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Symplectic invariance of CCR in
finite-dimensions

This is the first chapter devoted to the symplectic invariance of the CCR. In
this chapter we restrict ourselves to regular CCR representations over finite-
dimensional symplectic spaces.

In an infinite-dimensional symplectic space there is no distinguished topology.
This problem is absent in a finite-dimensional space. This motivates a separate
discussion of the finite-dimensional case.

The chapter is naturally divided in two parts. In the first three sections we
consider symplectic invariance without invoking any conjugation on the symplec-
tic space. We consider an arbitrary irreducible regular CCR representation over
a finite-dimensional symplectic space and do not explicitly use the Schrödinger
representation.

In the last two subsections we fix a conjugation, so that our symplectic space
can be written as Y = X # ⊕X , and we consider the Schrödinger representation
on L2(X ).

10.1 Classical quadratic Hamiltonians

Throughout this section (Y, ω) is a finite-dimensional symplectic space. Recall
that (Y# , ω−1) is also a symplectic space. As before we denote by y the generic
element of Y and by v the generic element of Y# .

Remark 10.1 It is natural to consider the two symplectic spaces Y and Y#

in parallel. It is a little difficult to decide which space should be viewed as the
principal one: Y# is perhaps more important from the point of view of classical
mechanics, since it plays the role of the phase space, whereas the dual phase space
Y is more natural quantum mechanically, since we use it in the CCR relations.

Recall that ζ ∈ Ls(Y# ,Y) iff ζ ∈ L(Y# ,Y) and ζ# = ζ. We write ζ ≥ 0 if
v·ζv ≥ 0, v ∈ Y# . We write ζ > 0 if in addition Ker ζ = {0}.

The following section is a preparation for the next two where we consider a
regular CCR representation over Y.

10.1.1 Symplectic transformations

Let r ∈ L(Y). Recall that r ∈ Sp(Y) iff

r# ωr = ω. (10.1)
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240 Symplectic invariance of CCR in finite-dimensions

This is equivalent to r# ∈ Sp(Y# ), which means

rω−1r# = ω−1 . (10.2)

We have an isomorphism of groups,

Sp(Y) � r �→ ωrω−1 = (r# )−1 ∈ Sp(Y# ).

Let a ∈ L(Y). Recall that a ∈ sp(Y) iff a# ω + ωa = 0. This is equivalent to
a# ∈ sp(Y# ), which means aω−1 + ω−1a# = 0. Note that

sp(Y) � a �→ ωaω−1 = −a# ∈ sp(Y# )

is an isomorphism of Lie algebras.

10.1.2 Poisson bracket

Definition 10.2 For b1 , b2 ∈ C1(Y# ) we define the Poisson bracket

{b1 , b2}(v) := ω∇b1(v)·∇b2(v) = −∇b1(v)·ω∇b2(v).

C∞(Y# ) equipped with {·, ·} is a Lie algebra.

Definition 10.3 By a quadratic, resp. purely quadratic polynomial we will
mean a polynomial of degree ≤ 2, resp. = 2.

Recall that the space of complex quadratic, resp. purely quadratic poly-
nomials on Y# is denoted CPol≤2

s (Y# ), resp. CPol2s (Y# ). Both are Lie sub-
algebras of C∞(Y# ) w.r.t. the Poisson bracket. More precisely, if λi ∈ C, yi ∈ CY,
ζi ∈ CLs(Y# ,Y) and χi(v) := λi + yiv + 1

2 v·ζiv, then

{χ1 , χ2}(v) = −y1 ·ωy2 + (ζ2ωy1 − ζ1ωy2)·v
+

1
2
v·(−ζ1ωζ2 + ζ2ωζ1)v.

If χ ∈ CPol≤2
s (Y# ), so that χ(v) = λ + y·v + 1

2 v·ζv with λ ∈ C, y ∈ CY and
ζ ∈ CLs(Y# ,Y), then

CY# � v �→ ω∇χ(v) = ωy + ωζv ∈ CY#

is an affine transformation on CY# . We have surjective homomorphisms of Lie
algebras

CPol≤2
s (Y# ) � χ �→ ω∇χ ∈ asp(CY# ),

Pol≤2
s (Y# ) � χ �→ ω∇χ ∈ asp(Y# )

(see Def. 1.102 for the definition of asp(CY# ) and asp(Y# )).

Definition 10.4 If (w, a# ) ∈ asp(Y# ) and ω∇χ(v) = w + a# v, then we say that
χ is a Hamiltonian of (w, a# ).
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10.1 Classical quadratic Hamiltonians 241

Clearly, every element of asp(Y# ) has a one parameter family of Hamiltonians
χ differing by a constant. We will usually demand that χ(0) = 0, which fixes the
choice of a Hamiltonian in a canonical way. With this choice,

χ(v) = (ω−1w)·v +
1
2
v · ω−1a# v.

Let χ ∈ Pol≤2
s (Y# , R), and let vt solve

d
dt

vt = ω∇χ(vt), v0 = v.

Clearly, vt = etω∇χv. Moreover, if b ∈ C1(Y# ) and if we set bt(v) = b(vt), then
d
dt

bt(v) = {χ, bt}(v) = {χ, b}(vt). (10.3)

10.1.3 Spectrum of symplectic transformations

Recall that a subspace Y1 of Y is called symplectic iff ω restricted to Y1 is
non-degenerate. The following proposition is immediate:

Proposition 10.5 Let Y = Y1 ⊕ · · · ⊕ Yk , and let Y1 , . . . ,Yk be mutually ω-
orthogonal subspaces. Then all Yi, i = 1, . . . , k, are symplectic.

Definition 10.6 An element r ∈ Sp(Y) such that Ker(r + 1l) = {0} will be called
regular.

Proposition 10.7 Let r ∈ Sp(Y).

(1) spec rC is invariant under C � z �→ z−1 ∈ C.
(2) For λ ∈ spec rC ∩ {Im z ≥ 0, |z| ≥ 1} =: Λr set Pλ := 1l{λ,λ−1 ,λ,λ

−1 }(rC).
Then Pλ are real projections, constitute a partition of unity, commute with
r and P #

λ ωC = ωCPλ.

(3) If we set Yλ := PλY, then Yλ are symplectic, mutually ω-orthogonal, invari-
ant for r and Y = ⊕

λ∈Λr

Yλ .

(4) Set Ysg := Y−1 and Yreg := ⊕
λ∈Λr \{−1}

Yλ . Then Y = Ysg ⊕ Yreg . If we set

κ := (−1l)⊕ 1l, then

r = κr0 = r0κ, (10.4)

κ is a symplectic involution and r0 ∈ Sp(Y) is regular.

Proof r# ω = ωr−1 implies (1). We also obtain

ωC(z1l− r−1
C

)−1 = (z1l− r#
C
)−1ωC.

Hence

ωC1l{λ−1 }(rC) = ωC1l{λ}(r−1
C

) = 1l{λ}(r
#
C
)ωC.

Therefore,

ωC1l{λ,λ−1 }(rC) = 1l{λ,λ−1 }(r
#
C
)ωC = 1l{λ,λ−1 }(rC)# ωC.
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242 Symplectic invariance of CCR in finite-dimensions

If |λ| = 1, then Pλ = 1l{λ,λ−1 }(rC). If |λ| �= 1, then

Pλ = 1l{λ,λ−1 }(rC) + 1l{λ,λ
−1 }(rC).

In both cases, Pλ is real and can be restricted to Y. This proves (2).
(2) implies (3), which yields (4). �

There exists a classification of quadratic forms in a symplectic case due to
Williamson. The following proposition is its special case for a positive semi-
definite quadratic form, which is all that we need. Note that it would have a
much simpler proof if we assumed that the form is positive definite.

Proposition 10.8 Let ζ ∈ Ls(Y# ,Y) and ζ ≥ 0. Then we can find p ≤ m ≤ d,
λ1 , . . . , λp > 0 and a basis (e1 , . . . , e2d) in Y so that, if the corresponding dual
basis of Y# is (e1 , . . . , e2d), then

ωe2j−1 = −e2j , ωe2j = e2j−1 , j = 1, . . . , d; (10.5)

ζe2j−1 = λje2j−1 , ζe2j = λje2j , j = 1, . . . , p; (10.6)

ζe2j−1 = e2j−1 , ζe2j = 0, j = p + 1, . . . ,m; (10.7)

ζe2j−1 = 0, ζe2j = 0, j = m + 1, . . . , d.

Consequently, spec ωζ ⊂ iR. Besides, spec
(−(ωζ)2

) ⊂]0,∞[ and (ωζ)2 is diag-
onalizable. If ζ > 0, then ωζ is diagonalizable as well.

Note that we have two forms on Y# : ζ and ω−1 . The complements of V ⊂ Y#

w.r.t. these forms have standard symbols Vζ⊥ and Vω−1 ⊥. For brevity, we will
write V⊥ for the former and V◦ for the latter.

For the proof of Prop. 10.8 we need two lemmas. We set

V1 := Ker ζ, V2 := V◦
1 , V3 := (V2)⊥, V4 := V◦

3 .

Lemma 10.9 We have a direct sum decomposition,

Y# = V3 ⊕ V4 ,

which is both ω−1- and ζ-orthogonal, and ζ is non-degenerate on V4 .

Proof We have

V1 = (Y# )⊥ ⊂ V⊥
2 = V3 , (10.8)

hence

V4 = V◦
3 ⊂ V◦

1 = V2 . (10.9)

Clearly,

V2 ⊂ (V⊥
2 )⊥ = V⊥

3 . (10.10)

From (10.9) and (10.10), we get

V4 ⊂ V⊥
3 . (10.11)
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10.1 Classical quadratic Hamiltonians 243

Let us show that V3 ∩ V4 = {0}. Assume that v ∈ V3 ∩ V4 and v �= 0. By (10.11),
we have v·ζv = 0, hence v ∈ V1 .

By the non-degeneracy of ω−1 , there exists v′ such that v′·ωv �= 0. Let us fix
a basis (e1 , . . . , eq ) of V2 such that

ei · ζej = 0, for i �= j,

ei · ζei = 1, for 1 ≤ i ≤ p,

ei · ζei = 0, for p + 1 ≤ i ≤ q.

We set v′′ = v′ −∑p
i=1(v

′·ζei)ei so that v′′·ζei = 0 for 1 ≤ i ≤ q, and hence v′′ ∈
V⊥

2 = V3 . Since v′′ − v′ ∈ V2 = V◦
1 , we have v′′·ω−1v = v′·ω−1v �= 0. Therefore,

v �∈ V◦
3 = V4 , which is a contradiction.

Hence, V3 ∩ V4 = {0} and Y# = V3 ⊕ V4 . The direct sum is clearly ω−1-
orthogonal, and also ζ-orthogonal by (10.11). Finally, V4 ∩ V1 ⊂ V4 ∩ V3 = {0}
by (10.8). Hence, ζ is non-degenerate on V4 . �

Lemma 10.10 There exists a direct sum decomposition

Y# = V8 ⊕ V7 ⊕ V4

which is both ω−1- and ζ-orthogonal, such that ζ is non-degenerate on V4 , Ker ζ ∩
V7 is Lagrangian in V7 , and ζ = 0 on V8 .

Proof Let V5 ⊂ V3 be a maximal subspace on which ζ is non-degenerate. By
(10.8), V1 ⊂ V3 , so V3 = V1 ⊕ V5 . Set

V6 := V1 ∩ V2 , V7 := V6 + V5 , V8 := V◦
7 ∩ V3 .

We claim first that

V5 ∩ (V1 + V2) = {0}, (10.12)

V6 ∩ V◦
5 = {0}. (10.13)

In fact

V5 ∩ (V1 + V2) ⊂ V3 ∩ (V1 + V2) = V⊥
2 ∩ (V1 + V2) ⊂ V1 .

Hence, V5 ∩ (V1 + V2) ⊂ V5 ∩ V1 = {0}.
Similarly,

V6 ∩ V◦
5 ⊂ V2 ∩ V◦

5 = V◦
1 ∩ V◦

5 = (V1 + V5)◦ = V◦
3 = V4 .

Hence, V6 ∩ V◦
5 ⊂ V3 ∩ V4 = {0}.

Recall that if E1 , E2 , F are subspaces of E, then

(E1 + E2) ∩ F = E1 ∩ F + E2 ∩ F, if Ei ⊂ F for i = 1 or 2. (10.14)

Let us prove that

V7 ∩ V8 = {0}. (10.15)
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244 Symplectic invariance of CCR in finite-dimensions

In fact,

V8 = V◦
6 ∩ V◦

5 ∩ V3 = (V1 + V2) ∩ V◦
5 ∩ V3 ,

hence

V7 ∩ V8 = (V5 + V6) ∩ (V1 + V2) ∩ V◦
5 .

Since V6 ⊂ V1 + V2 , we have

(V5 + V6) ∩ (V1 + V2) = V5 ∩ (V1 + V2) + V6 ∩ (V1 + V2) = V6 ,

using (10.12). Next, V6 ∩ V◦
5 = {0} by (10.13), which proves (10.15).

It follows that V3 = V7 ⊕ V8 , and that this decomposition is ω−1-orthogonal.
Since V8 ⊂ (V1 + V2) ∩ V3 ⊂ V1 , the decomposition is also ζ-orthogonal and ζ =
0 on V8 .

Finally, Ker ζ ∩ V7 = V1 ∩ V7 = V1 ∩ V2 and

(V1 ∩ V2)◦ ∩ V7 = (V1 ∩ V2) ∩ V7 = (V1 + V2) ∩ (V1 ∩ V2 + V5)

= V1 ∩ V2 + (V1 + V2) ∩ V5 = V1 ∩ V2 ,

by (10.12). Hence, Ker ζ is Lagrangian in V7 . �

Proof of Prop. 10.8. We first consider separately three cases:
Case 1: ζ is non-degenerate. We can treat Y as a Euclidean space and apply
Corollary 2.85 to the anti-symmetric operator ωζ with a trivial kernel.
Case 2: Ker ζ is a Lagrangian subspace of Y# . Let V a maximal subspace of Y# on
which ζ is non-degenerate. We check that V is Lagrangian and Y# = V ⊕Ker ζ.
We choose a ζ-orthogonal basis (e1 , . . . , ed) of V and complete it to a symplectic
basis of Y# by setting e2j = ωζej , for 1 ≤ j ≤ d.
Case 3: ζ=0. We choose any symplectic basis of Y# .

In the general case we use Lemma 10.10 and apply Case 1 to V4 , Case
2 to V7 and Case 3 to V8 . The remaining statements of the proposition are
immediate. �

Proposition 10.11 Let ζ ∈ CLs(Y# ,Y), with Re ζ > 0. Then spec (ωζ) ⊂ C\R.

Proof Set ζ = ζ1 + iζ2 , with ζ1 , ζ2 real and ζ1 > 0. Let w ∈ CY# with ωζw =
λw be an eigenvector of ωζ for a real eigenvalue λ. Let w = w1 + iw2 , with
w1 , w2 ∈ Y. Then,

2λi〈ω−1w1 |w2〉 = λ〈ω−1w|w〉
= 〈ω−1w|ωζw〉 = −〈w|ζw〉
= −〈w1 |ζw1〉+ 〈w2 |ζw2〉.

Since λ ∈ R, taking the real part yields 〈w1 |ζ1w1〉+ 〈w2 |ζ1w2〉 = 0, and hence
w = 0. �
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10.2 Quantum quadratic Hamiltonians 245

10.1.4 Poisson bracket on charged symplectic spaces

Recall that a complex space Y equipped with a non-degenerate anti-Hermitian
form y1 ·ωy2 is called a charged symplectic space. Its realification YR is equipped
with an anti-involution given by the imaginary unit denoted by j and the sym-
plectic form

y1 ·ωRy2 := Re y1 ·ωy2 =
1
2
(y1 ·ωy2 + y1 ·ωy2). (10.16)

Recall that v denotes the generic variable of Y# (which in this subsection is
complex). Recall from Subsect. 4.1.5 that every function F on Y# has the usual
derivative ∇R

v F (v) ∈ CYR, the holomorphic derivative ∇vF (v) ∈ Y and the anti-
holomorphic derivative ∇vF (v) ∈ Y , related by the identities

u·∇v =
1
2
(
u·∇R

v − i(ju)·∇R

v

)
,

u·∇v =
1
2
(
u·∇R

v + i(ju)·∇R

v

)
,

u·∇R

v = u·∇v + u·∇v , u ∈ Y# . (10.17)

The symplectic form ωR allows us to define a Poisson bracket. Its expression
in terms of real derivatives is

{F,G}(v) = −∇R

v F (v)·ωR∇R

v G(v).

Proposition 10.12 The Poisson bracket expressed in terms of the holomorphic
and anti-holomorphic derivative is

{F,G}(v) = −1
2
∇vF (v)·ω∇vG(v)− 1

2
∇vF (v)·ω∇vG(v).

Proof We can write CYR � Y ⊕ Y; see (1.33). By (10.17), ∇R
v F = (∇vF,∇vF ),

∇R
v G = (∇vG,∇vG), as elements of Y ⊕ Y. Besides, by (10.16), ωR written as a

matrix Y ⊕ Y → Y# ⊕ Y#
is

ωR =
1
2

[
0 ω

ω 0

]
. �

10.2 Quantum quadratic Hamiltonians

As in the previous section, (Y, ω) is a finite-dimensional symplectic space. We
also fix an irreducible regular CCR representation Y � y �→W (y) ∈ U(H). Recall
that, for b ∈ S ′(Y# ), Op(b) denotes the Weyl–Wigner quantization of b.

Recall also that CPol≤2
s (Y# ) denotes the set of polynomials on Y# of degree

≤ 2. CCRpol
≤2 (Y) will denote the set of operators on H obtained as the Weyl–

Wigner quantization of elements of CPol≤2
s (Y# ). These operators will be called

(quantum) quadratic Hamiltonians. (Obviously, in the above definition we can
replace the Weyl–Wigner quantization with x,D−, D,x−, Wick or anti-Wick
quantizations.)
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246 Symplectic invariance of CCR in finite-dimensions

This section is devoted to the study of quantum quadratic Hamiltonians. We
will see in particular that they behave to a large extent in a classical way.

10.2.1 Commutation properties of quadratic Hamiltonians

Recall that ∇(2)b denotes the second derivative of b ∈ S ′(Y# ). We treat it as a
distribution on Y# with values in Ls(Y# ,Y).

The following theorem is one of the most striking expressions of the correspon-
dence principle between classical and quantum mechanics.

Theorem 10.13 (1) For χ ∈ CPol≤2
s (Y# ), b ∈ S ′(Y# ) we have

i[Op(χ),Op(b)] = Op({χ, b}), (10.18)
1
2
(
Op(χ)Op(b) + Op(b)Op(χ)

)
= Op

(
χb +

1
8
Tr ω(∇(2)χ)ω∇(2)b

)
.

(2) The map

CPol≤2
s (Y# ) � χ �→ Op(χ) ∈ CCRpol

≤2 (Y)

is a ∗-isomorphism of Lie algebras, where CPol≤2
s (Y# ) is equipped with the

Poisson bracket {·, ·} and CCRpol
≤2 (Y) is equipped with i[·, ·].

Proof (1) follows from (8.41) by expanding the exponential. (2) follows imme-
diately from (10.18). �

In the following definition one cannot replace the Weyl–Wigner quantization
by the other four basic quantizations.

Definition 10.14 We denote by CCRpol
2 (Y) the set of operators obtained by the

Weyl–Wigner quantization of polynomials in CPol2s (Y# ). Elements of this space
will be called purely quadratic (quantum) Hamiltonians.

It will be convenient to introduce the following notation for purely quadratic
Hamiltonians:

Definition 10.15 If ζ ∈ Ls(CY# , CY), then Op(ζ) will denote the Weyl–Wigner
quantization of Y# � v �→ v·ζv.

Note that if χ(v) = v·ζv, then ∇χ(v) = 2ζv and ∇(2)χ = 2ζ.

Proposition 10.16 (1) For ζ1 , ζ2 ∈ Ls(CY# , CY),

[Op(ζ1),Op(ζ2)] = 2iOp(ζ2 ·ωζ1 − ζ1 ·ωζ2).

Hence

sp(Y) � a �→ i
2
Op(aω−1) ∈ CCRpol

2 (Y)

is an isomorphism of Lie algebras.
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10.2 Quantum quadratic Hamiltonians 247

(2) For ζ ∈ Ls(CY# , CY), y ∈ Y,

W (y)Op(ζ)W (y)∗ = Op(ζ) + 2φ (ζωy)− (y·ωζωy)1l.

Proof (1) immediately follows from (10.18). To prove (2), we use
W (y)φ(y1)W (y)∗ = φ(y1) + y1 ·ωy1l. �

10.2.2 Infimum of positive quadratic Hamiltonians

Quantizations of positive quadratic Hamiltonians are positive. One can give a
formula for their infimum, which in quantum physics is responsible for the so-
called Casimir effect.

Theorem 10.17 Let ζ ∈ Ls(Y# ,Y), ζ ≥ 0. Then Op(ζ) extends to a bounded
below self-adjoint Hamiltonian and

inf Op(ζ) =
1
2
Tr
√
−(ζω)2 . (10.19)

Remark 10.18 By Prop. 10.8, −(ωζ)2 is a diagonalizable operator with non-
negative eigenvalues, hence

√−(ωζ)2 is well defined.

Proof of Thm. 10.17. Let (e1 , . . . , e2d , e
1 , . . . , e2d) be as in the proof of Prop.

10.8. Writing φi for φ(ei), we obtain

Op(ζ) =
p∑

j=1

λj (φ2
2j−1 + φ2

2j ) +
m∑

k=p+1

φ2
2k−1 .

Clearly, inf φ2
k = 0. By the well-known properties of the harmonic oscillator,

inf(φ2
2j+1 + φ2

2j+2) = 1. Thus

inf Op(ζ) =
p∑

j=1

λj .

Now,

−(ζω)2ej = λ2
j ej , 1 ≤ j ≤ 2p,

−(ζω)2ej = 0, 2p + 1 ≤ k ≤ 2d.

Thus, Tr
√−(ωζ)2 = 2

p∑
j=1

λj . �

10.2.3 Scale of oscillator spaces

In the Fock space Γs(Z), a distinguished role is played by the number operator
N . It allows us to define a family of weighted Hilbert spaces (N + 1l)tΓs(Z),
which is often used in applications.
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248 Symplectic invariance of CCR in finite-dimensions

Recall that in this section we consider a regular CCR representation over a
finite-dimensional symplectic space Y � y �→ W (y) ∈ U(H). In this framework,
in general we do not have a single distinguished operator similar to N . However,
a similar role is played by the whole family of positive definite quadratic Hamil-
tonians. They define a family of equivalent norms, as shown by the following
proposition.

Proposition 10.19 Let ζ, ζ1 ∈ Ls(Y# ,Y), where ζ, ζ1 > 0. Then for any t > 0
there exist 0 < Ct such that

C−1
t ‖Op(ζ1)tΨ‖ ≤ ‖Op(ζ)tΨ‖ ≤ Ct‖Op(ζ1)tΨ‖, Ψ ∈ H. (10.20)

Proof Choose a basis, as in Prop. 10.8. Using this basis, we can identify H with
Γs(Cd) and Op(ζ) with dΓ(h) + Trh

2 1l, where the operator h is diagonal and has
positive eigenvalues. Using the natural o.n. basis of Γs(Cd) we easily check that
for any n = 1, 2, . . . there exists Cn such that

‖Op(ζ1)nΨ‖2 ≤ Cn‖Op(ζ)nΨ‖2 .

By interpolation, this implies the first inequality in (10.20). Reversing the role
of ζ and ζ1 we obtain the second inequality. �

Definition 10.20 For any t ≥ 0, the t-th oscillator space Ht is defined as
Dom Op(ζ)t , where ζ ∈ Ls(Y# ,Y), ζ > 0. By Thm. 10.19, Ht does not depend
on the choice of ζ and has the structure of a Hilbertizable space. We set
H−t := (Ht)∗.

Recall that in Def. 8.50 we defined H∞ and in Def. 8.51 we defined H−∞.
They are related to spaces Ht as follows:

H∞ =
⋂
t>0

Ht , H−∞ :=
⋃
t<0

Ht . (10.21)

10.2.4 Quadratic Hamiltonians as closed operators

Prop. 10.19 shows that all Op(ζ) with ζ > 0 have the same domain and in par-
ticular are essentially self-adjoint on H∞. The following theorem describes more
general classes of quadratic Hamiltonians.

Theorem 10.21 (1) Let χ ∈ Pol≤2
s (Y# ) (χ is a real quadratic polynomial).

Then Op(χ) is essentially self-adjoint on H∞.
(2) Let χ ∈ CPol≤2

s (Y# ) (χ is a complex quadratic polynomial). Assume that
the purely quadratic part of χ is positive definite. (In other words, χ(v) =
μ + y·v + 1

2 v·ζv with μ ∈ C, y ∈ CY, ζ ∈ CLs(Y# ,Y) and Re ζ > 0.) Then
Op(χ) is closed on H1 and maximal accretive.
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Proof Fix ζ0 ∈ Ls(Y,Y# ) such that ζ0 > 0, and set N = Op(ζ0). Op(χ) is Her-
mitian on H∞. By (10.20), we have

‖Op(χ)Φ‖ ≤ C‖NΦ‖, Φ ∈ H1 .

Next we have [Op(χ), iN ] = Op{χ, ζ}. Since {χ, ζ0} ∈ Pol≤2(Y# ), we have
{χ, ζ0} ≤ Cζ0 for some C, and by Thm. 10.17 we get [Op(χ), iN ] ≤ C(N + 1l).
Applying Nelson’s commutator theorem, Thm. 2.74 (1), we obtain that Op(χ)
is essentially self-adjoint on DomN , hence also on H∞, since N is essentially
self-adjoint on H∞. This proves (1).

To prove (2), we set χ1 = Re χ, χ2 = Imχ, Bi = Op(χi), B = Op(χ). We note
that

±[B1 , iB2 ] = Op({χ1 , χ2}) ≤ C(B1 + 1l), (10.22)

by Thm. 10.17. We write

B∗B = B2
1 + B2

2 + [B1 , iB2 ]

≥ B2
1 − C1(B1 + 1l) ≥ 1

2 B2
1 − C21l,

(10.23)

using (10.22), which shows that B is closed on Dom B1 . Next

Re(Ψ|BΨ) = (Ψ|B1Ψ) ≥ 0, (10.24)

by Thm. 10.17. It remains to prove that B + λ is invertible for large enough
λ. Inequalities (10.24) and (10.23) for B replaced by B + λ1l show that
Ker(B + λ1l) = {0} and that Ran(B + λ1l) is closed. Next we have

1
2 (B + λ1l)(B1 + c1l)−1 + 1

2 (B1 + c1l)−1(B∗ + λ1l)

= (B1 + c1l)−
1
2 (B1 + λ1l)(B1 + c1l)−

1
2 + 1

2 (B1 + c1l)−1 [B1 , iB2 ](B1 + c1l)−1

≥ (λ1l− C)(B1 + c1l)−1 ,

again using (10.22). If Ψ ∈ Ran(B + λ1l)⊥, then

Re (Ψ|(B + λ1l)(B1 + c1l)−1Ψ) = 0,

and hence Ψ = 0 if λ is large. This completes the proof of (2). �

10.2.5 One-parameter groups of Bogoliubov ∗-automorphisms

Classical quadratic Hamiltonians generate one-parameter groups of linear sym-
plectic transformations. On the quantum level one can assign two roles
to a quadratic Hamiltonian H: i[H, ·] generates a one-parameter group of
∗-automorphisms eitH · e−itH , and iH generates the one-parameter unitary group
eitH . The following theorem describes the former group. The latter group, which
is somewhat more difficult, is discussed in the following section.
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250 Symplectic invariance of CCR in finite-dimensions

Theorem 10.22 Let χ ∈ Pol≤2
s (Y# ), i.e. χ is a real quadratic polynomial. Let

b ∈ S ′(Y# ) and bt(v) = b(etω∇χv). Then

eitOp(χ)Op(b)e−itOp(χ) = Op(bt). (10.25)

In particular, for y ∈ Y,

eitOp(χ)W (y)e−itOp(χ) = W (e−t∇χω y). (10.26)

Proof Let Φ,Ψ ∈ H∞, b ∈ S(Y# ). By (10.3),

d
dt

bt(v) = {χ, bt}(v).

Set

Φt := eitOp(χ)Φ, Ψt := eitOp(χ)Ψ.

We know that Op(χ) is self-adjoint and Φ,Ψ ∈ Dom Op(χ). Hence, by Thm.
10.13 (1),

d
dt

(Φt |Op(bt)Ψt) = −i(Φt |[Op(χ),Op(bt)]Ψt)

+(Φt |Op({χ, bt})Ψt) = 0.

Hence,

e−itOp(χ)Op(bt)eitOp(χ) = Op(b).

This proves (10.25) for b ∈ S(Y# ). We extend (10.25) to S ′(Y# ) by duality. �

For further reference, let us restate Thm. 10.22 for purely quadratic
Hamiltonians.

Corollary 10.23 Let ζ ∈ Ls(Y# ,Y). Then for b ∈ S ′(Y)# , bt(v) = b(etω∇ζ v),

e
i t
2 Op(ζ )Op(b)e−

i t
2 Op(ζ ) = Op(bt).

In particular, for y ∈ Y,

e
i t
2 Op(ζ )W (y)e−

i t
2 Op(ζ ) = W (e−tζω y).

10.3 Metaplectic group

In this section, as in the previous one, (Y, ω) is a finite-dimensional symplectic
space and Y � y �→ W (y) ∈ U(H) is an irreducible regular CCR representation.
In this section we study unitary operators of the form eiH , where H is a purely
quadratic Hamiltonian. We show that they form a group, called the metaplectic
group, isomorphic to the double cover of the symplectic group.

https://doi.org/10.1017/9781009290876.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.011


10.3 Metaplectic group 251

10.3.1 Implementation of Bogoliubov transformations

It follows from the Stone–von Neumann theorem that, for a finite-dimensional
symplectic space, all Bogoliubov rotations can be implemented by unitary oper-
ators. The set of such unitary implementers forms a group.

Definition 10.24 We define Mpc(Y) to be the set of U ∈ U(H) such that{
UW (y)U∗ : y ∈ Y} =

{
W (y) : y ∈ Y}.

Proposition 10.25 Let U ∈Mpc(Y). Then there exists a unique r ∈ Sp(Y)
satisfying

UW (y)U∗ = W (ry), y ∈ Y. (10.27)

The map Mpc(Y) → Sp(Y) obtained this way is a group homomorphism.

Definition 10.26 If (10.27) is satisfied, we say that U implements r.

Note that (10.27) is equivalent to

UOp(a)U∗ = Op(a ◦ r# ), a ∈ S ′(Y# ). (10.28)

There also exists a smaller group that is sufficient to implement all linear
symplectic transformations. Its definition is more involved. As a preparation for
this definition, with every r ∈ Sp(Y) we associate a pair of unitaries ±Ur differing
by a sign:

Definition 10.27 (1) Let r ∈ Sp(Y) be regular (see Def. 10.6). Let γ ∈ sp(Y)
be the Cayley transform of r, that is, γ = 1l−r

1l+r (see Subsect. 1.4.6). Set

± Ur := ±Op(f),

where f(v) = det(1l + γ)
1
2 eiv ·γω−1 v . (10.29)

(2) Let r ∈ Sp(Y) be arbitrary. Let r = r0κ be the canonical decomposition of
r into a regular r0 ∈ Sp(Y) and an involution κ ∈ Sp(Y) given by (10.4).
Let Y = Ysg ⊕ Yreg be the decomposition of the symplectic space such that
κ = (−1l)⊕ 1l. Let m = dimYsg . Then we set

±Ur := ±UκUr0

for

Uκ := ±Op((iπ)m/2δsg ),

where δsg is the Dirac delta function at zero on Y#
sg times 1 on Y#

reg .

Note that under the assumptions of Def. 10.27 (2), our CCR representation
can be decomposed as the tensor product of a representation over Ysg and over
Yreg , and then

±Uκ = ±im/2Isg ⊗ 1lreg ,
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252 Symplectic invariance of CCR in finite-dimensions

where Isg is the parity operator corresponding to Ysg , defined as in Subsect.
8.4.4.

Definition 10.28 Mp(Y) is the set of operators of the form ±Ur for some
r ∈ Sp(Y). It is called the metaplectic group of Y.

Theorem 10.29 Let r ∈ Sp(Y).

(1) The set of elements of Mp(Y) implementing r consists of a pair operators
differing by the sign ±Ur = {Ur ,−Ur}.

(2) The set of elements of Mpc(Y) implementing r consists of operators of the
form μUr with |μ| = 1.

(3) If r1 , r2 ∈ Sp(Y), then Ur1 Ur2 = ±Ur1 r2 .

The above statements can be summarized by the following commuting diagram
consisting of exact horizontal and vertical sequences:

1 1 1
↓ ↓ ↓

1 → Z2 → U(1) → U(1) → 1
↓ ↓ ↓

1 → Mp(Y) → Mpc(Y) → U(1) → 1
↓ ↓ ↓

1 → Sp(Y) → Sp(Y) → 1
↓ ↓
1 1

(10.30)

The meaning of all the arrows in the above diagram should be obvious. In
particular, the horizontal arrow U(1) → U(1) is just μ→ μ2 .

It remains to prove Thm. 10.29. We start by considering the case of regular
symplectic maps. Recall that the formula for ±Ur is then given in (10.29).

Lemma 10.30 Let r ∈ Sp(Y) be regular. Then

(1) Ur intertwines r, i.e.

Urφ(y) = φ(ry)Ur , y ∈ Y.

(2) Ur is unitary.
(3) If r1 , r2 , r ∈ Sp(Y) are regular and r1r2 = r, then Ur1 Ur2 = ±Ur .

Proof Let y ∈ Y. Set b(v) = v·γω−1v. Using Thm. 10.13 (1), we obtain

Op(eib)φ(y) = Op(eib)Op(y) = Op
(

eiby − i
2
{y, eib}

)
.

https://doi.org/10.1017/9781009290876.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.011


10.3 Metaplectic group 253

Now,

eiby − i
2
{
y, eib} = eib(1l− γ)y

= eib(1l + γ)ry = eibry +
i
2
{
ry, eib} .

Hence,

Op(eib)φ(y) = Op
(

eib(ry) +
i
2
{
ry, eib}) = φ(ry)Op(eib).

Thus Op(eib) intertwines r, and hence (1) is true.
Let b1 , b2 , b, γ1 , γ2 , γ be related to r1 , r2 , r as in (10.29). We know that

Op(eib1 )Op(eib2 ) intertwines r. Likewise, we know that Op(eib) intertwines r.
Hence, for some c,

Op(eib1 )Op(eib2 ) = cOp(eib).

Next using Thm. 8.70 and formula (4.12), we obtain that Op(eib1 )Op(eib2 ) has
the symbolˆ

exp
(
iv1 ·γ1ω

−1v1 + iv2 ·γ2ω
−1v2−2iv1 ·ω−1v − 2iv·ω−1v2 + 2iv1 ·ω−1v2

)dv1dv2

π2d

= π−2d

ˆ
exp
(
i(v1 , v2)·σ(v1 , v2) + 2iθ·(v1 , v2)

)dv1dv2

π2d
,

(10.31)

where

θ := (ω−1v,−ω−1v), σ :=
[

γ1ω
−1 ω−1

−ω−1 γ2ω
−1

]
.

(10.31) equals

det(−iσ)−
1
2 exp(−iθ·σ−1θ).

Setting v = 0 and using Subsect. 1.1.2, we obtain

c = det(−iσ)−
1
2 = ±det(1l + γ1γ2)−

1
2 .

Next, by (1.49),

1l + γ = (1l + γ2)(1l + γ1γ2)−1(1l + γ1).

Hence,

det(1l + γ)
1
2 = ±det(1l + γ2)

1
2 (1l + γ1γ2)

1
2 (1l + γ1)

1
2 .

Therefore,

det(1l + γ)
1
2 Op(eib) = ±det(1l + γ)

1
2 Op(eib1 )(1l + γ1)

1
2 Op(eib2 ).

This proves (3).
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It remains to prove that Ur is unitary. We have U∗
r = λUr−1 , for

λ = ±det (1l + γ)
1
2 det(1l− γ)−

1
2 .

Since by (3) Ur−1 Ur = ±U1l = ±1l, it suffices to verify that |λ| = 1. But using
that det a = det a# , we get

det(1l + γ) = det
(
ω(1l− γ)ω−1) = det(1l− γ).

This implies that |det(1l + γ)
1
2 | = |det(1l− γ)

1
2 |, which completes the proof of

(2). �

To treat the general case we will need more lemmas.

Lemma 10.31 Let r1 , r2 , r3 be regular. Then we can write r2 as r2 = r̃2 r̂2 with
r̃2 , r̂2 , r1 r̃2 and r̂2r3 regular.

Proof Let D =
{
r ∈ Sp(Y) : r and r1r are regular

}
. Clearly, D is an open

dense subset of Sp(Y) containing 1l. Hence, we can write r2 as r2 = r̃2 r̂2 , where
r̃2 , r1 r̃2 are regular and 1l− r̂2 can be made as small as we wish. Then if 1l− r̂2

is sufficiently small, r̂2 and r̂2r3 are regular. �

Lemma 10.32 Let ri, r̃i ∈ Sp(Y) be regular for 1 ≤ i ≤ p. Assume that
r1 · · · rp = r̃1 · · · r̃p . Then

Ur1 · · ·Urp
= ±Ur̃1 · · ·Ur̃p

.

Proof If r is regular, so is r−1 , and hence, by Lemma 10.30, Ur−1 = ±U−1
r .

Therefore, we are reduced to proving that

r1 · · · rp = 1l ⇒ Ur1 · · ·Urp
= ±1l. (10.32)

Using Lemma 10.31, we write r1r2r3 as r1 r̃2 r̂2r3 . Then, by Lemma 10.30, we get

Ur2 = ±Ur̃2 Ur̂2 , Ur1 Ur2 Ur3 = ±Ur1 Ur̃2 Ur̂2 Ur3 = ±Ur1 r̃2 Ur̂2 r3 .

Relabeling the ri , we are reduced to showing (10.32) with p replaced by p− 1.
Continuing in this way we end up with

r1r2 = 1l ⇒ Ur1 Ur2 = ±1l,

which holds since r1 , r2 and 1l are regular. �

Lemma 10.33 Let κ be a symplectic involution, so that there exists a decompo-
sition Y = Yreg ⊕ Ysg into mutually ω-orthogonal subspaces and κ = (−1l)⊕ 1l.
Decompose Ysg further as Ysg = Xsg ⊕Xsg , where Xsg is a Euclidean space, with
the standard symplectic form on Ysg . Set

u :=

⎡⎣ 0 −1l 0
1l 0 0
0 0 1l

⎤⎦ ∈ Sp(Y).

Then u ∈ Sp(Y) is regular, u2 = κ and ±Uκ = ±U 2
u .
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Proof The lemma follows by the properties of the evolution generated by the
harmonic oscillator; see Subsect. 10.5.1. �

Proof of Thm. 10.29. Let us show that Mp(Y) is a group. Let r1 , r2 , r3 ∈ Sp(Y),
r1r2 = r3 . Let ri = κir0i be the decomposition described in (10.4). Applying
Lemma 10.33, we can write κi = u2

i , where ui ∈ Sp(Y) are regular. Thus, we
have

r1r2 = r01u
2
1r02u

2
2 = r03u

2
3 = r3 .

By definition and then Lemma 10.33,

± Ur1 Ur2 = ±Ur0 1 U
2
u1

Ur0 2 U
2
u2

, (10.33)

±Ur3 = ±Ur0 3 U
2
u3

. (10.34)

By Lemma 10.32, (10.33) equals (10.34). This proves also that Mp(Y) → Sp(Y)
is a homomorphism with the kernel consisting of {1l,−1l} � Z2 .

It is obvious that Mpc(Y) is a group. It clearly contains Mp(Y), and hence
the homomorphism Mpc(Y) → Sp(Y) is onto. By the irreducibility of the CCR
representation, the kernel of this homomorphism is U(1). �

10.3.2 Semi-groups generated by quadratic Hamiltonians

In the next two theorems, we will compute the Weyl–Wigner symbol of the
semi-group generated by a maximal accretive quadratic Hamiltonian and of the
unitary group generated by a self-adjoint quadratic Hamiltonian. We start with
the case of a maximal accretive Hamiltonian.

Theorem 10.34 Let y ∈ CY, ζ ∈ CLs(Y# ,Y). Assume that Re ζ > 0. Consider
the complex quadratic polynomial

χ(v) = y·v + v·ζv. (10.35)

Then for t ≥ 0, the bounded operator e−tOp(χ) has the Weyl–Wigner symbol

ft(v) = (det cos tωζ)−
1
2 exp

(
−v·ω−1tg(tωζ)v (10.36)

−y·(ωζ)−1tg(tωζ)v +
1
4
y· (t1l− (ωζ)−1tg(tωζ)

)
ζ−1y

)
.

The next theorem describes the case of a quadratic self-adjoint Hamiltonian.

Theorem 10.35 Let y ∈ Y, ζ ∈ Ls(Y# ,Y). Consider the real quadratic polyno-
mial χ defined as in (10.35). For t ∈ R, let gt(v) be the Weyl–Wigner symbol of
the unitary operator e−itOp(χ).

(1) If πZ ∩ spec tωζ = ∅, then

gt(v) = (det cosh tωζ)−
1
2 exp

(
iv·ω−1 tanh(tωζ)v (10.37)

+ iy·(ωζ)−1 tanh(tωζ)v +
i
4
y· ((ωζ)−1 tanh(tωζ)− t1l

)
ζ−1y

)
.
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256 Symplectic invariance of CCR in finite-dimensions

(2) In the general case, to find the Weyl–Wigner symbol of e−itOp(χ) we can do
as follows. We choose ζ1 ∈ Ls(Y# ,Y) with ζ1 > 0. We set ζε := ζ + iεζ1 , and
let gε,t be defined by (10.37), where ζ is replaced with ζε . Then

gt(v) =

⎧⎨⎩lim
ε↘0

gε,t(v), t ≥ 0;

lim
ε↗0

gε,t(v), t ≤ 0.

Proof of Thm. 10.34. We first note that e−tOp(χ) is well defined as a strongly
continuous semi-group, since Op(χ) is maximal accretive. Note also from Lemma
10.11 that ωζ and ζω have no real eigenvalues, so the operator tg(tωζ) is well
defined by the holomorphic functional calculus and cos(tωζ)

1
2 �= 0.

Since

∂te−tOp(χ) = −1
2
(
Op(χ)e−tOp(χ) + e−tOp(χ)Op(χ)

)
,

it suffices, using Thm. 10.13, to verify that⎧⎨⎩∂tft(v) = −χ(v)ft(v) + 1
8 Tr(∇(2)χ)ω∇(2)ft(v)ω,

f0(v) = 1.
(10.38)

We have

∂tft(v) = ft(v)
(
− v·ζ cos−2(tωζ)v − y· cos−2(tωζ)v

+
1
4
y· (1l− cos−2(tωζ)

)
ζ−1y − 1

2
∂t log det cos(tωζ)

)
= ft(v)

(
− v·ζv − y·v − v·ζtg2(tωζ)v − y·tg2(tωζ)v

+
1
4
y·tg2(tωζ)ζ−1y +

1
2
Trωζtg(tωζ)

)
. (10.39)

Now,

∇(2)χ(v) = 2ζ,

∇(2)ft(v) = −ft(v)

(
2ω−1tg(tωζ)

−
∣∣∣tg(tωζ)

(
2ω−1v + (ωζ)−1y

)〉〈
tg(tωζ)

(
2ω−1v + (ωζ)−1)y∣∣∣).

Using that Tr|y1〉〈y2 | = 〈y2 |y1〉, we get

Tr(∇(2)χ)ω∇(2)ft(v)ω = ft(v)
(
4Trωζtg(tωζ) (10.40)

+8v·ωζtg2(tωζ)v + 8v·tg2(tωζ)y + 2y·ζ−1y
)
.

Comparing (10.39) and (10.40) we see that (10.38) is true. �
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Proof of Thm. 10.35. We may assume that t ≥ 0. For ε > 0, set χε(v) = χ(v)−
iεv·ζ1v. Then we have

e−itOp(χ) = s − lim
ε↘0

e−itOp(χε ) .

This implies that e−itOp(χε ) converges to e−itOp(χ) in CCRS′
(Y). This implies

that the Weyl–Wigner symbol of e−itOp(χε ) converges to the Weyl–Wigner sym-
bol of e−itOp(χ) in S ′(Y# ). Hence Thm. 10.35 follows from Thm. 10.34. �

The following theorem provides an alternative definition of the metaplectic
group:

Theorem 10.36 (1) Let ζ ∈ Ls(Y# ,Y). Then eiOp(ζ ) ∈ Mp(Y).
(2) Conversely, Mp(Y) is generated by operators of the form eiOp(ζ ) with ζ ∈

Ls(Y# ,Y).

Proof By Thm. 10.35, eiOp(ζ ) = Op(g), where

g(v) = (det cosh tωζ)−
1
2 exp

(
iv·ω−1 tanh(tωζ)v

)
.

Set r = e−ζω . Then

γ =
eζω − e−ζω

eζω + e−ζω
= tanh ζω,

1l + γ = 2(1l + r)−1 =
eζω

cosh ζω
.

Taking into account that det eζω = 1, we obtain that

g(v) = det(1l + γω)
1
2 eiv ·γv .

This proves (1).
All elements of Sp(Y) in a neighborhood of 1l are of the form r = ea for a ∈

sp(Y). By (1), the corresponding ±Ur are of the form eiOp(ζ ) for ζ ∈ Ls(Y# ,Y).
But the whole group Sp(Y) is generated by a neighborhood of 1l. This proves
(2). �

10.3.3 Mp(Y) as the two-fold covering of Sp(Y)

Definition 10.37 Let G be a path-connected topological group. A covering group
of G is a path-connected topological group G̃ with a surjective homomorphism
π : G̃ → G. If for each g ∈ G the set π−1(g) has n elements, then G̃ is called an
n-fold covering of G.

Introducing an arbitrary Kähler structure on Y and considering the polar
decomposition, we easily see that Sp(Y) is path-connected. The same argument
shows that its fundamental group, that is, π1(Sp(Y)), equals Z. Hence, for any
n ∈ {1, 2, . . . ,ℵ0} the n-fold covering of Sp(Y) exists and is unique up to an
isomorphism.
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The group Mp(Y) is clearly path-connected, since eitOp(ζ ) , t ∈ [0, 1], is a con-
tinuous path joining 1l and eiOp(ζ ) . For U ∈ Mp(Y), let π(U) ∈ Sp(Y) denote
the symplectic transformation r implemented by U . By Thm. 10.29, π−1(r) =
{Ur ,−Ur}. Hence, Mp(Y) is the double covering of Sp(Y).

10.4 Symplectic group on a space with conjugation

Throughout this section we fix a finite-dimensional space X and consider the
space X # ⊕X equipped with the symplectic form ω and the conjugation τ given
by

ω =
[

0 1l
−1l 0

]
, τ =

[
1l 0
0 −1l

]
.

Recall that its dual is isomorphic to X ⊕ X # with the symplectic form ω−1 and
conjugation τ# :

ω−1 =
[

0 −1l
1l 0

]
, τ# =

[
1l 0
0 −1l

]
.

The Poisson bracket on X ⊕ X # takes the familiar form

{b1 , b2} = ∇ξ b1 · ∇xb2 −∇xb1 · ∇ξ b2 , b1 , b2 ∈ C1(X ⊕ X # ).

Recall from Thm. 1.47 that every finite-dimensional symplectic space can
be equipped with a conjugation and is isomorphic to X # ⊕X . This section is
devoted to a discussion of symplectic and infinitesimally symplectic transforma-
tions in a symplectic space with conjugation. It is a preparation for the next
section, where we consider the Schrödinger CCR representation on L2(X ).

As already discussed in Remark 10.1, we actually have two symplectic spaces
with conjugation at our disposal: Y = X # ⊕X and Y# = X ⊕ X # . They are dual
to one another and, as we know, both are relevant, as seen e.g. from the relations
(10.27) and (10.28). We will explicitly describe Sp(Y# ) and sp(Y# ), since they
appear more naturally in the quantization of classical symbols (but, obviously,
it is easy to pass to Sp(Y) and sp(Y), to which they are naturally isomorphic).

10.4.1 Symplectic transformations on a space with conjugation

Let a# ∈ L(X ⊕ X # ). a# belongs to sp(X ⊕ X # ) iff

a# =
[

c β

−α −c#

]
,

where α ∈ Ls(X ,X # ), c ∈ L(X ), β ∈ Ls(X # ,X ).
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Let (q, η)∈X ⊕X # and a# ∈ sp(X ⊕X # ). Clearly,
(
(q, η), a#

)∈ asp(X ⊕X # ).
Its Hamiltonian is

X ⊕ X # � (x, ξ) �→ χ(x, ξ) = −η·x + q·ξ +
1
2
x·αx + ξ·cx +

1
2
ξ·βξ.

Let r# ∈ L(X ⊕ X # ). Write r# as

r# =
[

a b

c d

]
. (10.41)

r# ∈ Sp(X ⊕ X # ) iff

a# d− c# b = 1l, c# a = a# c, d# b = b# d, (10.42)

or, equivalently,

ad# − bc# = 1l, ab# = ba# , cd# = dc# . (10.43)

In fact, (10.42) is equivalent to (10.1) and (10.43) is equivalent to (10.2). We
have

r# −1 =
[

d# −b#

−c# a#

]
.

10.4.2 Generating function of a symplectic transformation

In the next theorem we prove a factorization result for symplectic transforma-
tions, similar to the one discussed in Subsect. 1.1.2. It will be used to define its
generating function.

Theorem 10.38 Let r# ∈ Sp(X ⊕ X # ) be as in (10.41) with b invertible.

(1) We have the factorization

r# =
[

a b

c d

]
=
[

1l 0
e 1l

] [
0 b

−b# −1 0

] [
1l 0
f 1l

]
, (10.44)

where

e = db−1 = b# −1d# ∈ Ls(X ,X # ),

f = b−1a = a# b# −1 ∈ Ls(X ,X # ).

(2) Define S ∈ CPol≤2
s (X ⊕ X ) by setting

X × X � (x1 , x2) �→ S(x1 , x2) := (b−1q) · x1 + (−eq + η) · x2

+
1
2
x1 · fx1 − x1 · b−1x2 +

1
2
x2 · ex2 .

Then [
q

η

]
+
[

a b

c d

] [
x1

ξ1

]
=
[

x2

ξ2

]
(10.45)
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260 Symplectic invariance of CCR in finite-dimensions

iff

∇x1 S(x1 , x2) = −ξ1 , ∇x2 S(x1 , x2) = ξ2 . (10.46)

Proof The proofs are direct computations, using (10.42) and (10.43). �

Definition 10.39 The function S(x1 , x2) is called a generating function of the
affine symplectic transformation (10.45).

10.4.3 Point transformations

Definition 10.40 Elements of sp(X ⊕ X # ) that commute with the conjugation
τ# are called infinitesimal point transformations.

Their set is the image of the following injective homomorphism:

gl(X ) � c �→
[

c 0
0 −c#

]
∈ sp(X ⊕ X # ). (10.47)

X ⊕ X # � (x, ξ) �→ ξ·cx = x·c# ξ is the Hamiltonian of (10.47).

Definition 10.41 Elements of Sp(X ⊕ X # ) that commute with the conjugation
τ# are called point transformations.

Their set is the image of the following injective homomorphism:

GL(X ) � m �→
[

m 0
0 m# −1

]
∈ Sp(X ⊕ X # ). (10.48)

We have

exp
[

c 0
0 −c#

]
=
[

ec 0
0 (ec)# −1

]
.

10.4.4 Transformations fixing X #

The set of elements of sp(X ⊕ X # ) that send X # to zero is the image of the
following injective homomorphism of Lie algebras with the trivial bracket:

Ls(X ,X # ) � α �→
[

0 0
α 0

]
∈ sp(X ⊕ X # ). (10.49)

The Hamiltonian of (10.49) is − 1
2 x·αx.

The set of elements of Sp(X ⊕ X # ) that fix elements of X # is the image of
the following injective homomorphism of groups (where Ls(X ,X # ) is equipped
with the addition):

Ls(X ,X # ) � α �→
[

1l 0
α 1l

]
∈ Sp(X ⊕ X # ). (10.50)
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10.4 Symplectic group on a space with conjugation 261

We have

exp
[

0 0
α 0

]
=
[

1l 0
α 1l

]
.

10.4.5 Transformations fixing X
The set of elements of sp(X ⊕ X # ) that send X to zero is the image of the
following injective homomorphism of Lie algebras with the trivial bracket:

Ls(X # ,X ) � β �→
[

0 β

0 0

]
∈ sp(X ⊕ X # ). (10.51)

The Hamiltonian of (10.51) is − 1
2 ξ·βξ.

The set of elements of Sp(X ⊕ X # ) that fix elements of X is the image of the
following injective homomorphism of groups (where Ls(X # ,X ) is equipped with
the addition):

Ls(X # ,X ) � β �→
[

1l β

0 1l

]
∈ Sp(X ⊕ X # ). (10.52)

We have

exp
[

0 β

0 0

]
=
[

1l β

0 1l

]
.

The generating function for the transformation (10.52) is

S(x1 , x2) = −1
2
(x1 − x2)·β−1(x1 − x2).

10.4.6 Harmonic oscillator

We choose a scalar product on X and use it to identify X # with X .
Consider the Hamiltonian χ(x, ξ) = 1

2 x2 + 1
2 ξ2 . It generates the flow

etω∇χ

[
x0

ξ0

]
=
[

cos t sin t

− sin t cos t

] [
x0

ξ0

]
=
[

xt

ξt

]
.

Its generating function is S(x0 , xt) = (x2
0 +x2

t ) cos t−2x0 ·xt

2 sin t .

10.4.7 Transformations swapping X and X #

Let b ∈ L(X # ,X ). Then the following transformation is symplectic:[
0 b

−b# −1 0

]
.

Its generating function is S(x1 , x2) = −x1 ·b−1x2 .
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10.5 Metaplectic group in the Schrödinger representation

As in the previous section, X is a finite-dimensional real vector space. In this
section we describe the metaplectic group Mp(X # ⊕X ) in the Schrödinger CCR
representation on L2(X ).

10.5.1 Metaplectic group in L2(R)

We start with the one-dimensional case. Let us consider the Schrödinger repre-
sentation in L2(R) over R⊕ R. We will describe some examples of subgroups of
the metaplectic group Mp(R⊕ R) ⊂ U

(
L2(R)

)
.

Example 10.42 Let χ(x, ξ) = x·ξ. Then Op(χ) = 1
2 (x·D + D·x) and e−itOp(χ)

belongs to the metaplectic group. We have

e−itOp(χ)Ψ(x) = e−
1
2 tΨ(e−tx), Ψ ∈ L2(X ).

Example 10.43 The multiplication operator e−
i
2 tx2

belongs to the metaplectic
group.

Example 10.44 The operator e−
i
2 tD 2

belongs to the metaplectic group. Its inte-
gral kernel equals

(2πit)−
1
2 e

i
2

(x −y ) 2

t .

10.5.2 Harmonic oscillator

We still consider the one-dimensional case. Let χ(x, ξ) := 1
2 ξ2 + 1

2 x2 . Then
Op(χ) = 1

2 D2 + 1
2 x2 . The Weyl–Wigner symbol of e−tOp(χ) is

w(t, x, ξ) = (ch t
2 )−1 exp(−(x2 + ξ2)th t

2 ). (10.53)

Its integral kernel is given by the so-called Mehler’s formula

W (t, x, y) = π− 1
2 (sht)−

1
2 exp

(−(x2 + y2)cht + 2xy

2sht

)
.

e−itOp(χ) has the Weyl–Wigner symbol

w(it, x, ξ) = (cos t
2 )−1 exp

(−i (x2 + ξ2)tg t
2

)
(10.54)

and the integral kernel

W (it, x, y) = π− 1
2 | sin t|− 1

2 e−
iπ
4 e−

iπ
2 [ t

π ] exp
(−(x2 + y2) cos t + 2xy

2i sin t

)
.

Above, [c] denotes the integral part of c.
It is easy to see that (10.53), resp. (10.54) are special cases of (10.36), resp.

(10.37).
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We have W (it + 2iπ, x, y) = −W (it, x, y). Note the special cases

W (0, x, y) = δ(x− y),

W ( iπ
2 , x, y) = (2π)−

1
2 e−

iπ
4 e−ixy ,

W (iπ, x, y) = e−
iπ
2 δ(x + y),

W ( i3π
2 , x, y) = (2π)−

1
2 e−

i 3 π
4 eixy .

Corollary 10.45 (1) The operator with kernel ±(2πi)−
1
2 e−ixy belongs to the

metaplectic group and implements
[

0 −1
1 0

]
.

(2) The operator with kernel ±iδ(x + y) belongs to the metaplectic group and

implements
[−1 0

0 −1

]
.

10.5.3 Quadratic Hamiltonians in the Schrödinger representation

Until the end of the section we consider X of any finite dimension. Any χ ∈
CPol≤2

s (Y# ) is of the form

X ⊕ X # � (x, ξ) �→ χ(x, ξ) = α(x) + ξ·cx + β(ξ),

where α ∈ CPol≤2
s (X ), β ∈ CPol≤2

s (X # ) and c ∈ L(X ). We have

Opx,D (χ) = α(x) + x·c# D + β(D),

Op(χ) = Opx,D (χ) + i
2 Tr c.

10.5.4 Integral kernel of elements of the metaplectic group

First we describe various examples of elements of the metaplectic group.

Proposition 10.46 If m ∈ GL(X ) with det m �= 0, then the operator

±Tm Ψ(x) := ±(det m)
1
2 Ψ(mx) (10.55)

belongs to Mp(X # ⊕X ) and implements
[

m# 0
0 m−1

]
∈ Sp(X # ⊕X ).

Proof Assume first that det m > 0. Let c ∈ gl(X ) such that m = ec . Recall that
if χ(x, ξ) = x·c# ξ, then

Op(χ) = x·c# D +
i
2
Tr c, Opx,D (χ) = x·c# D.

But e
1
2 Trc = (det ec)

1
2 = (detm)

1
2 .

Suppose now that detm < 0. Fix an arbitrary Euclidean structure in X . We
can write m as m1m2 where det m1 > 0 and m2 = 1l− 2|e〉〈e|, where e ∈ X ,
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‖e‖ = 1. We have
[

m# 0
0 m−1

]
=
[

m#
1 0

0 m−1
1

] [
1l− 2|e〉〈e| 0

0 1l− 2|e〉〈e|
]
. The

first term we implement as above, the second by the exponential of a one dimen-
sional harmonic oscillator; see Corollary 10.45 (2). �

Proposition 10.47 Let α ∈ Ls(X ,X # ). Then e−
i
2 x·αx ∈ Mp(X # ⊕X ) and

implements
[

1l α

0 1l

]
.

Proposition 10.48 Let b ∈ L(X ,X # ). Then the operator with the kernel

±(2πi)−
d
2 (det b)−

1
2 eix1 ·b−1 x2 (10.56)

belongs to Mp(X # ⊕X ) and implements
[

0 −b−1

b# 0

]
.

Proof Equip X with a scalar product. We can identify X with X # and write[
0 −b−1

b# 0

]
=
[

0 −1l
1l 0

] [
b# 0
0 b−1

]
.

By Corollary 10.45, the operator with integral kernel ±(2πi)−
d
2 e−ix1 ·x2 belongs

to Mp(X ⊕ X ) and implements
[

0 −1l
1l 0

]
. By Prop. 10.46,

[
b# 0
0 b−1

]
is imple-

mented by (10.55). Then we use the chain rule. �

Let us now describe the case of an (almost) arbitrary r ∈ Sp(X # ⊕X ). We

can write r# =
[

a b

c d

]
. Recall from Thm. 10.38 that, if b is invertible, we can

factorize r# as

r# =
[

1l 0
e 1l

] [
0 b

−b# −1 0

] [
1l 0
f 1l

]
,

and introduce the generating function of r# :

X × X � (x1 , x2) �→ S(x1 , x2) :=
1
2
x1 ·fx1 − x1 ·b−1x2 +

1
2
x2 ·ex2 .

The following theorem is one of the most beautiful expressions of the cor-
respondence between classical and quantum mechanics, since the distributional
kernel of the (quantum) unitary operator Ur is expressed purely in terms of the
generating function for the symplectic transformation r# .

Theorem 10.49 Let r ∈ Sp(X # ⊕X ) be such that b is invertible. Then the
operators ±Ur ∈Mp(X # ⊕X ) implementing r have their integral kernels equal
to

±Ur (x1 , x2) = ±(2πi)−
d
2
√
−det∇x1∇x2 S e−iS (x1 ,x2 ) .
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Proof We can write

r =
[

1l f

0 1l

] [
0 −b−1

b# 0

] [
1l e

0 1l

]
= rf rbre .

rf and re are implemented in Mp(X # ⊕X ) by Ue = e−
i
2 x·ex and Uf = e−

i
2 x·f x .

rb is implemented in Mp(X # ⊕X ) by Ub , which has the integral kernel (10.56).
Hence r = rf rbre is implemented by Uf UbUe , which has the integral kernel

±(2πi)−
d
2 (det b)−

1
2 e−

i
2 x1 ·f x1 eix1 ·b−1 x2 e−

i
2 x2 ·ex2 . �

10.6 Notes

Normal forms of quadratic Hamiltonians were first established by Williamson
(1936). Thus, Prop. 10.8 is a special case of Williamson’s theorem.

The fact that Bogoliubov rotations are implemented by a projective uni-
tary representation of the symplectic group was noted by Segal (1959). Its
implementation by a representation of the two-fold covering of the symplec-
tic group, the so-called metaplectic representation, is attributed to Weil (1964)
and Shale (1962). The metaplectic group plays an important role in the concept
of the Maslov index, the semi-classical approximation and microlocal analysis;
see Maslov (1972), Leray (1978), Guillemin–Sternberg (1977) and Hörmander
(1985). The semi-classical approximation and microlocal analysis are asymptotic
theories (where the small parameter is the Planck constant � or the inverse λ−1

of the momentum scale). One can obtain for example extensions of Thm. 10.35
or Thm. 10.49 to non-quadratic Hamiltonians or non-linear symplectic maps. In
these extensions the expressions of Weyl–Wigner symbols or distributional ker-
nels are given by asymptotic expansions in terms of the small parameter. In the
linear case these expansions have only one term and are exact.

The first famous application of the symplectic invariance of CCR seems to
be Bogoliubov’s theory of the excitation spectrum of the homogeneous Bose gas
(Bogoliubov (1947a); see also Fetter–Walecka (1971) and Cornean–Dereziński–
Ziń (2009)).
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