INDEX OF AUTHORS

ABE, O	Creep experiments and numerical simulations of very light artificial snowpacks	39
ABE, O	Recent fluctuation of snow cover on mountainous areas in Japan	97
BARBOLINI, M	Estimate of uncertainties in avalanche hazard mapping	299
BARTELT, P	The influence of tree and branch fracture, overturning and debris entrainment on snow avalanche flow	209
BAUNACH, T	A model for kinetic grain growth	1
BELAYA, N	Distribution of slush flows in northern Europe and their potential change due to global warming	237
BIESCAS, B	On the characterization of seismic signals generated by snow avalanches for monitoring purposes	268
BINTANJA, R	Buoyancy effects induced by drifting snow particles	147
BINTANJA, R	Observations of snowdrift over Antarctic snow and blue-ice surfaces	168
BIRKELAND, KW	Avalanche extremes and atmospheric circulation patterns	135
BOLLER, E	Three-dimensional snow images by X-ray microtomography	75
BOUDART, G	Impact of a climate change on avalanche hazard	163
BOZHINSKY, A N	Avalanches: a probabilistic approach to modelling	255
BRABEC, B	A nearest-neighbor model for regional avalanche forecasting	130
BRZOSKA, J-B	Three-dimensional snow images by X-ray microtomography	75
CAMPONOVO, C	Rheological measurements of the viscoelastic properties of snow	44
CAMPONOVO, C	The skier's zone of influence in triggering slab avalanches	314
CHERNOUSS, PA	Application of statistical simulation for avalanche-risk evaluation	182
CHERNOUSS, PA	Avalanches: a probabilistic approach to modelling	255
CHRISTIANSEN, H H	Snow-cover depth, distribution and duration data from northeast Greenland obtained by continuous automatic digital photographing	102
CLÉMENT-RASTELLO, M	A study on the size of snow particles in powder-snow avalanches	259
COLÉOU, C	Three-dimensional snow images by X-ray microtomography	75
DOORSCHOT, J	Measurements and one-dimensional model calculations of snow transport over a mountain ridge	153
DUFOUR, F	Photogrammetric avalanche volume measurements at Vallée de la Sionne, Switzerland	141
DURAND, Y	Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France	87
DURAND, Y	Numerical experiments of wind transport over a mountainous instrumented site: I. Regional scale	187

DURAND, Y	SAFRAN-Crocus snow simulations in an unstable and windy climate	339
ETCHEVERS, P	Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France	87
FEDORENKO, YU	Application of statistical simulation for avalanche-risk evaluation	182
FIERZ, C	A model for kinetic grain growth	1
FILY, M	Numerical simulations of Greenland snowpack and comparison with passive microwave spectral signatures	109
FÖHN, PMB	Simulation of surface-hoar layers for snow-cover models	19
FONT, D	Mass-flux measurements in a cold wind tunnel: comparison of the mechanical traps with a snow-particle counter	121
FONT, D	Aeolian susceptibility maps: methodology and applications	306
FORSTER, F	Time-space linear regression analysis of the snow cover in a pre-Alpine semi- forested catchment	125
FROLOV, A D	On the correlation between tensile strength and stress wave velocities of dry coherent snow based on its structural model	70
FUCHS, M	Heavy rain on snow cover	33
FURDADA, G	On the characterization of seismic signals generated by snow avalanches for monitoring purposes	268
FURDADA, G	Aeolian susceptibility maps: methodology and applications	306
GAREN, D	Simulating snowmelt processes during rain-on-snow over a semi-arid mountain basin	195
GENTHON, C	Numerical simulations of Greenland snowpack and comparison with passive microwave spectral signatures	109
GIANI, G P	Avalanche of 18 January 1997 on Brenva Glacier, Mont Blanc Group, Western Italian Alps: an unusual process of formation	333
GIRAUD, G	Impact of a climate change on avalanche hazard	163
GIRAUD, G	SAFRAN-Crocus snow simulations in an unstable and windy climate	339
GLAZOVSKAYA, T	Zoning of snowiness and avalanching in the mountains of western Transcaucasia	311
GOLUBEV, V N	On the correlation between tensile strength and stress wave velocities of dry coherent snow based on its structural model	70
GRAY, J M N T	An accurate shock-capturing finite-difference method to solve the Savage–Hutter equations in avalanche dynamics	263
GRAY, J M N T	Flow of dense avalanches past obstructions	281
GRUBER, U	Photogrammetric avalanche volume measurements at Vallée de la Sionne, Switzerland	141
GRUBER, U	Winter 1999: a valuable test of the avalanche-hazard mapping procedure in Switzerland	328
GUYOMARC'H, G	Numerical experiments of wind transport over a mountainous instrumented site: I. Regional scale	187
HABETS, F	Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France	87
HACHIKUBO, A	Numerical modelling of sublimation on snow and comparison with field measurements	27

HARALDSDÓTTIR, SH	SAFRAN-Crocus snow simulations in an unstable and windy climate	339
HARBITZ, A	On probability analysis in snow avalanche hazard zoning	290
HARBITZ, C	On probability analysis in snow avalanche hazard zoning	290
HESTNES, E	The proposed open-pit protection of Bolungarvík, Iceland	345
HÖLLER, P	The influence of the forest on night-time snow surface temperature	217
HUTTER, K	An accurate shock-capturing finite-difference method to solve the Savage–Hutter equations in avalanche dynamics	263
HUTTER, K	Flow of dense avalanches past obstructions	281
ISSLER, D	Particle densities, velocities and size distributions in large avalanches from impact- sensor measurements	321
IZUMI, K	The effect of wind direction on drift control by snow fences	159
IZUMI, K	Prediction of avalanche paths deviated from the stream by centre-of-mass model	251
JAMIESON, B	Evaluation of the shear frame test for weak snowpack layers	59
JÓHANNESSON, T	Run-up of two avalanches on the deflecting dams at Flateyri, northwestern Iceland	350
JOHNSTON, CD	Evaluation of the shear frame test for weak snowpack layers	59
JÓNSSON, Á	The proposed open-pit protection of Bolungarvík, Iceland	345
KAMATA, Y	Water vapor in the pore space of snow	51
KOBAYASHI, S	The effect of wind direction on drift control by snow fences	159
KOBAYASHI, S	Prediction of avalanche paths deviated from the stream by centre-of-mass model	251
KOHL, B	Heavy rain on snow cover	33
KONDAKOVA, N	Zoning of snowiness and avalanching in the mountains of western Transcaucasia	311
KOSUGI, K	Mass-flux measurements in a cold wind tunnel: comparison of the mechanical traps with a snow-particle counter	121
KOSUGI, K	The effect of wind direction on drift control by snow fences	159
KOSUGI, K	Saltation-layer structure of drifting snow observed in wind tunnel	203
LEHNING, M	Measurements and one-dimensional model calculations of snow transport over a mountain ridge	153
LEJEUNE, Y	Impact of a climate change on avalanche hazard	163
LESAFFRE, B	Three-dimensional snow images by X-ray microtomography	75
LILIENTHAL, H	Observations of snowdrift over Antarctic snow and blue-ice surfaces	168
LINK, T	Simulating snowmelt processes during rain-on-snow over a semi-arid mountain basin	195
LIU MINGZHE	Properties and structure of the seasonal snow cover in the continental regions of China	93
LOUCHET, F	A transition in dry-snow slab avalanche triggering modes	285
LUDWIG, W	Three-dimensional snow images by X-ray microtomography	75
MAENO, N	The low-frequency conductivity of snow near the melting temperature	14

MARGRETH, S	Winter 1999: a valuable test of the avalanche-hazard mapping procedure in Switzerland	328
MARKART, G	Heavy rain on snow cover	33
MARKS, D	Simulating snowmelt processes during rain-on-snow over a semi-arid mountain basin	195
MARSHALL, S	Effect of western U.S. snow cover on climate	82
MARTIN, E	Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France	87
MARTIN, E	Numerical simulations of Greenland snowpack and comparison with passive microwave spectral signatures	109
MARTIN, E	Impact of a climate change on avalanche hazard	163
McCLUNG, DM	Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging	223
McELWAINE, J	Ping-pong ball avalanche experiments	241
MEISTER, R	A nearest-neighbor model for regional avalanche forecasting	130
MÉRINDOL, L	Numerical experiments of wind transport over a mountainous instrumented site: I. Regional scale	187
MÉRINDOL, L	SAFRAN-Crocus snow simulations in an unstable and windy climate	339
MICHAUX, J-L	Drifting-snow studies over an instrumented mountainous site: II. Measurements and numerical model at small scale	175
MOCK, CJ	Avalanche extremes and atmospheric circulation patterns	135
NAAIM, M	Drifting-snow studies over an instrumented mountainous site: II. Measurements and numerical model at small scale	175
NAAIM-BOUVET, F	Drifting-snow studies over an instrumented mountainous site: II. Measurements and numerical model at small scale	175
NADIM, F	On probability analysis in snow avalanche hazard zoning	290
NAGASAKI, T	Prediction of avalanche paths deviated from the stream by centre-of-mass model	251
NAZAROV, A N	Avalanches: a probabilistic approach to modelling	255
NISHIMURA, K	Ping-pong ball avalanche experiments	241
NOELLE, S	An accurate shock-capturing finite-difference method to solve the Savage–Hutter equations in avalanche dynamics	263
NOELLE, S	Flow of dense avalanches past obstructions	281
NOILHAN, J	Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France	87
NOLIN, AW	Effect of western U.S. snow cover on climate	82
OGLESBY, RJ	Effect of western U.S. snow cover on climate	82
OLAFSSON, H	SAFRAN-Crocus snow simulations in an unstable and windy climate	339
PAPRITZ, A	Time-space linear regression analysis of the snow cover in a pre-Alpine semi-forested catchment	125
PATZELT, G	Heavy rain on snow cover	33

PENG YONGHENG	The effect of wind direction on drift control by snow fences	159
PEROV, V	Distribution of slush flows in northern Europe and their potential change due to global warming	237
PIELMEIER, C	Snow texture: a comparison of empirical versus simulated texture index for Alpine snow	7
QIN DAHE	Properties and structure of the seasonal snow cover in the continental regions of China	93
RADERSCHALL, N	Measurements and one-dimensional model calculations of snow transport over a mountain ridge	153
RAMMER, L	Avalanche dynamics measurement by pulsed Doppler radar	275
RANDEU, W L	Avalanche dynamics measurement by pulsed Doppler radar	275
SABOT, F	On the characterization of seismic signals generated by snow avalanches for monitoring purposes	268
SATO, A	Water vapor in the pore space of snow	51
SATO, A	The effect of wind on the snow cover	116
SATO, A	Mass-flux measurements in a cold wind tunnel: comparison of the mechanical traps with a snow-particle counter	121
SATO, A	Saltation-layer structure of drifting snow observed in wind tunnel	203
SATO, T	Mass-flux measurements in a cold wind tunnel: comparison of the mechanical traps with a snow-particle counter	121
SATO, T	The effect of wind direction on drift control by snow fences	159
SATO, T	Saltation-layer structure of drifting snow observed in wind tunnel	203
SATYAWALI, PK	A model for kinetic grain growth	1
SAVI, F	Estimate of uncertainties in avalanche hazard mapping	299
SCHAER, M	Particle densities, velocities and size distributions in large avalanches from impact- sensor measurements	321
SCHAFFHAUSER, H	Avalanche dynamics measurement by pulsed Doppler radar	275
SCHNEEBELI, M	A model for kinetic grain growth	1
SCHNEEBELI, M	Snow texture: a comparison of empirical versus simulated texture index for Alpine snow	7
SCHREIBER, H	Avalanche dynamics measurement by pulsed Doppler radar	275
SCHWEIZER, J	Rheological measurements of the viscoelastic properties of snow	44
SCHWEIZER, J	The skier's zone of influence in triggering slab avalanches	314
SHIMIZU, M	Recent fluctuation of snow cover on mountainous areas in Japan	97
SHINKER, JJ	Avalanche extremes and atmospheric circulation patterns	135
SIDOROVA, T	Distribution of slush flows in northern Europe and their potential change due to global warming	237
SILVANO, S	Avalanche of 18 January 1997 on Brenva Glacier, Mont Blanc Group, Western Italian Alps: an unusual process of formation	333
SOKOLOV, V	Zoning of snowiness and avalanching in the mountains of western Transcaucasia	311

SOKRATOV, S A	Water vapor in the pore space of snow	51
SOKRATOV, S A	The effect of wind on the snow cover	116
SOMMAVILLA, F	Measurements of mass balance in dense snow avalanche events	230
SOVILLA, B	Measurements of mass balance in dense snow avalanche events	230
STÄHLI, M	Time-space linear regression analysis of the snow cover in a pre-Alpine semi-forested catchment	125
STÖCKLI, V	The influence of tree and branch fracture, overturning and debris entrainment on snow avalanche flow	209
STUCKI, T	Snow texture: a comparison of empirical versus simulated texture index for Alpine snow	7
SURIÑACH, E	On the characterization of seismic signals generated by snow avalanches for monitoring purposes	268
TAI, Y C	An accurate shock-capturing finite-difference method to solve the Savage–Hutter equations in avalanche dynamics	263
TAI, Y C	Flow of dense avalanches past obstructions	281
TAKEI, I	The low-frequency conductivity of snow near the melting temperature	14
TAKEUCHI, Y	The effect of wind direction on drift control by snow fences	159
TOMASELLI, A	Measurements of mass balance in dense snow avalanche events	230
TROSHKINA, E	Zoning of snowiness and avalanching in the mountains of western Transcaucasia	311
TÜG, H	Observations of snowdrift over Antarctic snow and blue-ice surfaces	168
VALLET, J	Photogrammetric avalanche volume measurements at Vallée de la Sionne, Switzerland	141
VILAPLANA, J M	Mass-flux measurements in a cold wind tunnel: comparison of the mechanical traps with a snow-particle counter	121
VILAPLANA, J M	On the characterization of seismic signals generated by snow avalanches for monitoring purposes	268
VILAPLANA, J M	Aeolian susceptibility maps: methodology and applications	306
WALDNER, P	Time-space linear regression analysis of the snow cover in a pre-Alpine semi-forested catchment	125
WANG XIN	The effect of wind direction on drift control by snow fences	159
WEI WENSHOU	Properties and structure of the seasonal snow cover in the continental regions of China	93
WINSTRAL, A	Simulating snowmelt processes during rain-on-snow over a semi-arid mountain basin	195
YAMADA, T	Prediction of avalanche paths deviated from the stream by centre-of-mass model	251
ZANON, G	Avalanche of 18 January 1997 on Brenva Glacier, Mont Blanc Group, Western Italian Alps: an unusual process of formation	333
ZHANGJIAPIN	The effect of wind direction on drift control by snow fences	159