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A FUNCTIONAL INEQUALITY FOR THE
POLYGAMMA FUNCTIONS

HORST ALZER

Let

n+1
An(2) = z,: W) (z>0neN),

where 1 denotes the logarithmic derivative of Euler’s gamma function. We prove that
the functional inequality

An(@) + Dn(y) <1+ An(z), " +y =2,

holds if and only if 0 < r < 1. And, we show that the converse is valid if and only if
r<Qorrz2n+1.

1. INTRODUCTION

In 1973, Griinbaum [6] presented the following elegant inequality for the Bessel
function Jp.

(1.1) Jo(z) + Jo(y) €1+ Jo(z), 2 + y2 =22

Askey [4] offered a new proof of (1.1) and showed that (1.1) can be extended to J, with
a>0.

Jo(@) + Jiy) S 1+ J05(2), z2+4% =22
where

Jo(z) = 2°T(a + 1)z J,(z).

It is natural to ask whether there exist other special functions which satisfy inequal-
ities of Griinbaum-type.

The logarithmic derivative of the gamma function, ¢ = I''/T", is known in the liter-
ature as the digamma or psi function. Its derivatives
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are called polygamma functions. We have the integral and series representations

t'n

"ot dt

(1.2) ™ (z) = (=1)"* /0°° et

= "+1n'z(1+k)n+l (z >0; n € N).

These functions have interesting applications in various fields. In particular, they play an
important role in mathematical physics. Their main properties can be found, for instance,
in [1, Chapter 6]. Inequalities for digamma and polygamma functions are discussed in
[3]. We also refer to [5], where a survey on gamma function inequalities is given.

In this note, we show that the trigamma function 1’ satisfies

(1.3) 1+2%(2) <2/ (2) +9*¥'(y), 2°+y* =2
Actually, (1.3) is a special case of a more general inequality involving the function
.1:"+1
An(z) = T]ﬁ/)(")(z)l (z >0; neN),

which we provide in the next section.

2. MAIN RESULT

To prove our theorem we need properties of A, and its derivative.

LEMMA. Let n > 1 be an integer. The functions A, and A!, are strictly increasing
on (0, 00). Moreover,

. _ : ' _
(2.1) ll_% An(r)=1 and }:I_I’I‘I) AL(x) =

PRroOF: The monotonicity and the convexity of A, are proved in [2] and [3], re-
spectively. Using the recurrence formula

[ (2)] = [p™(z +1)] +

Zn+1
(see [1, p. 260]), we obtain
1‘"+1 )
(2.2) Aq(z) =1+—n!—|1/)" (z+1)|
and
(2.3) 8y(@) = 22 ey (@ 4 1)| - Z [yt 4 1)
From (2.2) and (2.3) we conclude that (2.1) holds. 0
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We are now in a position to prove (1.3) and its extension to higher derivatives.
THEOREM. Letn > 1 be an integer and let r # 0 be a real number. The inequality

(2.4) An(z) + An(y) < 1+ Ap(2)

holds for all positive real numbers z,y,z withz" +y™ = 2" ifand only if 0 < r < 1. And,

(2.5) 1+ An(z) < An(z) + Anly)

is valid for all z,y,z > 0 with 2" +y" = 2" ifand only ifr <0 orr 2 n+ 1.
PROOF: We define for =,y > O:

fn,r(z) y) =14A, ((Zr + y')l/r) - An(z) - An(y)
First, we assume that f,,(z,y)} > 0 for all z,y > 0. Then we obtain
far(z,2) =14+ A, (2Y7z) — 24, (z) > 0.

The asymptotic formula

" n—1)! n!
|¢‘( )(x)l“’( P ) 2xn+1+"' (z — o0)
(see [1, p. 260]), gives
. lim An(z) _ 1
T30 I “n
Thus,
0< lim ____f“"(;”’z) = 71—1(21# -2).

This leads to 0 < r < 1.
Next, we prove that if 0 < r < 1, then
(2.6) Jar(z,y) >0 forall z,y>0.

Since r — (2" + y")"/" is decreasing on (0,00), we conclude from the Lemma that
T+ fnr(z,y) is also decreasing on (0, c0). Hence,

27 far(y) 2 faa(2,9) = 14 Aa(z +y) — An(z) — Bn(y) = gal(z,y), say.
Applying the Lemma again we obtain

0

7-9n(2,y) = Ay (s +y) — Ag(z) > 0.

oz
This leads to

(2.8) 9(,y) > gn(0,9) = 0.
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From (2.7) and (2.8} it follows that (2.6) holds.
Now, we consider (2.5). Let r > 0. We suppose that

(2.9) for(z,9) < 0= f,(0,9) (z,y>0).

Partial differentiation gives

1 3 )l/r—l _ A;l(x

(2_10) :c_"a_zfn’r(z’ y) = xr—l-"A:,((:r" + y')l/")(x' + yr

zﬂ
Formula (2.3) yields

ML) _n+1

i (n)
and an application of the Lemma implies
(2.12) }:i_f_)ftl)A:l((l" + yr)llr)(zr +yr)1/r-l - A;,(y)yl" >0

From (2.9)-(2.12) we conclude that r — 1 —n > 0.
It remains to show that if r <0 or r 2 n+1, then

(2.13) far(z,y) <0 forall z,y>0.

Let r < 0. We have
(z" + )" < min(z, y),

so that the Lemma implies
fn.r(zfy) <1l+ An(min(xa y)) - Aq(z) - An(y) < 0.

Letr>2n+1 and
s = sp(z,y) = (a1 + ™)V,

We obtain
(2.14) for(Z,y) £ 14 An(s) — An(z) — An(y) = un(z,y), say.

Differentiation yields

(2.15) o in(z,) = 2 [un(5) — (@),
where ,
vn(z) = 8a(2) .
zﬂ
Using

1_ oo—zt
x—/o e *dt (z>0),
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the integral representation (1.2), and the convolution theorem for Laplace transforms, we

obtain
vy (z n+2 . . ®

(2.16) n!—"a(:——) = —T|1/1( ()] + |9 (z)] =_/0 e ™ Z,(t) dt,
where

2 t)_ tn+2 ( +2)/t sn+1 d

n( Tl e o 1—es 5
We have

Za(0) =0 and Z(t) = -t

n(0) = T n\l) = (1—et)?

This implies that Z, is negative on (0,00). From (2.16) we find that v, is strictly
decreasing on (0, 00). Since s > z, we obtain from (2.15) that

(2.17) un(Z,y) < un(0,y) = 0.
Combining (2.14) and (2.17) we conclude that (2.13) is valid. 0
REFERENCES

[1] M. Abramowitz and I.A. Stegun (eds.), Handbook of mathematical functions with formulas
and mathematical tables (Dover Publications Inc., New York, 1965).

[2) H. Alzer, ‘Mean-value inequalities for the polygamma functions’, Aeguationes Math. 61
(2001), 151~161.

[38] H. Alzer, ‘Sharp inequalities for the digamma and polygamma functions’, Forum Math.
16 (2004), 181-221.

[4] R. Askey, ‘Griinbaum’s inequality for Bessel functions’, J. Math. Anal. Appl. 41 (1973),
122-124.

[5] W. Gautschi, ‘The incomplete gamma function since Tricomi’, in Tricomi’s ideas and
contemporary applied mathematics, Atti Convegni Lincei 147 (Accad. Naz. Lincei, Rome,
1998), pp. 203-237.

(6] F.A. Griinbaum, ‘A new kind of inequality for Bessel functions’, J. Math. Anal. Appl. 41
(1973), 115-121.

Morsbacher Str. 10

D-51545 Waldbrol

Germany

e-mail alzerhorst@freenet.de

https://doi.org/10.1017/50004972700035279 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700035279

