F. BagemihlNagoya, Math. J.Vol. 53 (1974), 137-140

THE THREE-ARC AND THREE-SEPARATED-ARC PROPERTIES OF MEROMORPHIC FUNCTIONS

FREDERICK BAGEMIHL

Let Γ be the unit circle and D be the open unit disk in the complex plane, and denote the Riemann sphere by Ω . Suppose that f(z) is a meromorphic function in D, and that $\zeta \in \Gamma$. The principal cluster set of f at ζ is the set

$$\Pi(f,\zeta) = \bigcap_{\Lambda} C_{\Lambda}(f,\zeta)$$
,

where Λ ranges over all arcs at ζ ; the chordal principal cluster set of f at ζ is the set

$$\Pi_{\mathbf{x}}(f,\zeta) = \bigcap_{\mathbf{x}} C_{\mathbf{X}}(f,\zeta)$$
 ,

where X ranges over all chords at ζ ; and we define the set

$$\Delta(f,\zeta) = \Pi_{\gamma}(f,\zeta) - \Pi(f,\zeta) ,$$

where it is clear that $\Pi(f,\zeta) \subseteq \Pi_{\chi}(f,\zeta)$. We say that f has the three-arc property at ζ , if there exist three arcs $\Lambda_1, \Lambda_2, \Lambda_3$ at ζ such that

$$C_{A_1}(f,\zeta) \cap C_{A_2}(f,\zeta) \cap C_{A_3}(f,\zeta) = \phi$$
;

if, moreover, the three arcs can be taken to be mutually exclusive, we say that f has the three-separated-arc property at ζ ; and if the three arcs can be taken to be chords at ζ , we say that f has the three-chord property at ζ .

Gresser [5, p. 145, Theorem 2] has shown that there exists a meromorphic function in D that has the three-chord property (and hence the three-separated-arc property) at each point of a perfect subset of Γ . Belna [4, p. 220] has raised the question of the existence of a meromorphic function in D that has the three-separated-arc property at each point of Γ .

Received May 24, 1973.

THEOREM 1. There exists a normal meromorphic function f(z) in D that has the three-separated-arc property at every point of Γ .

Proof. Let f(z) be a Schwarzian triangle-function in D whose fundamental triangle has angles $\pi/7, \pi/3, \pi/2$, and let its system of triangles be that displayed in [6, p. 437, Fig. 122]. A vertex of the figure is a common vertex of either fourteen, six, or four of the figure's triangles; we assume that f has the value $\infty, 0, 1$ at a vertex of the first, second, third kind, respectively. Then, as is well known, f is meromorphic and normal in D.

By a 14-star, 6-star, 4-star of the figure, we shall mean the union of the fourteen, six, four triangles having a common vertex of the first, second, third kind, respectively, which vertex will be called the center of the n-star; we consider the interior points as well as the boundary points as belonging to the triangle in question. The hyperbolic diameter of an n-star is independent of its center, and will be denoted by d_n (n=14,6,4). As z describes the frontier of an n-star, f(z) varies over the closed interval I_1 of the real axis between 0 and 1 if n=14, the closed interval I_2 of the positive real axis between 1 and ∞ if n=6, and the closed interval I_3 of the nonpositive real axis between 0 and ∞ if n=4.

Now suppose that ζ is any point of Γ . Denote the radius at ζ by R and the diameter with end points ζ and $-\zeta$ by M. Let G_1 be the lens-shaped region between two hypercycles H_2 and H_3 through ζ and $-\zeta$, one on either side of M and each the same hyperbolic distance greater than d_{14} from M. Denote by G_2, G_3 the remaining two regions into which the hypercycles divide D, where H_2, H_3 is part of the frontier of G_2, G_3 , respectively. Take a hypercycle H'_2 in G_2 through ζ and $-\zeta$ such that its hyperbolic distance from H_2 is greater than d_6 , and let H'_3 be a hypercycle in G_3 through ζ and $-\zeta$ such that its hyperbolic distance from H_3 is greater than d_4 .

Consider the union U_1 of those 14-stars that intersect the radius R at ζ , the union U_2 of those 6-stars that intersect the arc at ζ that extends along H_2 from some point of H_2 to ζ , and the union U_3 of those 4-stars that intersect the arc at ζ that extends along H_3 from some point of H_3 to ζ . For each (fixed) n=14,6,4, it is evident that D is the union of all the n-stars of the figure, and any two of these n-stars are

either mutually exclusive or have only frontier points in common. Consequently each of the sets U_1, U_2, U_3 is connected, and there are arcs $\Lambda_1, \Lambda_2, \Lambda_3$ at ζ which lie on the frontiers of the respective sets U_1, U_2, U_3 . Since $U_j \subset G_j$ (j=1,2,3), the arcs $\Lambda_1, \Lambda_2, \Lambda_3$ are mutually exclusive. Moreover $C_{A_j}(f,\zeta) \subseteq I_j$ (j=1,2,3), and so f has the three-separated-arc property at ζ . In view of the fact that ζ was an arbitrarily chosen point of Γ , the proof of the theorem is complete.

Although there exists [3, p. 31, Theorem 4] a function of bounded characteristic in D that has the three-arc property at each point of a perfect subset of Γ , the general behavior of a function of bounded characteristic relative to the three-arc property is markedly different from that of a normal function.

THEOREM 2. The set of points on Γ at which a meromorphic function f(z) of bounded characteristic in D has the three-arc property is of measure zero.

Proof. According to [7, p. 208], f has a radial limit at almost every point of Γ . If $\zeta \in \Gamma$, and if f has the radial limit ω at ζ , then unless ζ is an ambiguous point of f, we have $\omega \in C_A(f,\zeta)$ for every arc Λ at ζ , and consequently f cannot have the three-arc property at ζ . Since f has at most enumerably many ambiguous points on Γ [1, p. 380, Theorem 2], the theorem is proved.

The following question was raised in [3, p. 32, Question 4]:

"Let f be of class (A) in D; that is, let f be bounded and holomorphic in D, and let the radial limit of f have modulus 1 at almost all points $e^{i\theta}$. Does f have the three-arc property at all (or almost all) singular points $e^{i\theta}$ that are not isolated singularities?"

Theorem 2 answers this question in the negative, because if we take f to be a Blaschke product such that the set of limit points of its zeros is Γ , then every point of Γ is a nonisolated singularity of f, but f has the three-arc property almost nowhere on Γ .

There exists [3, p. 33] a normal holomorphic function f in D such that $\Delta(f,\zeta)=\Omega$ for almost all $\zeta\in \Gamma$; and there exists [2] a meromorphic function f in D such that $\Delta(f,\zeta)=\Omega$ for all $\zeta\in \Gamma$. The proof of Theorem 2 shows, however, that for functions of bounded characteristic we have the following

COROLLARY. If f(z) is a meromorphic function of bounded characteristic in D, then $\Delta(f,\zeta) = \phi$ for almost all $\zeta \in \Gamma$.

REFERENCES

- F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 379-382.
- [2] —, The principal and chordal principal cluster sets of a certain meromorphic function, Rev. Roum. Math. Pures Appl. 15 (1970), 3-6.
- [3] —, G. Piranian and G. S. Young, Intersections of cluster sets, Bul. Inst. Politehn. Iaşi (N.S.) 5 (1959), 29-34.
- [4] C. L. Belna, Intersections of arc-cluster sets for meromorphic functions, Nagoya Math. J. 40 (1970), 213-220.
- [5] J. T. Gresser, On uniform approximation by rational functions with an application to chordal cluster sets, Nagoya Math J. 34 (1969), 143-148.
- [6] A. Hurwitz and R. Courant, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen (3d ed.), Berlin, 1929.
- [7] R. Nevanlinna, Eindeutige analytische Funktionen (2d ed.), Berlin, 1953.

University of Wisconsin-Milwaukee