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Abstract
The winemaking technique of saignée is common for some varietals, and the ensuing fla-
vor profiles have been carefully analyzed by oenologists. However, we argue that saignée is
fundamentally about economic tradeoffs between the quantity of primary wine that is ulti-
mately produced, the quality (and thus, price) of that wine, and the amount of rosé wine
that is bled off in the process. We develop the first theoretically-grounded economic
model of saignée and analyze the model to shed light on the winemaker’s optimal choice
of saignée, and on the properties of wine and wine markets that should empirically give
rise to more, or less, saignée. The model helps to explain several real-world regularities
such as the absence of saignée for most Bordeaux wines, the specialization in rosé for
many wines in Provence, and the practice of moderate amounts of saignée for varietals
such as grenache and pinot noir.
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I. Introduction

Saignée, the practice of bleeding juice from a batch of wine, is a widely used technique
for concentrating flavor in red wine. Bleeding off a small fraction of juice in this
manner reduces the quantity of red wine produced, but increases the skin-to-juice
ratio, thus concentrating its phenols. Typical saignée amounts range from 10 to
20% of the total volume of juice (Godden, 2019). However, this juice is not wasted;
it is typically repurposed as rosé wine or blended with primary wine to achieve certain
flavor profiles.1 While every winemaker has her own secret formula for how much
saignée to bleed off, we argue that this is fundamentally an economic question that
must balance the quantity and quality of the primary wine and rosé.
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This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creative-
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1Of course, the production of rosé can also be the primary objective of some wine producers.
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The practice of saignée is nowadays well-known and common in many winemak-
ing regions, although our review of the literature did not uncover a clear reference to
its origin. A relatively small literature studies the oenological benefits of saignée,
where researchers experimentally vary the volume of juice removed and report the
phenolic characteristics associated with the various saignée treatments.2 The evidence
from this literature is mixed, with some studies documenting positive impacts and
others reporting null impacts (e.g., Singleton, 1972; Gerbaux, 1993). Since there is
no universally-accepted approach to saignée, different studies apply different fractions
to different grapes, further complicating comparison of results across studies.3 Based
on this literature, it is tempting to think that a winemaker’s objective is to choose a
saignée fraction that maximizes the quality of the resulting primary wine. In this
paper, we argue that while this is certainly an important margin to consider, it
fails to recognize fundamental tradeoffs along other margins. Indeed, we will show
that only in corner or knife-edge cases is it in the economic best interest of the wine-
maker to choose how much to saignée in this intuitive manner.

While the oenological literature analyzes the phenolic and wine quality benefits of
saignée, it provides few insights on its economic implications. Naturally, saignée
applied at any level over the original volume of juice will result in a loss of final pri-
mary wine.4 Such loss can be potentially offset by marketing the resulting rosé wine
and by selling the higher-quality primary wine for a higher price than could have
been achieved in the absence of saignée. Therefore, we argue that the winemaker’s
choice of a saignée fraction is fundamentally an economic matter that must balance
the quantity, quality, and price of the primary wine resulting from a choice of a
saignée fraction and the value of the rosé wine produced as a byproduct. It is in
this sense that we argue that the effect of saignée on the quality of the primary
wine—the focus of the oenological literature—is only one of several margins to be
considered.

In this paper, we develop what we believe is the first economic model of saignée in
winemaking. We use the model to illuminate the full set of tradeoffs, and derive a set
of theoretical propositions that provide both practical guidance about economically
optimal saignée fractions, and empirically testable predictions about what we should
observe in the wine market. Using the model, we derive the conditions under which it
is optimal for a winemaker to engage in zero saignée (and thus produce only primary
wine), complete saignée (and thus produce only rosé), or an intermediate amount of
saignée. A key finding is that, except in corner and knife-edge cases, the profit-
maximizing saignée fraction is less than the quality-maximizing fraction. Although
we leave detailed empirical analysis for future work, in the final section we discuss
how our results accord with observed saignée practices.

2More common are studies that compare saignée to other winemaking techniques (e.g., extended mac-
eration) that can influence the phenolic profile of wines (e.g., Sacchi, Bisson, and Adams, 2005; Baiano
et al., 2009; Casassa, Vega-Osorno, and Hernandez, 2021).

3For example, the saignée fraction in Gawel et al. (2001) varies from 0 to 20% with syrah grapes while it
varies from 0 to 3.27% in Harbertson et al. (2009) with merlot grapes.

4When alcohol reduction is the objective, water is sometimes added to offset the saignée volume. We
focus on the more common case in which the goal of saignée is to raise the solids-to-juice ratio.
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II. The model

Consider the problem facing a single winemaker trying to maximize profit from her
choice of saignée. Let Q be the total quantity of juice available to the winemaker
(assumed to be exogenous), which will be divided into a saignée fraction S, and a
primary wine fraction (1− S ). This ultimately produces Qr =QS quantity of rosé
and Qp =Q(1 − S ) primary wine.5 While the saignée fraction S will surely affect
the quality of the primary wine, and indeed, this is often the winemaker’s primary con-
cern, it has no consequence for the quality of the rosé. To capture this, we assume that
the price of rosé (Pr) is exogenously given and independent of S, and that the price of
the primary wine depends on the saignée fraction S: Pp = f(S), where f(S) has a max-
imum at �S.6 We assume each winemaker knows �S [ [0, 1] for its grape profile.7

Suppose that the cost of turning Q liters of juice into wine is cQ, which is inde-
pendent of the saignée fraction S. All of this implies the following expression for
profits:

p(S) = PrQr + f (S)(Q− Qr)− cQ (1)

= PrQS+ f (S)(Q− QS) − cQ (2)

= Q(PrS+ f (S)(1− S)− c) (3)

Since profit is linear in Q, we normalize it out, and since c plays no role in the first-
order conditions, we will omit it. This yields the following simplified profit function:

p(S) = PrS+ f (S)(1− S) (4)

A profit-maximizing winemaker will choose the saignée fraction S to maximize the
expression in Equation (4).

Before solving the winemaker’s optimization problem, we elucidate the function
f(S ), which plays a key role in the solution. The function f (S ) is a price schedule fac-
ing our winemaker for different choices of her saignée fraction. We assume that the
winemaker takes f (S ) as given and is thus a price taker, but she can influence the
price she receives for the primary wine by varying the amount of saignée produced.
Such price schedules emerge, for example, in models of differentiated goods. For
example, in Economides (1989), firms choose the varieties of goods to produce—
analogous to choosing the saignée fraction S—and then compete in prices. In equi-
librium, a firm’s choice of a particular variety maps to a price, which is dependent
on the varieties produced by other firms and their associated prices. Our interest is
not explicitly in market equilibrium from imperfect competition among wine

5For simplicity, we assume that the final quantity of wine is given by the initial amount of grape juice.
6It is helpful to think of both Pr and f(S) as reflecting present value prices, where, for example, a typical

rosé might be marketable within one year of production, while a typical primary wine may require several
years before it is marketable.

7The quality-maximizing saignée fraction, �S is indeed the subject of almost all academic papers that
study the practice. We assume �S is known to the winemaker and instead focus on the economically-optimal
(as opposed to quality-maximizing) saignée fraction.
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producers, but rather in the individual incentives faced by a single producer. Thus, we
treat f(S ) as given, recognizing that the form of that function may well differ across
producers.

We also make several plausible assumptions about the properties of f(S). First, we
assume that a little saignée has a positive or neutral effect on the price of primary
wine, so f ′(0)≥ 0. Second, for larger saignée fractions, we allow f ′(S) to be positive
or negative, but assume f ′′ < 0. That is, raising the saignée fraction S may increase or
decrease the price of the primary wine, but either way, it does so at a diminishing
rate. Third, we assume that f ′(1) < 0. Increasing the saignée fraction should at some
point be detrimental to the quality of the primary wine, and so we assume that
when the fraction reaches one, the marginal effect on the primary wine price is nega-
tive. Finally, given these effects of S on primary wine quality, it is reasonable to assume
that the price of rosé exceeds the primary wine price at S = 1: that is, Pr > f(1). In other
words, a bottle of well-produced rosé always commands a higher price than a bottle of
extremely (i.e., overly) concentrated primary wine. These assumptions are summarized.

Assumption 1. f ′(0)≥ 0. A little saignée either improves the primary wine or is neutral.

Assumption 2. f ′′(S ) < 0. The saignée effect on the price of primary wine is concave.

Assumption 3. f ′(1) < 0. Too much saignée lowers the price of primary wine.

Assumption 4. Pr > f(1). A bottle of rosé earns a higher price than a bottle of overly-
concentrated primary wine.8

Adopting these assumptions, Equation (4) implies a surprisingly rich set of solu-
tions to the winemaker’s problem. We begin by examining the first- and second-order
derivatives of p(S ), given by:

p ′(S) = Pr − f (S)+ f ′(S)(1− S) (5)

p ′′(S) = f ′′(S)(1− S)− 2 f ′(S) (6)

The first derivative (Equation 5) says that the marginal change in profits from a unit of
saignée equals the price received for a unit of rosé minus the foregone value of a unit of
the primary wine, plus the change in value of the primary wine over all the units pro-
duced. For small amounts of saignée, this expression can be positive or negative,
depending on the price of rosé and the features of the function f(S). But for large
amounts of saignée, it is always negative by Assumption 4. The second derivative
(Equation 6) has some interesting properties. Suppose the winemaker is considering
increasing the amount of saignée and that f ′(S) > 0, so doing so would increase
the price she receives for the primary wine. Then, inspecting Equation (6), the

8In other words, even though saignée may improve the quality of a wine, and may earn a substantially
higher price than rosé, there comes a point when engaging in too much saignée compromises wine quality
to the point that its price is lower than that of rosé.
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second derivative is negative (recall f ′′ < 0) and the profit expression is concave.
However, this may only be a local property of p, because at high levels of S we expect
f ′ < 0. If this term is sufficiently large, then p can have a positive second derivative and,
thus, be convex. In particular, evaluating Equation (6) at the extremes reveals that
p ′′(0) = f ′′(0) − 2f ′(0) < 0, where the inequality follows by Assumptions 1 and 2.
Evaluating Equation (6) at S = 1 reveals that p ′′(1) = −2f ′(1) . 0, where the inequality
follows by Assumption 3. In other words, for small amounts of saignée, the profit
expression is concave, and for large amounts of saignée, the profit expression is convex.

We can illustrate the possible shapes of p(S ) as follows. First, consider the case in
which some saignée improves profits, so p ′(0) > 0.9 Then, as described previously,
p(S ) is initially increasing and concave, and eventually it is convex. This gives rise
to two possible shapes, depicted in Panels A and B of Figure 1. In this case, the
solution to the winemaker’s profit-maximization problem will either be an interior
solution, as in Panel A, or a corner solution at S = 1, as in Panel B. Which of
these solutions is optimal depends on the price of rosé because at a saignée fraction
of one, p(1) = Pr. Thus, at S = 1 the heights of the profit curves in Panels A and B are
determined by Pr. If the rosé price is low relative to the price of the primary wine, the
winemaker should choose a small (but positive) saignée fraction (Panel A), but if
the rosé price is high, the winemaker should bleed 100% of the juice into rosé, and
thus optimally choose S = 1 (Panel B).

But it is also possible that even a small amount of saignée decreases profits, so
p ′(0) < 0. It turns out that even in this case, p ′′(0) < 0, the expression is concave
(though, in this case, initially decreasing). For larger values of S the profit expression
becomes convex and is eventually increasing. This scenario is depicted in Panel C,
where the optimal value of saignée is at the corner solution of S = 0. Because
profits in the interior region are always below this corner solution, the solution is
either to do no saignée, yielding p(0) = f(0), or to make only rosé, yielding p(1) = Pr.
It turns out, as we will show, that under the assumptions of our model, it is not possible
for p(1) >p(0) (when p ′(0) < 0, as in Panel C). Thus, if profits are initially decreasing
in S, then the optimal value is S = 0.

The solutions depicted in Figure 1 are formalized in Proposition 1. For any given
winemaker, there are three candidate levels of saignée. The first candidate is the inte-
rior maximum, defined as follows:

Definition 1. The optimal interior value of saignée (denoted Ŝ) is the value of S∈ (0, 1)
that satisfies both:

p ′(Ŝ) = Pr − f (Ŝ)+ f ′(Ŝ)(1− Ŝ) = 0 (7)

p ′′(Ŝ) = f ′′(Ŝ)(1− Ŝ)− 2 f ′(Ŝ) , 0 (8)

The second and third candidates are S = 0 and S = 1, where the winemaker
converts either 0 or 100% of her juice into rosé. No other level of saignée can

9The necessary and sufficient conditions for this to occur will be spelled out later.
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ever be optimal under this model. The choice between the three candidate solutions
turns out to be analytically tractable, and we summarize this as our main result in
Proposition 1.

Proposition 1. The optimal saignée fraction is given by:

S∗=
0 if p′(0) ≤ 0

Ŝ if p′(0) . 0 and f (Ŝ) . Pr
1 otherwise

⎧⎪⎨
⎪⎩

Proof. We will make use of three results on the shape of p(S). First, recall that p ′′(0) =
f ′′(0)− 2f ′(0) < 0, where the inequality holds by Assumptions 1 and 2. Second, recall
that p ′′(1) =−2f ′(1) > 0, where the inequality holds by Assumption 3. Thus, p(S) is
always concave for sufficiently small S and convex for sufficiently large S. Third, we
note that p ′(1) = Pr− f(1) > 0, where the inequality holds by Assumption 4; so p(S)
is eventually increasing in S.

The rest of the proof hinges on the slope of p(S ) at S = 0: p ′(0) = Pr − f (0) + f ′(0),
which is clearly positive if Pr > f (0) (after invoking Assumption 1), but can be nega-
tive if Pr < f(0). Whether it is positive or negative depends only on the primitives of
the problem (the shape of f (S ) and Pr). We take each case in turn.

If p ′(0) > 0 (which can be regarded as the typical case, depicted in Panels A and B
of Figure 1), then p(S ) is initially increasing and concave and eventually convex,
which implies that the interior maximum Ŝ exists and therefore that S = Ŝ delivers

Figure 1. Possible realizations of the profit function, p(S ).
Note: The black dot indicates the optimal saignée for each scenario.
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higher profit than S = 0. Whether S = Ŝ delivers higher profit than S = 1 depends
on p(Ŝ)., p(1), that is,

PrŜ+ f (Ŝ)(1− Ŝ)., Pr ,

which reduces to the inequality f (Ŝ)., Pr. So if p ′(0) > 0, then S∗ = Ŝ if f (Ŝ) . Pr and
S∗ = 1 if f (Ŝ) , Pr .

Instead, if p ′(0)≤ 0 (depicted in Panel C of Figure 1), then p(S ) is initially
decreasing and concave and eventually becomes convex, which implies that Ŝ does
not exist so the solution must be at a corner of 0 or 1. Whether S = 0 delivers higher
profit than S = 1 depends on f (0) + Pr . However, the fact that p ′(0) < 0 implies that
f(0) > Pr (because p ′(0) = Pr − f(0) + f ′(0) and f ′(0)≥ 0 by Assumption 1). Thus, we
conclude that if p ′(0)≤ 0 the optimal value of saignée must be S∗ = 0.

Proposition 1 emphasizes the importance of the price of rosé (Pr) in determining
the optimal saignée fraction. Because p(1) = Pr, it is easy to see Pr in Figure 1 (it is the
height of the curve at S = 1). When the price of rosé is relatively low (Panels A and C),
then the optimal saignée choice is either at the interior solution S = Ŝ or at S = 0.
The second case is obtained when even conducting a small amount of saignée
lowers profits. This is the outcome we typically observe for producers of premium
red wines, such as first-growth Bordeaux wines, which presumably practice very little
saignée.

However, when the rosé price is sufficiently high (Panel B), then the corner
solution at S = 1 prevails and only rosé is produced. We do not necessarily regard
this case as unusual. Consider a winery for which only relatively low-quality (and
thus low-priced) primary wine could be produced. Even though a little saignée
would improve the price of the primary wine, it pays to convert all juice to rosé
(see Panel B).

For many wineries, particularly those that intend to utilize saignée to increase the
quality of their primary wine, the optimal solution will be the interior one (Ŝ), depicted
in Panel A of Figure 1. What can be said about the magnitude of Ŝ? Consider first the
intuitively appealing strategy of choosing S to maximize the price of the primary wine
(so S = �S, which maximizes f(S)). How does �S compare to Ŝ? Provided that the interior
maximum exists (the necessary and sufficient condition is that p ′(0) > 0), we can show
that it is never strictly optimal to choose �S, regardless of the functional forms or param-
eters of this problem. Proposition 2 summarizes this result.

Proposition 2. Let �S be the interior saignée fraction that maximizes the quality of the
primary wine. The interior optimal saignée fraction is always smaller than this value:
Ŝ , �S.

Proof. Marginal profit at �S is p′(�S) = Pr − f (�S), whose sign depends on Pr + f (�S).
This expression can be immediately signed as:

f (�S) . f (Ŝ) . Pr

The first inequality follows from the definition of �S (which maximizes f(S) so no other
value of S could return a higher f(S)). The second inequality follows from Proposition
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1, which implies that Ŝ exists and is optimal if and only if p ′(0) > 0 and f (Ŝ) . Pr .
Thus, f (�S) . Pr , which means that marginal profit at �S is decreasing, so Ŝ , �S.

Thus, we can safely rule out the intuitively appealing result that the quality-
maximizing fraction of saignée is also the profit-maximizing fraction of saignée.
Indeed, when a positive amount of saignée is warranted, it is always optimal to either
choose a lower level of saignée (Panel A) or to specialize only in rosé and set S = 1
(Panel B).

We can also use this model to ask how a winemaker should respond to an exogenous
shift in the price of rosé. Demand for rosé has risen sharply in recent years, raising the
possibility that Pr has increased. It is straightforward to show that, when the optimal
value of saignée is in the interior, a higher rosé price always leads to more saignée.

Proposition 3. A higher price of rosé always leads to a higher interior optimal saignée
fraction:

dŜ
dPr

. 0

Proof. Totally differentiate Equation (7) with respect to Pr and S to get:

dŜ
dPr

= −1
SOC

(9)

Where SOC refers to the second-order condition for the revenue maximization
problem, which is always negative for the interior solution identified earlier (see
Definition 1).

Finally, we can use the model to analyze the question of whether to saignée at all.
According to Proposition 1, there is a very specific set of circumstances under which
S∗ = 0. In particular, this occurs when p ′(0) < 0, so the winemaker experiences a
drop in profit from even a small amount of saignée. A necessary condition for
this to arise is that f(0) > Pr: the price of a zero-saignée bottle of primary wine is
greater than the price of a bottle of rosé. If f(0) > Pr, then it might be the case
that S∗ = 0. However, this condition is not sufficient because if f ′(0) is large, then
even when f(0) > Pr, p ′(0) > 0, and it will be optimal to engage in at least some saignée.

III. Simulations

To illustrate these results and characterize the winemaker’s choice of the optimal
saignée fraction, we parameterize the model using plausible values of the relevant
parameters and conduct a series of structural simulations. Let the exogenous price
of rosé (Pr) range from $0 to $50 and assume that the price of primary wine is
quadratic in S:

f (S) = a+ bS− cS2 (10)

for positive constants a, b, and c. For this simulation, we use a = 20, b = 80, and c = 160,
which produces the price function shown in Figure 2 and satisfies Assumptions 1–4.
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Under this model, the quality-maximizing saignée fraction is �S = b
2c = 25%, and deliv-

ers a quality-maximizing primary wine price of f (�S) = a+ b2
4c = $30.

The relationship between total revenues and the saignée fraction depends on the
price of rosé wine, as shown in Figure 3. Naturally, the higher the price of rosé

Figure 2. Primary wine price as a function of saignée percentage (S) in our simulations.

Figure 3. Revenue and optimal saignée.
Notes: Solid lines indicate revenue as a function of S. Dashed line shows the level of saignée that maximizes wine
quality (�S). Dots show optimal saignée for each rosé price.
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wine, the higher the optimal saignée fraction. As discussed earlier, even when the
price of rosé wine is 0, the optimal saignée fraction can be greater than zero (it is
around 15% in the simulation), and maximized revenues grow with the price of
rosé wine. When the price of rosé exceeds the maximum value of the primary
wine (here, $30), the optimal saignée jumps suddenly to 1.

Finally, the profit-maximizing saignée percent as a function of the rosé price is
given in Figure 4. The relationship is increasing and monotonic, as stated in
Proposition 3. When the price of rosé exceeds the maximum value of primary
wine ($30), optimal saignee jumps to 1.

IV. Conclusion

Much has been written by oenologists about the practice of saignée, which concen-
trates flavor and raises the quality (and price) of some primary wines. While that lit-
erature is enlightening about how to optimize saignée for wine quality, we observe
that increasing the level of saignée also induces interesting economic tradeoffs for
the winemaker. On one hand, she concentrates flavor and may raise the value of
her primary wine, but she also produces a valuable rosé byproduct and loses some
of her primary wine volume. To the best of our knowledge, these tradeoffs have
not been carefully explored. We develop and analyze a model that we believe is the
first theoretical treatment of the economics of saignée.

Our main result is that there are only three possible levels of optimal saignée for
any winemaker. It can be zero, a relatively low but interior value, or one. The first case
(S∗ = 0) arises when the primary wine is extremely valuable (relative to rosé) and the
quality of that wine sees little or no improvement from small amounts of saignée.

Figure 4. Optimal saignée as a function of rosé price.
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The second case (S* = interior at Ŝ) arises when a little saignee raises profits, but the
price of rosé is not too high. In this case, a winemaker will need to fine-tune the level
of saignée, but importantly, will always optimally choose a value of saignée that is less
than the quality-maximizing amount (Proposition 2). The third possibility is that
S∗ = 1, so all juice is converted into rosé. This case arises when the price of rosé is
sufficiently high, and the quality (and price) of primary wine is relatively low.

These results help to explain observed differences in saignée practices across wine
grape varietals around the world. Saignée is relatively uncommon for premium red
wines made from cabernet sauvignon and merlot. As these wines tend to be already
concentrated, the gain in quality from saignée is unlikely to offset the loss in primary
wine production, even accounting for the sale of rosé. Our model shows that the opti-
mal saignée fraction in this case is zero. On the other hand, saignée may provide
larger gains in the quality of wines made from lighter-skinned grapes like grenache
and pinot noir, and indeed, we see that saignée is more common for these varietals.
However, our model makes clear that a positive effect of saignée on wine quality
(f ′(0) > 0) does not guarantee that a positive amount of saignée is optimal because
it can still be the case that p ′(0) < 0. If the loss in the value of primary wine produc-
tion is sufficiently high, then the optimal saignée fraction is again zero. The model
also helps to rationalize why some wineries specialize in rosé. If the quality of their
primary wine is modest, even when fine-tuning saignée, but they can access a rela-
tively high price of rosé, then it is optimal to produce 100% of the juice into rosé,
as is sometimes the case in certain wine-producing regions, such as Provence.

There are broader implications of this paper for winemaking. A natural extension
of our work would be to study the economic implications of wine-blending practices,
whereby wine from multiple varietals is blended post-fermentation to produce a
primary wine. For example, many wines from the Bordeaux region in France blend
cabernet sauvignon, merlot, cabernet franc, and smaller amounts of malbec and petite
verdot. The results in this paper suggest that in some cases, the profit-maximizing
blend of various varietal wines may differ from the blending ratio that produces
the best primary wine.
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