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In this study, the transport equation for scalar iso-surface area density (Σ) in a turbulent,
temporally developing mixing layer is examined. Exploring the spatial and temporal
evolution of the terms in the Σ transport equation is vital to improving our understanding
of turbulent flows characterized by distinct interfaces, e.g. the flame surface or the
turbulent/non-turbulent interface. Previous work reported by the authors identified that
Σ exhibits self-similar behaviour consistent with the development of the temporal mixing
layer (Blakeley et al., J. Fluid Mech., vol. 951, 2022, A44). Accordingly, each of the terms
in the Σ transport equation is found to behave in a self-similar manner, though there
are notable differences in the self-similar behaviours for each term. Based on the results
presented herein, it is suggested that the rate of change of Σ (∂Σ/∂t) and the advection
term scale with hλΦ/�U, where h is the width of the mixing layer, λΦ is the scalar Taylor
length scale and �U is the velocity difference. The production and destruction terms are
found to scale with an additional factor (Re Sc)1/2. In contrast, the molecular diffusion
term is found to scale with a factor (Re Sc)−1/2 compared to ∂Σ/∂t. Importantly, it is
found that the difference between the production and destruction terms, or net surface
‘stretch’, scales with the same factor as ∂Σ/∂t and the advection term, which may have
a significant impact on how the evolution of Σ is understood and modelled in turbulent
flows.

Key words: shear layer turbulence, turbulent mixing, turbulence simulation

1. Introduction

After introducing the concept of mean iso-surface area density Σ to describe the mean
reaction rate of a diffusion flame, Marble & Broadwell (1977) proposed a differential
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equation for ∂Σ/∂t based on phenomenological arguments that captured many of the
important physics of flame propagation. Subsequent studies proposed exact formulations
for Σ and its transport equation for arbitrary propagating surfaces in turbulence
(Pope 1988), as well as premixed flames (Trouvé 1994; Trouvé & Poinsot 1994) and
non-premixed flames (van Kalmthout, Veynante & Candel 1996; van Kalmthout &
Veynante 1998). Studies by Candel & Poinsot (1990), Kollmann & Chen (1994) and
Vervisch et al. (1995) helped to codify the relationship between the surface area of a level
set and the flame surface area.

Although the iso-surface area density formalism was initially conceived for
infinitesimally thin, coherent flames, the subsequent transport equation for the surface
area of an iso-level of a scalar field is exact and does not require the concept of a coherent
flame to be valid. In fact, a wide range of turbulent mixing problems can be studied with
this method as long as the interface can be defined by a constant value of a scalar field, e.g.
the stoichiometric value of the mixture fraction in non-premixed combustion (Peters 1988),
the value of a progress variable (i.e. temperature or species mass fraction) corresponding
to the peak reaction rate in premixed combustion (Candel & Poinsot 1990), or a suitably
‘small’ value of the mean square vorticity for the turbulent/non-turbulent interface (da
Silva et al. 2014), among others.

Early studies established that the rate of iso-surface area production is driven by the
tangential strain rate (Fichot et al. 1994) and the preferential alignment of the scalar
gradient with the most compressive eigenvector of the strain rate tensor (Ashurst et al.
1987), provided that the rate of heat release (and flow dilatation) is small (Kim & Pitsch
2007). The rate of iso-surface area destruction was found to be due to the combined
effects of the curvature and the propagation velocity of the surface; for passive scalars,
the propagation velocity is due to molecular diffusion, whereas the propagation of a
premixed flame is strongly influenced by chemical reactions (Vervisch & Poinsot 1998).
The statistical behaviour of the surface curvature and propagation term has received
significant attention (Chakraborty & Cant 2005, 2013). Recent results from Dopazo et al.
(2018) suggest that the propagation velocity of the iso-surface affects both the destruction
and the production terms, making the effect of propagation speed on iso-surface transport
difficult to isolate.

A key finding in several studies of iso-surface transport is that the rate of change of the
iso-surface area is significantly smaller in magnitude than the production and destruction
terms. A notable example is the study by Han & Huh (2008), in which a premixed flame
evolving in homogeneous, decaying turbulence is examined. Here, the temporal evolution
of the flame surface area, as well as the production and destruction terms of the surface
transport equation, are presented for a range of Lewis numbers. Blakeley, Wang & Riley
(2019) performed a similar analysis for a passive scalar field evolving in decaying, isotropic
turbulence. In this study, the evolution of iso-surface area and the transport terms were
compared for two different initial scalar distributions. Recently, two studies examined the
variation of flame surface area and transport along the axis of a premixed jet flame (Wang
et al. 2017; Luca et al. 2019).

In a recent study of spherically expanding premixed flames, Kulkarni & Bisetti (2021)
examined the evolution of the peak value of mean flame surface area density, Σmax, as
a function of time and Reynolds number. The resulting analysis suggested that primary
contributions to the rate of change of Σmax include: the mean velocity field, found to scale
with the pressure rise of the flame; the turbulent velocity field, found to scale with the
integral length of the flow, �; and the net surface ‘stretch’ (i.e. the net effect from the
production and destruction terms), found to scale with the Kolmogorov length, η.
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Iso-surface density evolution

Blakeley, Olson & Riley (2022) performed a direct numerical simulation (DNS) of
a passive scalar field in a turbulent, temporally developing shear layer, and found that
cross-stream profiles of the mean iso-surface area density evolve in a self-similar manner
when normalized by the scalar Taylor length scale λφ . The present study is an extension
to this work, which will focus on the transport equation for Σ , and examine the orders
of magnitude and self-similar scalings of each term. In § 2, the governing equations
and numerical methods used to simulate the constant density temporal mixing layer
are discussed. The iso-surface transport equation, and the numerical methods used to
approximate the terms, are discussed in § 3. A brief overview of the self-similar behaviour
of the mixing layer examined in this study is given in § 4. The main results of the current
study are presented in §§ 5–7, which address the balance of the Σ transport equation, the
self-similar scalings of each term, and some physical interpretations of the terms. Finally,
in § 8, the key results from this study are summarized and future research trajectories are
proposed.

2. Direct numerical simulation

The DNS used for the present study was described in detail by Blakeley et al. (2022); a
brief description will be given here. For more details, please refer to the previous work.

2.1. Numerical methods and simulation parameters
The DNS discussed herein was generated using the ‘Miranda’ codebase, which has been
employed in the past to investigate fundamental problems in turbulent mixing, such as
the Rayleigh–Taylor and Richtmyer–Meshkov instabilities, among others (Cabot & Cook
2006; Olson et al. 2011; Tritschler et al. 2014). Miranda is formulated as an artificial large
eddy simulation, which forgoes an explicit subgrid scale model in favour of dynamic fluid
properties (e.g. viscosity, molecular diffusivity) that act only in the regions of steepest
gradients (Cook 2007). For the present simulation, the fluid diffusivities (namely viscosity,
thermal conductivity and scalar diffusivity) are set to constant values. By ensuring that the
smallest scales of flow are resolved by the grid spacing, the simulation discussed is a DNS.

Miranda solves the three-dimensional, compressible equations for conservation of mass
(ρ), momentum (ρUi), energy (E) and scalar concentration (ρΦ). Spatial derivatives
are approximated with a tenth-order, compact finite difference scheme (Lele 1992), and
temporal integration is performed with a low-storage, five-stage, fourth-order Runge–Kutta
scheme (Kennedy, Carpenter & Lewis 2000). An eighth-order compact filter, designed
to remove approximately the top 10 % of wavenumbers, is used to dealias the solution
at each time step. An adaptive time step, accounting for both advective and acoustic
time scales, ensures proper temporal resolution and numerical stability. Interested readers
are encouraged to consult Cook (2007, 2009) for additional information on the code
formulation.

This study is part of an ongoing project to port established computing software to
heterogeneous architectures containing both traditional CPUs and graphics processing
units (GPUs) at Lawrence Livermore National Laboratory (LLNL). More information
regarding the GPU porting process can be found in the technical report by Anderson et al.
(2020).

The simulation presented herein is a canonical temporal mixing layer, with the initial
mean velocity and passive scalar profiles initialized with the hyperbolic tangent function.
The size of the computational domain is Lx = 1600δ0 × Ly = 600δ0 × Lz = 400δ0, which
is discretized by 4096 × 1536 × 1024 (6.4 billion) grid points, and �x = �y = �z.
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Figure 1. Simple two-dimensional schematic of the mixing layer configuration, showcasing a snapshot of
the scalar field at t �U/h0 = 462, during the self-similar evolution. Dark blue represents Φ = 1, and white
represents Φ = 0.

Boundary conditions are periodic in the x, z (streamwise, spanwise) directions, with
free-slip boundary in the y (cross-stream) direction.

The initial Reynolds number based on the momentum thickness is Reδ0 = �Uδ0/υ =
120, and the Schmidt and Prandtl numbers (for the passive scalar and thermal diffusivities)
are set to Sc = Pr = 0.7 to approximate atmospheric conditions. Homogeneous, isotropic
velocity fluctuations are imposed on the mean velocity field to promote the growth of
unstable modes and transition to turbulence; no fluctuations are added the mean scalar
field. The convective Mach number Ma = cs/�U is 0.15, such that compressibility effects
can be neglected safely, and the fluid is effectively isothermal and incompressible.

In this configuration, the flow is statistically homogeneous in the x, z directions, which
implies that for any quantity Q, ∂〈Q〉/∂x = ∂〈Q〉/∂z = 0, where 〈Q〉 is the expected value
of Q. From ergodic theory, the expected value can be estimated by spatial averaging over
the two homogeneous directions, i.e.

〈Q〉( y, t) = 1
LxLz

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2
Q(x, y, z, t) dx dz, (2.1)

and the Reynolds decomposition is used to define the fluctuating quantity
q(x, y, z, t) = Q(x, y, z, t) − 〈Q〉( y, t).

The computational domain used for the present study is displayed in figure 1, along with
a snapshot of the passive scalar field at t �U/h0 = 462, where h0 refers to the initial visual
thickness of the velocity field, defined by (4.1). The blue colour represents Φ = 1, and the
white represents Φ = 0. Arrows represent the direction of the mean flow. The x, y plane
shown is extracted at z = 0, with the positive z direction oriented out of the page.

To confirm that the grid spacing is adequately resolving the smallest scales of flow in
the DNS, the ratio �x/η is computed and found to have a maximum value of 1.9 during
the transition to turbulence, with a value closer to 1.3 during the self-similar period of
evolution. Here,

η = (υ3/ε)1/4 (2.2)

is the Kolmogorov scale, where the kinematic viscosity is υ = μ/ρ, the kinetic energy
dissipation rate is ε = 2υ

〈
sijsij

〉
, and η is evaluated at the centreline of the mixing layer,

corresponding to the maximum value of ε. According to Pope (2000), �x/η ≤ 2.1 is
required to resolve the smallest scales of motion, suggesting that the current simulation
is resolving fluid motion on the dissipation scale of the flow.
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Iso-surface density evolution

3. Iso-surface equations

3.1. Standard iso-surface definitions
Consider a passive scalar field Φ(x, y, z, t) that satisfies the advection–diffusion equation.
An important related quantity is the diffusion velocity wdif , which is a measure of the
propagation speed of an iso-surface relative to the fluid in the direction of the surface
normal ni (Gibson 1968). For incompressible flow of a passive scalar field, the diffusion
velocity is given by

wdif = D
|∇Φ|

∂2Φ

∂xi∂xi
, (3.1)

in the direction normal to the iso-surface

ni = − 1
|∇Φ|

∂Φ

∂xi
, (3.2)

where

|∇Φ| =
(

∂Φ

∂xi

∂Φ

∂xi

)1/2

, (3.3)

and summation is implied on repeated indices. In addition to ni and wdif , an iso-surface
can be characterized by its surface curvature,

∂ni

∂xi
= k1 + k2, (3.4)

where k1 and k2 are the principal curvatures of the iso-surface, and ∂ni/∂xi is equal to
twice the mean curvature.

The area of an iso-surface is defined by Pope (1988) as

Aiso =
∫
V

Σ ′ dV, (3.5)

where V is an arbitrary volume, and Σ ′ is the iso-surface area density,

Σ ′ = |∇Φ| δ(Φ − Φiso). (3.6)

Here, Φiso is the iso-value of Φ pertaining to the surface, and δ(·) is the Dirac delta
function (Vervisch et al. 1995; Poinsot & Veynante 2005). The mean iso-surface area
density Σ is defined as

Σ = 〈|∇Φ| δ(Φ − Φiso)〉 , (3.7)

where 〈·〉 denotes the expected value.
Based on (3.7), a transport equation for the mean surface area density Σ can be derived

(Trouvé & Poinsot 1994; van Kalmthout & Veynante 1998):

∂Σ

∂t
= − ∂

∂xi
(〈Ui〉s Σ)︸ ︷︷ ︸
TU

+
〈
∂Ui

∂xi
− ninj

∂Ui

∂xj

〉
s
Σ︸ ︷︷ ︸

P

− ∂

∂xi

(〈
wdif ni

〉
s Σ

)
︸ ︷︷ ︸

TD

+
〈
wdif

∂ni

∂xi

〉
s
Σ︸ ︷︷ ︸

−D

.

(3.8)

The operator 〈·〉s refers to a surface average, defined for an arbitrary property Q by

〈Q〉s =
〈
QΣ ′〉
Σ

. (3.9)

For convenience, the destruction term D has been defined with a leading negative sign due
to the term taking on a negative value almost exclusively in the present data. From this
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definition, the equation for the iso-surface area density can be written simply as ∂Σ/∂t =
TU + P + TD − D. The terms in (3.8) refer to, in order, the rate of change of the mean
iso-surface area density, ∂Σ/∂t, the transport of Σ due to the velocity field, TU , the rate
of production of Σ due to the flow strain rate, P , the transport of Σ due to molecular
diffusion, TD, and the rate of destruction of Σ due to the combined effects of molecular
diffusion and surface curvature, D. Note that although the current formulation assumes a
passive scalar field that propagates via molecular diffusion, the effects of an active scalar
field, such as a premixed flame surface, can be accounted for by including the effects of
chemical reactions on the diffusion velocity in (3.1).

3.2. Iso-surface averaging in a mixing layer
Evaluating surface-weighted averages, especially for highly contorted surfaces such as
those present in turbulent flows, is a challenging and nuanced problem. This study utilizes
the same methodology described in the previous paper (Blakeley et al. 2022, Appendix A)
to evaluate iso-surface integrals, which is based on the work by Storti (2010) and Yurtoglu,
Carton & Storti (2018). In essence, the approach yields a mathematically consistent
approximation for Σ ′, given in (3.6), for a discrete, implicitly defined scalar field on a
uniform three-dimensional grid. The resulting field is a function of three-dimensional
spatial coordinates x, y, z, and time t, and depends on the chosen iso-value Φiso. Note
that Σ ′(x, y, z, t;Φiso) contains mostly zero values; the function is non-zero only in the
grid cells immediately adjacent to the iso-surface.

Using statistical homogeneity in the x and z directions, and ergodic theory, the mean
surface area density Σ is given by

Σ( y, t) = 1
LxLz(m �y)

∫ Lx/2

−Lx/2

∫ y+(m �y)

y

∫ Lz/2

−Lz/2
Σ ′(x, y, z, t) dx dy dz, (3.10)

where m is an integer value that denotes the number of grid points included in the average
in the y direction. For m = 1, this average reduces to the two-dimensional average defined
in (2.1). In the present study, a value m = 16 is used to reduce statistical fluctuations in the
resulting y profiles. From a physical standpoint, the mean iso-surface area density Σ( y, t)
can be interpreted as the average iso-surface area per unit volume contained in a slab of
size LxLz(m �y), which is a function of the both the cross-stream direction y and time t,
and has units of 1/length. The y profiles of Σ were compared for values of m ranging
from 1 to 20, and were found to be insensitive to the value of m as long as (m �y) is small
compared to the length scale of the mean flow.

Although the iso-surface average defined in (3.9) is utilized often in the literature, it can
be poorly defined unless integrated over the entire iso-surface. In the case of the present
DNS, it was found that the iso-surface area density Σ( y, t) takes on a Gaussian-like profile
that decays to zero away from its peak (refer to § 4). This means that, as given by (3.9), the
iso-surface average 〈Q〉s is undefined near the edges of the mixing layer because Σ → 0
as y → ±Ly/2. While the surface average is an intuitive concept, it is more practical to
consider instead the weighted surface average

〈Q〉sΣ = 〈
QΣ ′〉 = 1

LxLz(m �y)

∫ Lx/2

−Lx/2

∫ y+(m �y)

y

∫ Lz/2

−Lz/2
QΣ ′ dx dy dz. (3.11)

In fact, from inspection of (3.8), it can be seen that each of the terms on the right-hand
side of the equation makes use of the weighted iso-surface average

〈
QΣ ′〉, rather than
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the iso-surface average 〈Q〉s. As discussed above, the value of m in the present study is
set to 16, which provides good statistical convergence. In addition, the data have been
averaged in time to reduce statistical fluctuations, with averaging width approximately
8 non-dimensional time units, t �U/h0. As will be shown below, the terms in (3.8) are
expected to vary smoothly in time and space such that the averaging process described
accurately retains the characteristic features of the flow.

In some cases, it is helpful to understand a quantity that has been averaged over the entire
iso-surface contained in the computational domain. In these cases, the quantity can be
evaluated by integrating the averaged quantity in the cross-stream direction. For example,
the surface area of an iso-surface, Aiso, can be evaluated by

Aiso

A0
=

∫ Ly/2

−Ly/2
Σ dy, (3.12)

where A0 = LxLz is the surface area at t = 0.

4. Self-similar development of the temporal mixing layer

It is well known that the velocity field in a temporal mixing layer attains a period of
self-similar development, in which the mixed region of fluid grows outward from the
centreline at a constant rate, i.e. dδm/dt = const. (Rogers & Moser 1994). Another way
to measure the width of the mixed region of fluid is the ‘visual’ thickness (Rogers &
Moser 1994),

h = y
∣∣〈U〉=U+−0.1 �U − y

∣∣〈U〉=U−+0.1 �U, (4.1)

which is a measure of distance in the y direction between the top and bottom 10 % of the
mean velocity profile 〈U〉, as used in the recent study by Baltzer & Livescu (2020). In
addition to the velocity field, it can be shown that a passive scalar field will also develop
in a self-similar manner. Analogously, a scalar visual thickness hΦ can be defined as

hΦ = y
∣∣〈Φ〉=0.9 − y

∣∣〈Φ〉=0.1. (4.2)

As with the visual thickness of the velocity field, the scalar visual thickness is a measure
of the spatial extent of 〈Φ〉 in the y direction. An important consequence of self-similarity
is that the above length scales, measuring the width of the mixing layer, are proportional
to each other and increase at a constant rate (though the constant coefficient of increase
may differ). For the present DNS, the value of the growth rate of the momentum thickness
δm is approximately 0.014 during the self-similar period, which is consistent with previous
mixing layer experiments and simulations (Bell & Mehta 1990; Rogers & Moser 1994;
Almagro, García-Villalba & Flores 2017; Baltzer & Livescu 2020).

To verify the self-similar behaviour of the shear layer, scaled profiles of several
important quantities, namely the streamwise velocity fluctuations u2, the dissipation rate
of turbulent kinetic energy ε, the scalar variance φ2, and the dissipation rate of scalar
variance χ , are shown in figure 2. It can be observed that the scaled instantaneous profiles
(dashed, coloured lines) of these averages collapse nicely onto a single curve (given by the
solid black line) when scaled appropriately. Based on these data, the following self-similar
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Figure 2. Self-similar profiles of (a) streamwise velocity fluctuations u2, (b) dissipation rate of turbulent
kinetic energy ε, (c) scalar variance φ2 and (d) dissipation rate of scalar variance χ . Dashed coloured lines
indicate instantaneous scaled profiles, and the solid black curve indicates the time average over the self-similar
period.

forms are found to be

〈u2〉( y, t) = �U2 R̂uu(ξ), (4.3)

ε( y, t) = �U3

h(t)
ε̂(ξ), (4.4)

〈φ2〉( y, t) = �Φ2 R̂φφ(ξ) (4.5)

and

χ( y, t) = �Φ2 �U
h(t)

χ̂(ξ), (4.6)

where the similarity variable is ξ = y/h(t). These self-similar forms are consistent with
previous studies that have examined the mixing layer (Rogers & Moser 1994; Almagro
et al. 2017; Baltzer & Livescu 2020), which lends confidence to the present results and
demonstrates that the present simulation of a temporal mixing layer enters a robust period
of self-similarity between the non-dimensional times approximately 250 and 580.

During this period, h/h0 goes from a value of approximately 22 to 41, an increase of
86 %. A large increase in h is desired in order to evaluate the self-similarity of quantities
in the flow; if the change in h is small compared to statistical fluctuations, it can become
difficult to differentiate statistical variation from true time-dependent behaviour. Even
in the present DNS, subtle distinctions can be difficult to quantify due to the effects of
the finite Reynolds number. In particular, despite the significant increase in h, the Taylor
length scale and Kolmogorov microscale exhibit only modest increases of 35 % and 19 %,
respectively, during the self-similar period. The relatively small difference between the
two length scales makes it difficult (though not impossible) to distinguish between the two.
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Figure 3. (a) Temporal evolution of iso-surface area Aiso, for Φiso = 0.05, 0.25, 0.5, 0.75, 0.95. Self-similar,
cross-stream profiles of iso-surface area density Σ , for (b) Φiso = 0.5 and (c) Φiso = 0.95. Dashed lines are
instantaneous profiles of Σλφ , and the solid black curve represents the time average over the self-similar period
250 ≤ t �U/h0 ≤ 580.

Here, the Taylor length scale is defined as (Pope 2000)

λg =
(

15υ

ε

)1/2

urms, (4.7)

where urms = 〈
(u2 + v2 + w2)/3

〉1/2. For the results presented here, the scalar Taylor
length scale λφ , defined as (Donzis, Sreenivasan & Yeung 2005)

λ2
φ = 〈φ2〉

〈 χ

6D

〉−1
, (4.8)

will be used, because the Taylor scales are proportional to each other (i.e. λg ∝ λφ for
Sc ≈ 1). The corresponding increases of the turbulent Reynolds number Re = urmsh/υ

and the Taylor Reynolds number Reλ = urmsλg/υ over the self-similar period are from
12 000 to 22 000, and from 115 to 135, respectively.

To give additional context in the following sections, two results from Blakeley et al.
(2022) will be summarized here. First, the temporal evolution of the iso-surface area in the
present shear layer, for values of Φiso corresponding to Φiso = 0.05, 0.25, 0.5, 0.75, 0.95,
is shown in figure 3(a). The surface area is found to increase steeply during the transition
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to turbulence, but then continue to increase at a moderate rate throughout the self-similar
period of the mixing layer development, for all values of Φiso.

Second, this continued increase in Aiso can be understood better by examining the
cross-stream profiles of the surface area density Σ , which are shown to evolve in a
self-similar manner when plotted against the similarity variable ξ = y/h, and normalized
by the scalar Taylor length scale λφ . Instantaneous profiles of Σ , normalized by λφ ,
are plotted in figures 3(b,c) as dashed lines, for iso-surfaces Φiso = 0.5 and 0.95,
respectively. The solid black line represents the time average of the instantaneous curves
over the self-similar period, which was determined empirically to begin at approximately
t �U/h0 = 250. These data demonstrate that despite the peak value of Σ decreasing in
time proportional to λφ , the width of Σ increases with the mixing layer width h, resulting
in a net increase of iso-surface area over the self-similar period. For more details regarding
the present DNS, interested readers are referred to Blakeley et al. (2022).

Note that due to the problem configuration, the behaviour of iso-surfaces is symmetric
about Φiso = 0.5, i.e. the statistics of the iso-surface Φ = Φiso are expected to match
the statistics of the iso-surface corresponding to Φ = |1 − Φiso| (see e.g. the curves for
Φiso = 0.25 and 0.75 in figure 3a). Because of this symmetry, the results presented below
will contain results from Φiso ≥ 0.5, with the understanding that equivalent behaviour is
observed in iso-surfaces corresponding to Φiso < 0.5. Furthermore, discrepancies between
symmetric iso-surfaces can give some estimate of the error in the simulation, especially
when considering that symmetric iso-surfaces are interacting with turbulent motions on
opposing sides of the computational domain and therefore have a measure of statistical
independence.

5. Behaviour of the terms in the iso-surface area density transport equation

In this section, the evolution of iso-surface area Aiso and iso-surface area density Σ will be
examined. In particular, it will be demonstrated that direct measurements of dAiso/dt and
∂Σ/∂t are in quantitative agreement with the rates of change implied from the transport
equations. This serves as a check of the numerical methods, as well as a starting point for
future explorations into the data.

5.1. Iso-surface area
Consider the integral of (3.8) over the cross-stream direction,

d
dt

∫ Ly/2

−Ly/2
Σ dy = −

∫ Ly/2

−Ly/2

〈
ninjSij

〉
s Σ dy +

∫ Ly/2

−Ly/2

〈
wdif

∂ni

∂xi

〉
s
Σ dy, (5.1)

where the advective and diffusive transport terms are identically zero due to the zero
flux boundary conditions, the production term has been simplified for constant density
flow, and the time derivative has been moved outside the integral, assuming that the
time derivative and the integration in y commute. From (3.12) it can be shown that by
integrating over the entire domain in y, the above equation describes the rate of change of
iso-surface area dAiso/dt, normalized by the surface area of a plane in the x, z directions,
A0 = LxLz. According to (5.1), the rate of change of iso-surface area is determined by the
difference between the integrated production term

∫
P and the integrated destruction term∫

D, i.e. dAiso/dt = A0(
∫
P − ∫

D) (Wang 2013).
The temporal evolutions of dAiso/dt,

∫
P and

∫
D in (5.1) are plotted in figures 4(a,b)

for Φiso = 0.5 and 0.95, respectively. An explicit finite difference approximation is
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Figure 4. Temporal evolution of terms in the iso-surface area transport equation (5.1), for (a) Φiso = 0.5
and (b) Φiso = 0.95, non-dimensionalized by h0/�U. Blue circles indicate dAiso/dt, green up-triangles
indicate

∫
P , purple down-triangles indicate

∫
D and

∫
P − ∫

D is given by a dotted line. Additionally, the
non-dimensional, integrated dissipation rates of kinetic energy and scalar variance, E/�U3 and X /(�U �Φ2),
have been scaled by constant values and are plotted as dashed and dash-dotted lines, respectively. Note the
difference in scales between (a) and (b).

used to estimate dAiso/dt from the DNS data. Note that this is a somewhat inaccurate
approximation, as these quantities were calculated during post-processing using restart
files that were saved once every 200 physical time steps, which degrades the temporal
accuracy of the finite difference approximation. The lack of temporal resolution is
evidenced clearly by the discrepancy between the direct approximation of dAiso/dt (dotted
line) with the rate of change implied from the right-hand side of (5.1) (blue circles),
especially early in the simulation, t �U/h0 < 200. Nonetheless, in the self-similar region,
t �U/h0 > 250, the left-hand and right-hand sides of (5.1) are in approximate balance.

The steep growth of Aiso during the transition to turbulence can be identified in figure 4
as a small peak in the evolution of dAiso/dt, but more clearly as a steep increase in the
magnitude of both terms

∫
P and

∫
D around t �U/h0 ≈ 100. In this transitional period,

the magnitude of term
∫
D lags slightly behind term

∫
P , resulting in the initial growth of

surface area.
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Notably, the evolutions of terms
∫
P and

∫
D are approximately proportional to the

integrated dissipation rates of turbulent kinetic energy and scalar variance, defined as

E =
∫ Ly/2

−Ly/2
ε dy (5.2)

and

X =
∫ Ly/2

−Ly/2
χ dy, (5.3)

respectively (Rogers & Moser 1994; Baltzer & Livescu 2020).The integrated dissipation
rates E and X , multiplied by constants c1 and −c2, respectively, are displayed in figure 4
as dashed and dash-dotted lines. The constant values are chosen empirically to highlight
the similarity between the temporal evolution of the integrated dissipation rates and the
integrated rates of production and destruction of iso-surface area. The values of c1 and c2
are constant in time but range from ≈5 to 150, depending on the value of Φiso.

The similarity between
∫
P and E is expected from previous models of flame surface

area, which typically assume that
∫
P ∼ (ε/υ)1/2 or

∫
P ∼ ε/k (see Poinsot & Veynante

(2005) for an overview). The near-symmetric behaviour of the production
∫
P and

destruction
∫
D would suggest that the destruction is also linked to the kinetic energy

dissipation rate E . In the present DNS, there is also a strong relationship between the scalar
dissipation rate X and both the production and destruction of iso-surface area, which is
expected from the relationship between Σ and Φ. Interestingly, for Φiso = 0.95, there is
better qualitative agreement between

∫
P and the scalar dissipation rate X during the

transitions to turbulence, i.e. t �U/h0 < 100.
During the self-similar period (t �U/h0 > 250), the production and destruction terms

are significantly larger than their difference, which is consistent with previous studies of
iso-surface area transport (Han & Huh 2008; Blakeley et al. 2019; Neamtu-Halic et al.
2020; Kulkarni & Bisetti 2021). This, coupled with the similarity to E and X above,
might suggest that the total iso-surface area is independent of the mixing layer width,
i.e. is constant in time. Interestingly, this does not tell the whole story; dAiso/dt is small,
but not zero, during the self-similar period of evolution, as evidenced by the slight but
noticeable increase of Aiso over time in figure 3(a). In the following subsections, this
seeming discrepancy will be investigated in more detail.

5.2. Iso-surface area density
Consider now the mean iso-surface area density transport, given by (3.8), subject to the
iso-surface averaging methods discussed in § 3.2. The rate of change of iso-surface area
density is determined by the production and destruction of Σ as discussed previously,
as well as advective and diffusive transport, i.e. ∂Σ/∂t = TU + P + TD − D. Similar to
arguments in the previous subsection, an estimate of ∂Σ/∂t is obtained via an explicit
finite difference approximation of the Σ( y, t) profiles, computed from the DNS data.
Note that due to storage constraints, the full three-dimensional DNS fields are available
only every 200 physical time steps, significantly limiting the temporal accuracy of the
approximation. Nonetheless, it is a useful tool to determine the overall behaviour of
the time derivative of Σ , and to test the accuracy of the results by comparing the time
derivative to the right-hand side of the equation.
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Figure 5. Cross-stream profiles of each term in (3.8), for (a,b) Φiso = 0.5 and (c,d) Φiso = 0.95, at a
non-dimensional time at t �U/h0 = 462. Blue circles indicate ∂Σ/∂t, orange squares indicate TU , green
up-triangle indicate P , red pentagons indicate TD , purple down-triangles indicate D and turquoise diamonds
indicate K, where K is given by (5.4). The dotted brown line is the sum of the terms on the right-hand side of
(3.8). Note the difference in scales between (a,b) and between (c,d).

Cross-stream profiles of each term are displayed in figures 5(a,c) at t �U/h0 = 462 for
Φiso = 0.5 and 0.95, respectively. The terms have been non-dimensionalized by the mixing
layer width and the velocity difference �U/h2. It can be seen that, similar to the results of
figure 4, P and D are significantly larger than the remaining terms in the balance equation.
Indeed, for Φiso = 0.5, P and D are a full order of magnitude larger than ∂Σ/∂t.

Rather than plotting P and D separately, consider instead the net effect of the production
and destruction terms,

K = P − D = − 〈
ninjSij

〉
s Σ +

〈
wdif

∂ni

∂xi

〉
s
Σ, (5.4)

where K has been described in the literature as the ‘net surface stretch’ (Candel
& Poinsot 1990; Kulkarni et al. 2021). The net surface stretch K is plotted in
figures 5(b,d) in place of P and D for the same time and iso-values as in
figures 5(a,c). This comparison demonstrates that the difference between the production
and destruction terms is of the same order of magnitude as ∂Σ/∂t and the advective
transport TU; the diffusive transport term TD is an order of magnitude smaller still.
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This has significant implications when estimating the self-similar evolution of each term,
as described in the following sections.

The comparison between the left-hand and right-hand sides of (3.8) is included in
figure 5 to give some idea of the accuracy of the numerical methodology used in
the present study. To the authors’ knowledge, few (if any) studies have been able to
compare directly the left-hand and right-hand sides of the iso-surface transport equation
in a turbulent flow, due in part to the computational demand of traditional iso-surface
integration methods and the temporal resolution required to estimate time derivatives.
There is general agreement between the two sides of the equation, although some
discrepancy exists between the temporal derivative of Σ near y = 0 compared to the
right-hand side (see figure 5b). It is expected that this error is caused mainly by taking the
difference between two large quantities, P and D, each with its own errors, which are then
magnified in computing this difference. Note the difference in scale between figures 5(a,b).
Also note that there is considerably less discrepancy between the left-hand and right-hand
sides near the boundary of the mixing layer (shown in figure 5d), where terms P and D
are not nearly as large.

6. Self-similarity of transport terms

Based on the robust self-similar behaviour of Σ in the present DNS (see figure 3), it is
thought that the terms in the transport equation for Σ may also exhibit self-similarity.
Self-similar forms for each of the terms in (3.8) (in order, from left to right) are proposed
in this section, based on a combination of physical arguments and empirical observations
from the DNS data, i.e. how well the instantaneous profiles collapse onto a single curve.
Specifically, a number of different combinations of variables are tested for each term, and
the standard deviation between the instantaneous profiles and the average over the entire
self-similar region is calculated. For brevity, only the scalings that result in the lowest
relative deviation from the self-similar average are presented below. Additionally, only
results from iso-values Φiso = 0.5 and 0.95 will be presented in the main text; results
from additional iso-values can be found in Appendix A.

The proposed self-similar forms should be viewed with some scepticism; this is the first
time (to the authors’ knowledge) that the spatial dependence of the terms in the transport
equation for Σ has been presented, and further refinements of the scaling arguments
proposed here are both welcome and expected. The self-similar scalings observed in
the present study will be compared to proposed scalings from previous studies when
applicable.

6.1. Rate of change of iso-surface area density
The self-similar behaviour of ∂Σ/∂t is examined in the context of the self-similar
behaviour of Σ , which was suggested recently by Blakeley et al. (2022) to be

Σ( y, t) = 1
λφ(t)

Σ̂(ξ). (6.1)

Therefore, the time derivative of Σ can be expressed as

∂Σ

∂t
( y, t) = − 1

hλφ

dh
dt

dΣ̂

dξ
ξ − 1
λ2

φ

dλφ
dt

Σ̂. (6.2)

966 A33-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.449


Iso-surface density evolution

0.03

0.02

0.01

–0.01

–0.02

–1.0 –0.5 0 0.5 1.0 –0.5 0 0.5 1.0 1.5

0

0.03

0.02

0.01

–0.01

–0.02

0

y/h y/h

∂
Σ

/∂
t ×

 (
hλ

φ
/�

U
)

(a) (b)

Figure 6. Proposed self-similar scaling of ∂Σ/∂t from (3.8), conditioned on (a) Φiso = 0.5 and (b) Φiso =
0.95, as functions of the similarity variable ξ = y/h. The solid line refers to the time average over the entire
self-similar period, and dashed lines refer to instantaneous profiles, spatially averaged as in (2.1).

Focusing only on the dimensional coefficient of the first term (for now), the following
self-similar scaling is proposed:

∂Σ

∂t
= �U

hλφ

∂̂Σ

∂t
, (6.3)

where
∂̂Σ

∂t
= dΣ̂

dξ
ξ − Σ̂ (6.4)

will be used as shorthand notation for the self-similar form of the time derivative of Σ .
Note that the velocity difference �U has been substituted in place of dh/dt because it
of its ubiquity in self-similar arguments from the literature (despite the fact that dh/dt
is arguably a more appropriate metric; Baltzer & Livescu 2020). Due to the linear
development of h in the self-similar region, �U and dh/dt are proportional to each other
in the present simulation.

Several instantaneous profiles of dΣ/dt are plotted in figure 6. The instantaneous
profiles are spatially averaged as in (2.1), non-dimensionalized by hλφ/U, and compared
to the average value over the entire self-similar period. For Φiso = 0.95, the y profiles
appear to collapse onto the self-similar average. For the iso-value Φiso = 0.5, however, the
self-similar collapse is not as good, with significant fluctuations observed around the mean
profile. Note that from the symmetry in the problem initial conditions, these curves should
be symmetric about y/h = 0; this lack of symmetry gives an idea of the statistical error in
the measurement. As discussed above, this error is expected to be caused by the limited
temporal resolution available to be used in the numerical approximation of ∂Σ/∂t.

Consider now the second term on the right-hand side of (6.2), which is expected to
exhibit the same scaling properties as the first term on the right-hand side. Beginning
from (4.8), the self-similar scaling of the scalar Taylor length scale is expected to be λφ ∼
(hD/�U)1/2, based on the self-similar scalings of

〈
φ2〉 and χ . Substituting this scaling for

λφ into the second term on the right-hand side of (6.2) yields the expression

1
λ2

φ

dλφ
dt

∼ �U
hD

(
D

�U

)1/2 h−1/2

2
dh
dt

∼ �U
h

(
�U
hD

)1/2

∼ �U
hλφ

, (6.5)
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Figure 7. (a) Self-similar development of Taylor and Kolmogorov microscales compared to predictions
from self-similarity. (b,c) Self-similar profile of ∂Σ/∂t normalized by hλφ/�U compared to the predicted
self-similar profile assuming that Σ is Gaussian (dashed line) and the sum of terms on the right-hand side of
(3.8) (dotted line) for (b) Φiso = 0.5 and (c) Φiso = 0.95.

which is identical to the self-similar scaling found in (6.3).
Importantly, the above scaling argument also suggests that the self-similar development

of λφ is proportional to h1/2, which can also be verified by the DNS data. The temporal
evolution of λφh−1/2 is plotted in figure 7(a) and can be seen to approach a constant value
in the self-similar period, consistent with the proposed scaling argument. In addition to
λφ , the transverse Taylor and Kolmogorov scales are also plotted with the appropriate
self-similar scaling applied.

To further test the assumed self-similar form for the profile of ∂Σ/∂t, it is compared to
the right-hand side of (3.8), normalized by hλφ/�U, in figure 7. The self-similar profiles
of the right-hand side of (3.8) (dotted line) demonstrate the correct behaviour for both
iso-values plotted, although there are significant differences near the peaks of the curves
for Φ = 0.5. This is similar to what was seen in figures 5(b,d).

As a second test, an approximation from a previous study (Blakeley et al. 2022) can be
leveraged to study the self-similar development of ∂Σ/∂t. For the temporal mixing layer
presented here, Σ̂ can be approximated with a Gaussian profile, i.e.

Σ̂(ξ ;Φiso) = Σ̂m exp
(

−(ξ − ξm)2

2σ̂ 2

)
, (6.6)
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where Σ̂m, ξm and σ̂ are the peak value, location of peak value and standard deviation of
Σ̂ in the self-similar coordinates (Blakeley et al. 2022). Substituting the above expression
for Σ̂(ξ) into (6.2), and using the values of h, dh/dt, λφ and dλφ/dt from the present
DNS, yields the dashed line in figures 7(b,c). The behaviour of the Gaussian model is
qualitatively correct, although there are discrepancies near the peaks of the curve.

6.2. Advective transport
Next, consider TU = −(∂/∂xi)(〈Ui〉s Σ), which describes the transport of Σ due to the
velocity field. This can be decomposed into mean and fluctuating components Tm and Tt:

∂

∂xi
(〈Ui〉s Σ) = ∂

∂xi
(〈Ui〉Σ)︸ ︷︷ ︸
Tm

+ ∂

∂xi
(〈ui〉s Σ)︸ ︷︷ ︸
Tt

, (6.7)

where 〈ui〉s is the surface average of the fluctuating component of velocity ui. Due to
the geometry of the mixing layer, only the cross-stream velocity V will contribute to
TU . Furthermore, it can be shown from conservation of mass and the free-slip boundary
conditions that the mean cross-stream velocity, 〈V〉, must be zero for all values of y. Thus
the effect of the velocity field on the rate of change of Σ is due entirely to the turbulent
fluctuations of the cross-stream velocity v, and hence the turbulent flux Tt.

To estimate how Tt will evolve in the self-similar region, it is reasonable to assume
that the surface-averaged velocity fluctuations 〈ui〉s will scale similar to the root mean
square (r.m.s.) velocity 〈uiui〉1/2, which is known to scale with the velocity difference �U
(Rogers & Moser 1994). By noting that Σ ∼ λφ (see figures 3b,c) and assuming that the
cross-stream derivative will scale with the mixing width, i.e. ∂/∂y ∼ 1/h, the self-similar
form of Tt should be

Tt = �U
hλφ

T̂t. (6.8)

The proposed scaling for Tt results in a collapse of the instantaneous profiles on the
self-similar form for ∂Σ/∂t in (6.3), suggesting that the scaling is consistent with the DNS
data. Additionally, these results agree with the findings from Kulkarni & Bisetti (2021),
who found that the turbulent transport term (normalized by Σ) scales with the integral
length scale of the flow.

The self-similar profiles of Tt are plotted in figure 8. Apart from small fluctuations
around the peaks of the curves, the instantaneous profiles collapse onto a single curve for
the assumed self-similar form, suggesting that (6.8) is the appropriate scaling for Tt for
this temporal turbulent mixing layer.

These data also suggest that the turbulent transport for the iso-surface corresponding to
Φiso = 0.5 acts in a traditional gradient-diffusive manner (Veynante et al. 1997), acting to
remove Σ from the peak and diffuse it outwards. In fact, for a constant, non-dimensional
turbulent diffusivity D̂t = 0.015, it can be shown that the assumption

̂〈vΣ ′〉s = −D̂t
dΣ̂

dξ
(6.9)

gives an excellent match when Φiso = 0.5, as shown in figure 9(a). For Φiso = 0.95, where
the iso-surface is located, on average, away from the centreline, the turbulent transport is
still diffusive in nature by removing Σ from the local peak. However, the diffusion is
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Figure 8. Proposed self-similar scaling of term Tt = (∂/∂xi)(〈ui〉sΣ) from (6.8), conditioned on (a) Φiso =
0.5 and (b) Φiso = 0.95, as functions of the similarity variable ξ = y/h. Solid and dashed lines are as in figure 6.
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Figure 9. Cross-stream profile of the surface weighted velocity
〈
vΣ ′〉 in the self-similar period, compared to

the gradient-diffusion hypothesis in (6.9), assuming constant turbulent diffusivity D̂t = 0.015, for (a) Φiso =
0.5 and (b) Φiso = 0.95.

preferentially towards the centre of the mixing layer, rather than away from the centreline
as might be expected. In this case, the assumption of a constant turbulent diffusivity is
clearly incorrect, as demonstrated by the significant discrepancy between the two curves
in figure 9(b). It is thought that the preferential diffusion towards the centreline is due to
the fact that the turbulent fluctuations are greatest near y/h = 0 (see e.g. figure 2a) and
decay quickly to zero near the edge of the mixing layer. This could, perhaps, be accounted
for in the turbulent diffusivity by choosing the standard form Dt = αu′�, where α is a
constant, u′ is the r.m.s. of the velocity fluctuations, and � is a characteristic length (Pope
2000), or by a two-equation model that better approximates the inhomogeneous nature
of the turbulent fluctuations. Although this will not be investigated further in the present
study, it should be emphasized that care should be taken in modelling the turbulent flux of
an iso-surface, as the behaviour of Tt exhibits a strong dependence on the iso-value chosen
in the present configuration.
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Figure 10. Proposed self-similar scaling of P = − 〈
ninjSij

〉
s Σ from (6.10), conditioned on (a) Φiso = 0.5 and

(b) Φiso = 0.95, as functions of the similarity variable ξ = y/h. Solid and dashed lines are as in figure 6.
Note that the magnitude of the peak value of P is significantly smaller near the edge of the mixing layer
(Φiso = 0.95) than it is near the centreline (Φiso = 0.5).

6.3. Production
Consider the term responsible for production of iso-surface area due to the fluid strain
rate P = − 〈

ninjSij
〉
s Σ . Self-similar scaling for this term can be deduced by considering

that the correlation tangential strain rate of the scalar field,
〈
ninjSij

〉
s, has been shown to

scale with the mean turbulent strain rate (ε/υ)1/2 (Poinsot & Veynante 2005; Kulkarni
& Bisetti 2021). Based on the definition of the transverse Taylor length scale in (4.7), and
noting that urms ∼ �U in the present temporal mixing layer, it can be shown that λg/�U ∼
(ε/υ)−1/2. This implies that the tangential strain rate

〈
ninjSij

〉
s scales approximately with

λg/�U. Recalling that Σ ∼ 1/λφ and that λg ∼ λφ in the present study, it is suggested
that the production term scales according to

P = �U

λ2
φ

P̂ . (6.10)

The self-similar profiles for P are displayed in figure 10. There is some discrepancy in the
width of the profiles for this term, especially near y/h = 0 for Φiso = 0.95, although the
difference is relatively small.

The self-similar scaling provided here can be used to predict the behaviour of the
integrated production term

∫
P , discussed in figure 4. Based upon (6.10), the integrated

production term is predicted to scale as
∫
P ∼ �U h/λ2

φ , which is independent of time
(recall that λφ ∼ h1/2). Qualitatively, this agrees with the observed behaviour of

∫
P from

figure 4.

6.4. Diffusive transport
Before analysing the diffusive transport term TD = −∂(〈wdif ni〉sΣ)/∂xi, it is helpful to
first consider the self-similar behaviour of the surface-averaged diffusion velocity, i.e.〈
wdif niΣ

′〉 = 〈
wdif ni

〉
s Σ . To estimate the self-similar scaling of this term, a characteristic

velocity scale for wdif is formed by considering the rate at which a scalar with diffusivity
D will diffuse over a length �, such that wdif ∼ D/�. It was determined empirically that
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Figure 11. Proposed self-similar scaling of 〈wdif ny〉sΣ , conditioned on (a) Φiso = 0.5 and (b) Φiso = 0.95,
as functions of the similarity variable ξ = y/h. Solid and dashed lines are as in figure 6.

choosing � = λφ results in the least error between instantaneous and self-similar profiles,
which suggests that

〈
wdif

〉
s Σ ∼ D/λ2

φ . Because 0 ≤ ni ≤ 1, it is not expected that the
normal vector will affect the self-similar scaling of this term (although it does affect the
direction of propagation).

As shown in figure 11, the instantaneous profiles collapse onto the mean profile of
the y component of the surface-averaged diffusion velocity,

〈
wdif ny

〉
s Σ , for the proposed

scaling. Note that only the y component is shown here because it is the only component
that contributes to TD.

The behaviour of
〈
wdif ny

〉
s Σ in figure 11 is somewhat unintuitive. In figure 11(a), it is

observed that the diffusion velocity of the Φiso = 0.5 iso-surface is positive for y/h < 0,
and negative for y/h > 0, which will cause Σ to concentrate at y/h = 0. Although it
appears to be counterintuitive, this finding is consistent with the linear solution for
a pure diffusion problem (i.e. where U = 0). The value of the diffusion velocity for
Φiso = 0.95, shown in figure 11(b), is only positive, with a peak value located near the
maximum of Σ(Φiso = 0.95). This suggests that, on average, the iso-surface associated
with Φiso = 0.95 will diffuse in the positive y direction. This result is notably distinct
from the behaviour observed for Φiso = 0.5, but is nonetheless an expected result based
on the solution to a purely diffusive problem with zero velocity.

To scale the diffusion term TD = −∂(
〈
wdif ni

〉
s Σ)/∂xi in (3.8), it is assumed that the

derivative in the cross-stream direction introduces a factor 1/h to the scaling (similar to
the argument for the advective flux TU in § 6.2). Based on this assumption and the above
scaling proposed for

〈
wdif ni

〉
s Σ , the self-similar form of TD is given by

TD = D

hλ2
φ

T̂D. (6.11)

The results for TD using the above self-similar scaling are displayed in figure 12,
demonstrating the collapse of instantaneous profiles onto a single self-similar profile for
the proposed scaling above.

Similar to the results for the diffusion velocity above, the behaviour of TD is somewhat
non-intuitive. Interestingly, for the Φiso = 0.5 iso-surface shown in figure 12(a), TD does
not act to spread out or diffuse the profile of Σ , but rather acts to concentrate the profile
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Figure 12. Proposed self-similar scaling of term TD = −∂(
〈
wdif ni

〉
s Σ)/∂xi from (6.11), conditioned on

(a) Φiso = 0.5 and (b) Φiso = 0.95, as functions of the similarity variable ξ = y/h. Solid and dashed lines
are as in figure 6.

Σ at the location y/h = 0. This finding is consistent with the behaviour of the diffusion
velocity discussed previously. The behaviour of TD for the iso-surface Φiso = 0.95, shown
in figure 12(b), is responsible for removing Σ near the centre of the mixing layer, and
transporting it to the outside of the mixing layer. This is consistent with the findings for
the diffusion velocity and an intuitive understanding of the iso-surface behaviour.

For the present DNS, the magnitude of TD is negligible compared to the other terms
(see § 7); as such, the effect of molecular diffusion on ∂Σ/∂t is small and will not be
investigated further. It should be noted that this term is not expected to be negligible for
highly diffusive surfaces (i.e. Sc � 1), or active surfaces such as premixed flames, and
will therefore require further study, especially given the non-intuitive behaviour observed
herein.

6.5. Destruction
The self-similar development of D = − 〈

wdif ∂ni/∂xi
〉
s Σ can be understood by invoking

a well-known identity that decomposes wdif into two terms, one related to diffusion in the
direction normal to the iso-surface, wN , and one related to the curvature of the iso-surface,
wC (van Kalmthout & Veynante 1998):

wdif = − D
|∇Φ|

∂|∇Φ|
∂xi

ni︸ ︷︷ ︸
wN

− ∂ni

∂xi︸︷︷︸
wC

. (6.12)

This decomposition can be used to split term D into two separate components,

D =
〈
wN

∂ni

∂xi

〉
s
Σ︸ ︷︷ ︸

Da

+ D

〈(
∂ni

∂xi

)2
〉

s

Σ︸ ︷︷ ︸
Db

, (6.13)

where Db is notable because when substituted into (3.8), it must always take on a negative
value in a manner analogous to the dissipation rates ε and χ . In contrast, Da may take on
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Figure 13. Decomposition of term D into components related to normal diffusion (Va) and curvature (Vb) at
t �U/h0 = 462, conditioned on (a) Φiso = 0.5 and (b) Φiso = 0.95. Terms are normalized by the mixing layer
width at t �U/h = 462 and the velocity difference h2/�U. Note the difference in scales between (a) and (b).

either positive or negative values; in the present DNS, Da acts predominantly to destroy
iso-surface area density (except for a very slight region on the far outside of the mixing
layer). Although some studies have suggested that Da is negligible compared to Db (van
Kalmthout & Veynante 1998), the terms are found to be of comparable magnitude in the
present study, as shown in figure 13. Because the two terms are of comparable magnitude
over a wide range of iso-values, it is postulated that Da and Db will evolve together during
the self-similar period. This assumption will be used to simplify the scaling argument
below for the destruction term.

As something of an aside, consider briefly the self-similar behaviour of the
surface-averaged mean curvature 〈∂ni/∂xi〉s Σ . The mean curvature is typically interpreted
as the characteristic size of ‘wrinkles’ in the iso-surface. The appropriate scaling of
this wrinkling length is somewhat controversial; previous studies have suggested that
it scales with an integral scale of the flow (van Kalmthout & Veynante 1998), while
others imply that it scales with the smallest features in the flow, i.e. the Kolmogorov
scale η (Kulkarni et al. 2021). It has also been postulated that the mean curvature is
proportional to the peak value of Σ (Huh, Kwon & Lee 2013), although the derivation
relies on the ‘generalized’ flame surface density (Boger et al. 1998) rather than the
fine-grained iso-surface area density used here. Despite the differences, results from the
current study are consistent with the analysis by Huh et al. (2013), wherein the mean
curvature is shown in figures 14(a,b) to evolve at the same rate as the peak value of Σ , i.e.
〈∂ni/∂xi〉s ∼ Σmax ∼ 1/λφ . It can be seen that the proposed scaling results in a convincing
collapse of the instantaneous profiles on the average over the self-similar period, for both
of the iso-surfaces shown here.

One might expect that if the mean curvature scales like 1/λφ , then the mean square
curvature would scale with 1/λ2

φ . However, according to the present DNS, the best
collapse of the instantaneous profiles of

〈
(∂ni/∂xi)

2〉
s occurs when scaled with 1/η2.

The instantaneous and self-similar profiles are displayed in figures 14(c,d) for Φiso = 0.5
and Φiso = 0.95, respectively, and demonstrate excellent agreement. From a physical
standpoint, this can be understood by considering that the mean curvature is proportional
to 〈1/r1 + 2/r2〉s, where r1 and r2 are the radii of curvature of the iso-surface, and
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Figure 14. Proposed self-similar scaling of 〈∂ni/∂xi〉s conditioned on (a) Φiso = 0.5 and (b) Φiso = 0.95,
and 〈(∂ni/∂xi)

2〉s conditioned on (c) Φiso = 0.5 and (d) Φiso = 0.95. Profiles are plotted as functions of the
similarity variable ξ = y/h. Solid and dashed lines are as in figure 6. Note the difference in scales between the
various curves.

the mean square curvature is proportional to
〈
(1/r1 + 1/r2)

2〉
s. Clearly, the effect of the

smallest length scales of the surface will dominate the mean square curvature, which
is expected to be of the order of the Kolmogorov scale (Sreenivasan, Ramshankar &
Meneveau 1989).

These results may be justified further by analogy to canonical scaling arguments
involving velocity derivatives. For example, the mean velocity gradient in a shear layer is
typically scaled by the mixing layer width h, i.e.

〈
∂Ui/∂xj

〉 ∼ �U/h, but the mean of the
velocity gradient squared is scaled with the Taylor scale λ, i.e.

〈
(∂Ui/∂xj)

2〉 ∼ �U2/λ2

(Tennekes & Lumley 1972). Therefore, it is not unreasonable to imagine that the mean
curvature and mean square curvature scale separately from each other.

Returning now to the destruction term D, based on the above discussion it is assumed
that (1) D ∼ Db, and (2)

〈
(∂ni/∂xi)

2〉
s ∼ η−2. This suggests the following self-similar

scaling for the destruction,

D = D
λφη2 D̂. (6.14)

The instantaneous profiles are shown along with the self-similar average in figure 15,
demonstrating the collapse of the profiles over the given self-similar period.
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Figure 15. Proposed self-similar scaling of the destruction term D = 〈
wdif ∂ni/∂xi

〉
s Σ from (3.8), conditioned

on (a) Φiso = 0.5 and (b) Φiso = 0.95, as functions of the similarity variable ξ = y/h. Solid and dashed lines
are as in figure 6.

Now, it was demonstrated in figure 5 that the production and destruction terms are
significantly larger than the remaining terms in (3.8), but of a similar magnitude to each
other, suggesting that the production and destruction should scale similarly. However,
from the current discussion, it is proposed that D ∼ D/λφη2, whereas P ∼ �U/λ2

φ . This
discrepancy can be resolved by noting that in the present DNS with constant Schmidt
number equal to 0.7, the Kolmogorov and Batchelor scales are directly proportional, where
the Batchelor scale is defined as ηB = η Sc−1/2. From this definition, and the definition of
the Kolmogorov scale in (2.2), it can be shown that

η2
B = D

( ε

υ

)1/2
. (6.15)

Noting that the Taylor scale, defined in (4.7), is proportional to (ε/υ)1/2, and that λg ∼ λφ
in the present DNS, it can be shown that

η2 ∼ η2
B ∼ Dλφ

�U
. (6.16)

Substituting this expression for η2 into the self-similar form given above for D yields

D ∼ �U

λ2
φ

D̂, (6.17)

which is the same as the scaling observed for the production term. Note that although
the Schmidt number dependence is included where possible, the present results assume
a Schmidt number of O(1) and may not be valid for flows with Schmidt numbers
significantly different from unity, such as hydrogen diffusing in air or diluents such as
salt in water. Furthermore, the diffusivity in the present simulations is constant and may
not apply for flows with significant temperature or density gradients, such as premixed
flames or highly stratified flows.

6.6. Net effect of production and destruction terms
The final term to analyse is the net effect of production and destruction, K = P − D. As
discussed briefly in § 5.2, terms P and D are both an order of magnitude larger than ∂Σ/∂t
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Figure 16. Proposed self-similar scaling of K from (6.18), conditioned on (a) Φiso = 0.5 and (b) Φiso = 0.95,
as functions of the similarity variable ξ = y/h. Solid and dashed lines are as in figure 6.

and TU . Despite this discrepancy in magnitudes, it is clear that ∂Σ/∂t and TU cannot be
neglected. For example, the location of an iso-surface in the present mixing layer, say
Φiso > 0.5, must translate in the +y direction for the mixing layer width to increase with
time. Thus a non-trivial value of ∂Σ/∂t is required. As displayed in figure 5(b), computing
the net effect of the production and destruction, K, yields a term that is of the same order
of magnitude as ∂Σ/∂t and TU .

Assuming that K will develop proportionally to ∂Σ/∂t and TU yields the self-similar
form

K = �U
hλφ

K̂. (6.18)

The normalized cross-stream profiles are displayed in figure 16, which once again
demonstrates agreement between the instantaneous and time-averaged profiles, aside
from some fluctuations around y/h = 0. Importantly, the fluctuations observed here are
non-monotonic in time, i.e. the error is likely statistical in nature, not systematic. Notably,
the scaling proposed here does not agree with the scaling proposed by Kulkarni & Bisetti
(2021), who suggest that K would scale in the same manner as P and D.

7. Discussion

7.1. Summary and Reynolds number scaling
According to the above analysis, the terms responsible for the evolution of Σ , given in
(3.8), evolve in a self-similar manner according to

∂Σ

∂t
= �U

hλφ

d̂Σ

dt
, Tt = �U

hλφ
T̂t, P = �U

λ2
φ

P̂,

TD = D

hλ2
φ

T̂D and D = �U

λ2
φ

D̂,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7.1)

where the length scales h, λφ and η are understood to be functions of time t. Furthermore,
the net effect of production and destruction, i.e. K = P − D, is found to evolve
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according to

K = �U
hλφ

K̂. (7.2)

Substituting these self-similar forms into (3.8) and multiplying by hλφ/�U yields

∂̂Σ

∂t
= T̂t + h

λφ
P̂ + D

λφ �U
T̂D − h

λφ
D̂. (7.3)

Note that this equation is not formally self-similar, as the length scales h and λφ are
functions of time, which will be addressed in the next subsection. Despite this, there
are some implications regarding the evolution of iso-surface area density than can be
extrapolated from this result. First, note that the production and destruction terms are
multiplied by the ratio of the mixing layer width to the Taylor length scale. By taking
the mixing layer width to be the integral scale of the flow and invoking well-known
scaling arguments (Tennekes & Lumley 1972; Pope 2000), this ratio is expected to scale
like h/λφ ∼ (Re Sc)1/2. Based on the proposed Reynolds scaling, it is expected that
these terms will become large compared to ∂Σ/∂t and Tt for highly turbulent flows,
i.e. Re Sc � 1. This is supported by the discrepancy in magnitudes between terms in the
present study, e.g. as shown in figure 5(a). Second, the coefficient of the diffusion term
TD can also be interpreted according to the Reynolds and Schmidt numbers. By invoking
scaling arguments similar to those above, it is suggested that D/(λφ �U) ∼ (Re Sc)−1/2

(Tennekes & Lumley 1972; Pope 2000). In contrast to the production and destruction
terms, the coefficient of the diffusion term is expected to become small compared to
∂Σ/∂t for Re Sc � 1, which is supported by the magnitudes of the terms as displayed
in e.g. figure 5(b).

Throughout the present analysis, it was found that the centreline values of the turbulent
length scales, i.e. λg, λφ and η, were general enough to cover the wide range of iso-levels
presented herein, from Φiso = 0.5 to Φiso = 0.95 (and, by symmetry, to Φiso = 0.05 as
well). However, with regard to the Reynolds scaling, there are some distinct differences
that can be observed between iso-values between e.g. figures 5(a,c). For the iso-value
Φiso = 0.5, the production and destruction terms are a full order of magnitude larger than
the other terms, whereas the difference (while still significant) is much smaller for the
iso-value Φiso = 0.95. It is thought that the local value of the Reynolds number is lower
towards the outside of the mixing layer, which means that the Reynolds scaling discussed
above is not as pronounced for the Φiso = 0.95 iso-surface. This might imply that even
for very large Reynolds numbers based on the centreline values, iso-surfaces defined near
the edge of the mixing, e.g. the turbulent/non-turbulent interface, may exhibit behaviour
different to that of iso-surfaces near the centreline of the flow.

It should be noted that the Reynolds and Schmidt number scalings proposed here are
inferred from the self-similar behaviour of the present study, which spans a small range of
Taylor Reynolds numbers. Additional studies are required (similar to those performed by
Shete & de Bruyn Kops 2020; Kulkarni & Bisetti 2021) to have more confidence in the
Reynolds number dependence of iso-surface area density in a temporal mixing layer.

7.2. Physical interpretation of the surface area density transport equation
A formally self-similar expression for ∂Σ/∂t in the present study can be obtained by
combining the production and destruction terms into their net effect and neglecting the
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Figure 17. Self-similar profiles of the terms in (7.4) for (a) Φiso = 0.5 and (b) Φiso = 0.95. Blue circles
indicate ∂Σ̂/∂ t̂, orange squares indicate T̂ t, and turquoise diamonds indicate K̂. Terms have been normalized
by hλφ/�U and averaged over the self-similar period.

molecular diffusion term, which yields

∂̂Σ

∂t
= T̂t + K̂. (7.4)

According to (7.4), the rate of change of Σ at any location in the flow is due to the net
growth or decay of the surface due to the combined effects of production and destruction,
and the transport of Σ due to turbulent diffusion. Self-similar profiles of this simplified
balance equation for Σ are plotted in figure 17.

From figure 17(a), it can be seen that for the iso-value Φiso = 0.5, there is a net positive
effect of P − D near the centre of the mixing layer, but this falls steeply and becomes
a net decrease in Σ towards the outer edges. This is offset by the turbulent flux term Tt,
which acts in a diffusive manner by decreasing the concentration of Σ at the centreline and
redistributing it to the outer edge of the mixing layer. The end result is that Σ is shown to
decrease in magnitude near y/h = 0, but increase away from the centre, with a local peak
near y/h ≈ ±0.4. This rate of change is consistent with the observed temporal evolution
of Σ , which tends to diffuse outwards, as discussed briefly in § 4 and in more detail by
Blakeley et al. (2022).

For the iso-value Φiso = 0.95, the self-similar profiles are displayed in figure 17(b).
Here, the net effect of P − D is positive towards the far outside of the mixing layer, with
a maximum occurring near y/h ≈ 0.65, which decreases and becomes a net destruction
of Σ closer to the centreline, with a minimum occurring near y/h ≈ 0.2. This is rather
counterintuitive, as ε and χ are greatest around y/h = 0 (as shown in figures 2c,d), which
are expected to increase Σ . The turbulent flux is found to promote iso-surface movement
of Σ towards the centre of the mixing layer, rather than towards the edges as might be
expected for a diffusive term. This could be due to the fact that the turbulent fluctuations
are concentrated near y/h = 0 (as shown in figure 2a), causing the iso-surface to skew in
that direction. Overall, the behaviour of ∂Σ/∂t is consistent with the results discussed in
§ 4, which is to translate Σ in the +y direction. It is interesting to note that the translation in
the +y direction is actually driven by the production and destruction terms, and is impeded
by the turbulent flux. This is opposite to the behaviour observed for Φiso = 0.5, in which
Σ was produced in the region of greatest turbulent fluctuations and diffused outwards. It is
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unclear why the behavior appears to change as a function of Φiso; additional investigation
into the kinematics may prove enlightening.

8. Conclusions and future work

This study is a continuation of the work described by Blakeley et al. (2022), which
examined the self-similar evolution of iso-surface area density Σ of a passive scalar
field in a turbulent, temporal mixing layer for a wide range of iso-values. In the present
work, the transport equation for Σ is considered in detail for the same turbulent flow and
same iso-values of the passive scalar field. It was first demonstrated that the terms in the
iso-surface area and the iso-surface area density transport equations could be computed
fairly accurately, such that the left-hand and right-hand sides of the transport equation
were in approximate balance. Next, the self-similar behaviour of each of the five terms in
the iso-surface area density equation (3.8) was examined in detail, and self-similar forms
were proposed for each term based upon scaling arguments and the behaviour of the data.
Based on these self-similar forms, a scaling analysis of (3.8) suggests that, separately,
terms P and D, relating to the production and destruction of iso-surface area density, are
significantly larger in magnitude than ∂Σ/∂t. However, the net effect of the production
and destruction, K = P − D, is of the same order of magnitude as ∂Σ/∂t. Finally, the
results are summarized in figure 17, which displays the self-similar transport of Σ based on
the proposed scaling identified above. The physical interpretation of the remaining terms,
namely the turbulent flux and net effect of production and destruction, is straightforward,
although the result for Φiso = 0.95 is somewhat counter-intuitive.

The present work is focused on gaining a deeper fundamental understanding of
iso-surface production, destruction and transport in turbulent flows in order to serve as a
baseline comparison to future studies. As such, the problem set-up considered here is one
of the most ‘simple’ free shear flow with a passive scalar field. Future work will examine
more complicated flow geometries, such as the temporally developing jet. Although it may
appear to be a simple extension of the present work, there are subtle differences that require
additional understanding. In particular, consider a jet with scalar concentration Φ = 1
issuing into a quiescent environment with Φ = 0. As the jet mixes into the surrounding
fluid, the centreline concentration will decrease, such that the iso-surface area associated
with values of Φiso near Φ = 1 will go to zero. In this case, it is unclear how ∂Σ/∂t and
the relevant terms will scale; preliminary results suggests that the magnitude of ∂Σ/∂t
could become comparable to the production and destruction terms (Blakeley et al. 2019),
despite Re Sc � 1. This has significant implications for modelling reacting flows, as the
length of a diffusion flame will depend on a proper estimation of when the stoichiometric
iso-surface area goes to zero.

Furthermore, the methodology utilized here for estimating iso-surface integrals is
expected to be valuable for investigating other turbulent mixing problems that can
be described as iso-surfaces, such as premixed flames and the turbulent/non-turbulent
interface. These two problems are of particular interest, because the propagation speed of
the iso-surface depends on other factors (i.e. reaction rate in a premixed flame and vortex
stretching in the turbulent/non-turbulent interface) in addition to the propagation due to
molecular diffusivity. These additional effects may have a significant impact on terms TD
and D in (3.8), which would in turn affect the self-similar behaviour discussed above.
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Appendix. Iso-value dependence on transport terms

In the interests of clarity, only the iso-values Φiso = 0.5 and 0.95 were discussed in the
main text. These values were chosen because they represent two distinct regions of the
flow: Φiso = 0.5 is located primarily towards the centreline of the flow where the turbulent
fluctuations are the largest, whereas Φiso = 0.95 is located primarily near the edge of the
mixing layer in a region characterized by considerable intermittency. By demonstrating
self-similarity for iso-surfaces interacting with these two distinct regions of the flow, it
can be stated that iso-surfaces corresponding to intermediate values of Φiso demonstrate
similar behaviours. In figure 18, each term in the transport equation for Σ is plotted for
the iso-values Φiso = 0.5, 0.65, 0.75, 0.85, 0.95 in order to visualize their dependency on
Φiso. Note that no values of Φiso < 0.5 are shown here, which will be mirrored about
y/h = 0 due to problem symmetry.
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