purely maternal tissues, our theory
is exact and unaffected by the allele frequency at
the QTL.

Appendix A. Distribution of the sample variance

The phenotypic value Yi, j,k of piglet within one litter
is described by the following model consisting of in-
dependent components :

Yi, j, k=mi, j+Ai, j, k+Gi, j, k+1{Q}, i, jEi, j, k

+c
*
(1x1{Q}, i, j)Ei, j, k, (A:1)

where i indicates the sire, j the daughter per sire and
k the piglet. The constant litter mean is denoted by
mi, j. The random components are the mendelian
sampling effect Ai, j, k � N(0, 1

2
s2
polygene), the additive

QTL effect Gi, j,k and the random deviation Ei, j,ky
N(0, se

2).
The indicator function 1{Q}, i, j takes the value 1 if

the daughter i, j inherits the QTL allele Q at the un-
known QTL position from the sire i. In the case of
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inheriting q, the random deviation Ei, j,k of model
(A.1) is modified by the factor c

*
s(0, ?). Let

1{Qq,qQ}, i, j,k be the indicator function with value 1 if
the piglet has a heterozygous genotype, 1{QQ}, i, j,k

and 1{qq}, i, j,k in the case of genotype QQ and qq,
respectively. The additive QTL effect Gi, j,k depends
on the piglet’s genotype and has a three-point distri-
bution. In the absence of a dominance effect its
probabilities are

Pr(Gi, j, k=xa)=Pr(1{qq}, i, j, k=1),

Pr(Gi, j, k=x0)=Pr(1{Qq, qQ}, i, j, k=1),

Pr(Gi, j, k=xa)=Pr(1{QQ}, i, j, k=1),

where a is some unknown constant which, in view
of (A.1), is called the additive value. The probability
that the piglet has a special genotype, e.g.
Pr(1{QQ}, i, j,k=1), is only allocatable in combination
with the unobservable parental genotypes. Therefore,
an additional random variable B is required, which
denotes the random combination of QTL alleles of
the daughter i, j and her associated male (mating
types) as described in columns 3 and 4 of Table 1. The
realizations of B are denoted by bm, m=1, ..., 12
(column 2 of Table 1). The conditional distributions
of Gi, j,k given B lead to the distribution of the
additive QTL effect Gi, j,k. For a fixed index m the
phenotypic values of the offspring within one litter
are independently and identically distributed. Because
mQTL,m=E(Gi, j,k|B=bm)l0 (for some exceptions see
Table 1), we set

~GGi, j, k=Gi, j, kxE(Gi, j, kjB), (A:2)

which now satisfies E(G̃i, j,k|B=bm)=0 8m. If
Ah={1{Q}, i, j=h}, hs{0, 1}, then

E( ~GG
2

i, j, kjA1)= g
6

m=1
Pr(B=bmjA1)E( ~GG

2

i, j, kjA1 \ {B=bm})

= g
6

m=1
Pr(B=bmjA1) ess2

QTL,m=
1

4
a2,

E( ~GG
2

i, j, kjA0)= g
12

m=7
Pr(B=bmjA0) ess2

QTL,m=
1

4
a2,

(A:3)

where the different values of ess2
QTL;m=E( ~GG

2

i, j, kjAh \
{B=bm}) are listed in Table 2, column 4 and the cor-
responding row bm. The variance of the additive QTL
effect is defined by s2

QTL:=
1
4
a2. We see from (A.3) that

V(G̃i, j,k|Ah)=sQTL
2 , hs{0, 1}.

To eliminate mi, j that appears in (A.1), we introduce
Xi, j,k by

Xi, j, k=Yi, j, kxmi, jxE(Gi, j, kjB)
=Ai, j, k+ ~GGi, j, k+1{Q}, i, jEi, j, k+c

*
(1x1{Q}, i, j)Ei, j, k:

(A:4)

If ni, j denotes the litter size of daughter i,j, then the
sample variance is

S2
i, j=

1

ni, jx1
g
ni, j

k=1

(Xi, j, kxXi, j, :)
2

with Xi, j, :=
1

ni, j
g
ni, j

k=1

Xi, j, k: (A:5)

The within-litter variance depends on the paternal
QTL allele of the daughter i, j. The conditional
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Fig. 3. (a) Histogram of simulated values si, j
2 when inheriting Q versus density of a gamma distribution with parameters in

(A.6) ; (b) histogram of simulated values si, j
2 when inheriting q versus density of a gamma distribution with parameters in

(A.6), where t2 is replaced by t
*
2 and c

*
=1.2.
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expectation of Xi, j,k and Si, j
2 given the events Ah,

hs{0, 1}, are

E(Xi, j, kjAh)=E(Ai, j, k+ ~GGi, j, k+1{Q}, i, jEi, j, k

+c
*
(1x1{Q}, i, j)Ei, j, kjAh)=0,

E(S2
i, jjA1)=V(Xi, j, kjA1)

=E([Ai, j, k+ ~GGi, j, k+1{Q}, i, jEi, j, k

+c
*
(1x1{Q}, i, j)Ei, j, k]

2jA1)

=
1

2
s2
polygene+s2

QTL+s2
e¼:t2+s2

QTL,

E(S2
i, jjA0)=V(Xi, j, kjA0)

=
1

2
s2
polygene+s2

QTL+c
*
2s2

e=:t
*
2+s2

QTL:

Because the investigated sample variance includes the
non-normally distributed variable G̃i, j,k, the con-
ditional distribution of Si, j

2 is not a x2 distribution.
Therefore, an approximation with a gamma distri-
bution Cm,ni, j

with expectation m and variance m2

ni, j
will

be considered.
Assertion 1 The conditional variance of Si, j

2 in (A.5)
given {1{Q}, i, j=1} is

V(S2
i, jj1{Q}, i, j=1)=

2

ni, jx1

r (t2+2s2
QTL)t

2+s4
QTL

ni, j
4

+
1

4
+

1

ni, j

� �� �
:

An analogous statement holds under the condition of
{1{Q}, i, j=0} if t

*
2 is used instead of t2.

Proof : See Supplementary Appendixes.
Fig. 3a and b show a simulated histogram of Si, j

2 .
Paternal QTL alleles Q and q were distinguished. The
figures suggest approximating the conditional distri-
bution of Si, j

2 , in (A.5) by a two-parameter gamma
distribution Cm,ni,j

with

m=t2+s2
QTL,

ni, j=
ni, jx1

2

(t2+s2
QTL)

2

(t2+2s2
QTL)t

2+s4
QTL(

ni, j
4
+ 1

4
+ 1

ni, j
)
:

(A:6)

Note that the presented model (A.1) is an all-purpose
model that covers two assumptions. First, similar to
the ideas of Hill & Zhang (2004), the QTL may affect
both the phenotypic mean and its variability. In this
case, the distribution of the daughter’s trait is ap-
proximated by a gamma distribution as shown above.
Second, the QTL affects only the variability of the
phenotype. Then the general model (A.1) simplifies
and the distribution of the within-subject sample
variance is exactly gamma.
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