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Level-raising for Saito–Kurokawa forms

Claus M. Sorensen

Abstract

This paper provides congruences between unstable and stable automorphic forms for
the symplectic similitude group GSp(4). More precisely, we raise the level of certain
CAP representations Π arising from classical modular forms. We first transfer Π to π
on a suitable inner form G; this is achieved by θ-lifting. For π, we prove a precise level-
raising result that is inspired by the work of Bellaiche and Clozel and which relies on
computations of Schmidt. We thus obtain a π̃ congruent to π, with a local component
that is irreducibly induced from an unramified twist of the Steinberg representation
of the Klingen parabolic. To transfer π̃ back to GSp(4), we use Arthur’s stable trace
formula. Since π̃ has a local component of the above type, all endoscopic error terms
vanish. Indeed, by results due to Weissauer, we only need to show that such a component
does not participate in the θ-correspondence with any GO(4); this is an exercise in using
Kudla’s filtration of the Jacquet modules of the Weil representation. We therefore obtain
a cuspidal automorphic representation Π̃ of GSp(4), congruent to Π, which is neither
CAP nor endoscopic. It is crucial for our application that we can arrange for Π̃ to have
vectors fixed by the non-special maximal compact subgroups at all primes dividing N .
Since G is necessarily ramified at some prime r, we have to show a non-special analogue
of the fundamental lemma at r. Finally, we give an application of our main result to
the Bloch–Kato conjecture, assuming a conjecture of Skinner and Urban on the rank
of the monodromy operators at the primes dividing N .

1. Introduction

We fix a prime r and let D be the quaternion algebra over Q with ramification locus S = {∞, r}.
Let G be the unitary similitude group of D2, where we take the hermitian form to be the identity
matrix I. Thus, for example,

G(Q) = {x ∈GL(2, D) : x∗x= c(x)I, c(x) ∈Q∗}.

Then, G is an inner form of GSp(4) such that G(R) is compact modulo its center. More precisely,
its adjoint group Gad(R) is anisotropic SO(5). Similarly, Gad(Qr) is the special orthogonal group
of a quadratic form in five variables over Qr with Witt index 1. There is another description of
G(Qr) in § 5.3. At all other primes p, the group G is split and hence G(Qp) can be identified
with GSp(4,Qp). Let Af denote the finite part of the adeles A.

The compact open subgroups K in G(Af ) form a directed set by opposite inclusion. Let HK,Z
denote the natural Z-structure in the Hecke algebra of K-biinvariant compactly supported
functions on G(Af ). As K varies, the centers Z(HK,Z) form an inverse system of algebras with
respect to the canonical maps Z(HJ,Z)→ Z(HK,Z) given by φ 7→ eK ? φ for J ⊂K. Consider the
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inverse limit

Z = lim←−Z(HK,Z).

This makes sense locally, and Z =⊗p<∞Zp, where Zp is obtained by the analogous construction
at p. If π is an irreducible admissible representation of G(A), there is a unique character
ηπ : Z → C such that ηπ = ηπKf

◦ prK whenever πKf 6= 0. Similarly, we have characters ηπp locally,
and then ηπ =⊗p<∞ηπp under the isomorphism above. If π is automorphic and π∞ = 1, then the
values of ηπ are algebraic integers and we will use the following definition of being congruent.

Definition 1.1. Let π̃ and π be automorphic representations of G(A), both trivial at infinity,
and let λ be a finite place of Q̄. Then we define π̃ and π to be congruent modulo λ when the
congruence

ηπ̃(φ)≡ ηπ(φ) (mod λ)

holds for all φ ∈ Z. In this case, we will use the notation: π̃ ≡ π (mod λ).

Analogously, it makes sense to say that the local components π̃p and πp are congruent.
Then π̃ ≡ π (mod λ) if and only if π̃p ≡ πp (mod λ) for all p <∞. If π̃p and πp are both
unramified, π̃p ≡ πp (mod λ) means that their (normalized) Satake parameters are congruent,
up to permutation.

The following definition gives the analogue of the notion, from Clozel’s paper [Clo00], of an
automorphic representation being Eisenstein modulo λ.

Definition 1.2. Let π be an automorphic representation of G(A) with π∞ = 1, and let λ be a
finite place of Q̄. We say that π is abelian modulo λ if there exists an automorphic character χ
of G(A) with infinity type χ∞ = 1 such that

π ≡ χ (mod λ).

We prefer the terminology ‘abelian modulo λ’ since the group G has no Q-parabolics and hence
no Eisenstein series. We note that there exists non-abelian π exactly because G(R) is assumed
to be compact modulo its center.

For the next theorem, we fix a good small compact open subgroup K of the form
∏
Kp (see

§ 2.1.4 for the precise definition of ‘good small’). Let N be an integer such that p -N implies
that Kp is hyperspecial. Then we have the following main result on level-raising for the inner
form G.

Theorem A. Let λ|` be a finite place of Q̄, with ` outside a finite set determined by K. Let π
be an automorphic representation of G(A), with ωπ and π∞ trivial, such that πKf 6= 0. Assume
that π occurs with multiplicity one and that π is non-abelian modulo λ. Suppose q -N` is a
prime number with qi 6= 1 (mod `) for i= 1, . . . , 4 such that, modulo the Weyl-action, we have
the congruence

tπq⊗|c|−3/2 ≡


1

q
q2

q3

 (mod λ),

916

https://doi.org/10.1112/S0010437X09004084 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004084


Level-raising for Saito–Kurokawa forms

where t denotes the Satake parameter of the lift to GL(4). Then there exists an automorphic
representation π̃ ≡ π (mod λ) of G(A), with ωπ̃ and π̃∞ trivial, such that π̃K

q

f 6= 0 and

π̃q is of type

{
IIIa

IIa
when πq is of type

{
IIb

IIIb,

respectively. In the remaining case where πq is generic, one can choose a π̃q of type IIa and a π̃q
of type IIIa (one for each type).

The finite set of primes ` that we have to discard are those dividing the discriminant of the
Hecke algebra of K; see § 2.1.4 below for more details.

We use the classification of [Sch05], which is reproduced in Appendix A and Appendix B.
Note that the two types IIb and IIIb are the typical unramified local components of CAP
representations. The representations of type IIa are of the form χStGL(2) o σ (induced from the
Siegel parabolic), while those of type IIIa are χo σStGL(2) (induced from the Klingen parabolic).
Both are ramified, generic, and Klingen- and Siegel-spherical. Moreover, a representation of type
IIIa is tempered if and only if it is unitary. In the generic case, one can choose between the
types IIa and IIIa depending on the application one has in mind. Representations of type IIa
are expected to transfer to the inner form over Qq, while those of type IIIa cannot occur in
endoscopic lifts. We will prove this below.

The proof of the above theorem is inspired by the work of Bellaiche [Bel02] and Clozel [Clo00].
They were both dealing with a unitary group U(3), split over some imaginary quadratic
extension E/Q. Clozel considered the case where q is inert in E; here the semisimple rank is one,
and he obtained a π̃ with a Steinberg component at q. In his thesis, Bellaiche dealt with the case
where q is split in E; here the semisimple rank is two, which makes things more complicated. In
this case, one gets a π̃ with π̃q ramified but having fixed vectors under any maximal parahoric
in GL(3). This, in turn, implies that π̃q = χStGL(2) × σ by the classification of Iwahori-spherical
representations of GL(3) in [Sor06]. For GSp(4) this classification is much more complicated, but
fortunately it has been done by Schmidt [Sch05]. To really utilize the tables in [Sch05], we need
to modify Bellaiche’s argument a bit. For example, we incorporate the action of the Bernstein
center at q, and we get a precise condition on what characteristics ` we need to discard. At a
crucial point, we rely on results of Lazarus [Laz00] describing the structure of universal modules.

The approach in [Sor06] is different. There, we use the arguments of Taylor [Tay89] in a
more general setup. In the special case of an inner form of GSp(4), the main result of [Sor06]
has weaker assumptions (no multiplicity-one or banality condition is needed, and it works for
arbitrary `) but also a weaker conclusion (one can only say that π̃q is of type I, IIa or IIIa). In
particular, π̃q could be a full unramified principal series, and we would be unable to rule out the
possibility that π̃ is endoscopic. Therefore, the results of [Sor06] are too weak for the applications
to the Bloch–Kato conjecture which we have in mind.

Next, we prove a purely local result at the prime r, which will be crucial later on for our
application of the trace formula. Now Dr is the division quaternion Qr-algebra, and we fix an
unramified quadratic subfield E. Let θ be the generator for Gal(E/Qr). From now on, let G′

denote GSp(4). We view G as the non-split inner form of G′ over Qr. It comes with a class of
inner twistings

ψ :G→G′,

that is, ψ is an isomorphism over Q̄r such that σψ ◦ ψ−1 is an inner automorphism of G′ for
all σ in the Galois group of Qr. We fix a ψ defined over E. Since Gder is simply connected,
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stable conjugacy is just G(Q̄r)-conjugacy; similarly for G′. Then ψ defines an injection from
the semisimple stable conjugacy classes in G(Qr) to the semisimple stable conjugacy classes
in G′(Qr). Now, we introduce orbital integrals: let γ ∈G(Qr) be a semisimple element, and let

Gγ(Qr) = {x ∈G(Qr) : x−1γx= γ}.

Choose Haar measures on G(Qr) and Gγ(Qr), and consider the orbital integral

Oγ(f) =
∫
Gγ(Qr)\G(Qr)

f(x−1γx) dx

of a function f ∈ C∞c (Gad(Qr)). Take {γ̃} to be a set of representatives for the conjugacy classes
within the stable conjugacy class of γ, modulo the center. Then Gγ̃ is an inner form of Gγ , and
we choose compatible measures. Let e(Gγ̃) denote the Kottwitz sign [Kot83] and form the stable
orbital integral

SOγ(f) =
∑
γ̃

e(Gγ̃)Oγ̃(f).

The definitions for G′ are, of course, completely analogous. Now consider two functions f ∈
C∞c (Gad(Qr)) and f ′ ∈ C∞c (G′ad(Qr)). They are said to have matching orbital integrals if and
only if for all semisimple elements γ′ ∈G′(Qr),

SOγ′(f ′) =

{
SOγ(f) if γ′ belongs to ψ(γ),
0 if γ′ does not come from G.

Here we use compatible Haar measures on both sides. We note that Waldspurger has shown
in [Wal97] (using results of Langlands and Shelstad [LS90]) that one can always find a function f ′

matching a given f . We take f to be the idempotent of a maximal compact subgroup in G(Qr)
and show that we can take f ′ to be biinvariant under a corresponding maximal compact subgroup
in G′(Qr).

The semisimple Qr-rank of G′ is two, and the (reduced) building is covered by two-
dimensional apartments. Each apartment is tessellated by equilateral right-angled triangles. The
vertices at the right angles are non-special, whereas all the other vertices are hyperspecial.
Correspondingly, the group G′(Qr) has two conjugacy classes of maximal compact subgroups:
the hyperspecial subgroups and the so-called (non-special) paramodular subgroups.

The group G has semisimple Qr-rank one, so its (reduced) building is an inhomogeneous tree.
In fact, for r = 2 there is a picture of it in the article of Tits [Tit79, p. 48]. All of its vertices
are special. Each edge has one vertex of order r2 + 1 and one vertex of order r + 1. The former
maps to a non-special vertex in the building over E, whereas the latter maps to the midpoint of
a long edge. The stabilizer of a vertex of order r2 + 1 is also called paramodular.

Let K ′ be a paramodular group in G′(Qr). Concretely, one can take K ′ to be the subgroup
generated by the Klingen parahoric and the matrix

−r−1

1
1

r

 .
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Besides Z and K ′ itself, its normalizer contains an element η, called the Atkin–Lehner element
in the paper of Schmidt [Sch05]. It has the following form:

η =


1

1
r

r

 .

Note that it satisfies the identity η2 = rI. Our main matching result is then given in the following
theorem.

Theorem B. Let K and K ′ be arbitrary paramodular subgroups in G(Qr) and G′(Qr),
respectively. Then the characteristic functions eK and eηK′ have matching orbital integrals in
the sense described above.

Here eK , for example, denotes the characteristic function of ZK. The main ingredient of the
proof is a slight modification of the results obtained by Kottwitz in [Kot86]. First, since G splits
over E, we may compare the stable orbital integrals of eK and eηK′ to stable twisted orbital
integrals on G(E) and G′(E). In turn, these integrals can be compared explicitly by hand using
the inner twisting ψ.

The next result is a special case of the Langlands functoriality conjecture. More precisely,
it is an analogue for GSp(4) of the Jacquet–Langlands correspondence between the spectra of
GL(2) and its inner forms. It allows us to transfer the π̃ from Theorem A to G′(A) in the cases
we are interested in. The notion of being endoscopic is made precise in § 4.1.4. Here we note
that a cuspidal automorphic representation Π of G′(A) is said to be CAP with respect to a
Q-parabolic P , with Levi component M , if there exists a cuspidal automorphic representation τ
of M(A) such that Π is weakly equivalent to the constituents of the induced representation of τ
to G′(A). Recall that weakly equivalent means isomorphic at all but finitely many places.

Theorem C. Let π be an automorphic representation of G(A), with ωπ and π∞ trivial. Suppose
there exists a prime q /∈ S such that πq is of type IIIa of the form χo σStGL(2) where χ2 6= 1.
Pick a cohomological discrete series representation Π1 of G′(R), holomorphic or generic. Then
there exists a cuspidal automorphic representation Π of G′(A), with ωΠ trivial and Π∞ = Π1,
such that Πp = πp for all p /∈ S. Any such Π is neither CAP nor endoscopic. Moreover, if πr is
para-spherical (that is, has vectors fixed by a paramodular group), then there exists a Π as above
with Πr para-spherical and ramified.

Let us briefly sketch the ideas of the proof. The main tool is Arthur’s stable trace formula.
The point is that the endoscopic group PGL(2)× PGL(2) for PGSp(4) has no endoscopy itself,
and therefore we only need the standard fundamental lemma proved by Hales (not the weighted
version). Hales has also computed the Shalika germs for GSp(4) and its inner forms. Then, from
the general results of Langlands and Shelstad on descent for transfer factors, one immediately
deduces the transfer conjecture in our case. In fact, more recently, Waldspurger has shown in
general that the fundamental lemma implies the transfer conjecture. Intuitively, this enables us
to match the geometric sides of the trace formulas for G and G′. Consequently, the spectral sides
match and we can compare the spectra. However, there is a serious problem to overcome: the
distribution defined by the trace formula is unstable. One makes it stable by subtracting suitable
endoscopic error terms. To show that these error terms vanish in our situation, we invoke results
of Weissauer describing endoscopic lifts in terms of the θ-correspondence with GO(X) for four-
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dimensional X. It remains to show that type-IIIa representations do not participate in these
correspondences. For this purpose, we use Kudla’s filtration of the Jacquet modules of the Weil
representation. Roughly, this filtration reveals that the Weil representation is compatible with
parabolic induction. Thus, we are reduced to showing that the Steinberg representation StSL(2)

does not occur in the θ-correspondence with split O(2); this is a well-known fact. A standard
argument, based on the linear independence of characters, then gives a discrete automorphic
representation Π with ΠS = πS . It is actually cuspidal: by the theory of Eisenstein series we can
rule out that it occurs in the residual spectrum, since it has a tempered component. To see that
it is not CAP, we make use of work due to Piatetski-Shapiro and Soudry. To make sure the
component Π∞ lies in the expected L-packet and that we can indeed choose a specific member,
we rely on the exhaustive work of Shelstad in the archimedean case.

To get the paramodular refinement at r, we appeal to Theorem B. In fact, we get a Π
such that the Atkin–Lehner operator on the paramodular invariants of Πr has a positive trace.
Using work of Weissauer [Wei05] on the Ramanujan conjecture, we show that Πr is in fact also
ramified. Then, by the computations of Schmidt, Πr must be of type IIa, Vb, Vc or VIc. We
expect that Πr is necessarily tempered. If so, it is of type IIa of the form χStGL(2) o σ with χσ
non-trivial quadratic.

Seemingly, slight modifications of the above trace-formula argument, combined with
Weissauer’s work on weak endoscopic lifts, should allow one to prove the existence of weak
Jacquet–Langlands transfer in general for GSp(4).

The foregoing discussion culminates in the following main result, which provides congruences
between unstable and stable automorphic forms for GSp(4). Let f ∈ S4(Γ0(N)) be a newform of
weight 4 and square-free level N (and trivial character). The assumption on the weight is made
to simplify things as much as possible. Indeed, the Saito–Kurokawa lift (which we introduce
below) will be cohomological, so that its transfer to an inner form will be trivial at infinity.
Hence, the algebraic modular forms we end up looking at are just functions on a finite set. We
assume throughout that f has root number

εf =−1;

in other words, the L-function L(s, f) vanishes to an odd order at s= 2. For example, such a
newform f exists for N = 13. By this sign condition, we may lift f to a Saito–Kurokawa form
SK(f) on GSp(4). This is a CAP representation, holomorphic at infinity and having Galois
representation

ρSK(f),λ ' ρf,λ ⊕ ω−1
` ⊕ ω

−2
` ,

where ω` is the `-adic cyclotomic character and ρf,λ is the system of Galois representations
attached to f by Deligne [Del71]. More recently, Laumon [Lau97] and Weissauer [Wei05] have
attached Galois representations to any cuspidal automorphic representation of GSp(4), which is
a discrete series at infinity. We produce congruences between SK(f) and certain stable forms of
small level.

Theorem D. With notation as above, let λ|` be a finite place of Q̄, with ` outside a finite set
of primes determined by N , such that ρ̄f,λ is irreducible. Suppose q -N` is a prime such that:

• qi 6≡ 1 (mod `) for i= 1, . . . , 4;

• ρ̄f,λ(Frobq) has a fixed vector.

920

https://doi.org/10.1112/S0010437X09004084 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004084


Level-raising for Saito–Kurokawa forms

Then there exists a cuspidal automorphic representation Π≡ SK(f) (mod λ) of PGSp(4) which
is neither CAP nor endoscopic and such that Π∞ is the cohomological holomorphic discrete
series representation, Πp is unramified and tempered for p -Nq, and:

• the Galois representation ρΠ,λ is irreducible;

• Πq is of type IIIa (hence tempered, generic and ramified);

• Πp is para-spherical for all primes p dividing N .

Moreover, if f is not CM, there exists a positive density of such primes q.

The proof is a combination of all of our previous results. Let us outline the main ideas.
Since f has trivial character, it generates a cuspidal automorphic representation τ of GL(2, A)
with trivial central character and with τ∞ being the holomorphic discrete series of weight 4,
so that we have the equality L(s− 3/2, τf ) = L(s, f) between L-functions. We may, and will,
view τ as a cuspidal automorphic representation of PGL(2). Choose a prime r such that τr is the
Steinberg representation (and not its unramified quadratic twist). Let G be the definite inner
form of GSp(4) with ramification locus {∞, r}; its adjoint group Gad is the special orthogonal
group of a definite quadratic form in five variables over Q. Let Aτ be the global Waldspurger
packet for the metaplectic group S̃L(2) determined by τ . Then SK(f) = θ(σ) for some σ ∈Aτ .
We consider the reflection σ̆ ∈Aτ and its lifting θ(σ̆) to the inner form G. This turns out to be
para-spherical at all primes dividing N . By Theorem A, we can raise the level: since SK(f) has
local components of type IIb outside N , we get a π ≡ θ(σ̆) (mod λ) with πq of type IIIa. Then,
by Theorem C, we can transfer π to an automorphic representation Π of GSp(4) agreeing with π
outside of {∞, r}. The irreducibility of ρΠ,λ was essentially proved by Ramakrishnan in [Ram08].

Finally, we give an application of Theorem D to proving new cases of the Bloch–Kato
conjecture for classical modular forms, upon assuming a conjecture of Skinner and Urban.
Before stating our result, we briefly recall the definition of Selmer groups. Let V be a continuous
representation of the Galois group Gal(Q̄/Q), with coefficients in a finite extension L/Q`. Choose
a lattice Λ and define W by

0→ Λ i→ V
pr→W → 0.

Let λ be the maximal ideal in the ring of integers of L. Then we identify the reduction Λ/λΛ
with the λ-torsion in W . For each prime p, let Ip be the inertia group Gal(Q̄p/Qnr

p ). Let Bcris

be Fontaine’s crystalline Barsotti–Tate ring [BK90]. Then we define the finite part of the local
Galois cohomology to be

H1
f (Qp, V ) =

{
ker{H1(Qp, V )→H1(Qnr

p , V )} for p 6= `,
ker{H1(Q`, V )→H1(Q`, Bcris ⊗ V )} for p= `.

The Selmer group H1
f (Q, V ) is then cut out by these local conditions:

H1
f (Q, V ) = ker

{
H1(Q, V )→

∏
p

H1(Qp, V )/H1
f (Qp, V )

}
.

Using the maps induced by i and pr, we define the finite parts for Λ and W :

H1
f (Qp, Λ) = i−1

∗ H1
f (Qp, V ), H1

f (Qp, W ) = pr∗H
1
f (Qp, V ).

The Selmer groups H1
f (Q, Λ) and H1

f (Q, W ) are then defined as above. If V is the `-adic
realization of a motive, the latter group is sometimes called the `-part of the Selmer group
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of the motive. It sits in a short exact sequence, where the quotient is conjecturally a finite
`-group:

0→ pr∗H
1
f (Q, V )→H1

f (Q, W )→ III(Q, W )→ 0.

This quotient III(Q, W ) is called the `-part of the Tate–Shafarevich group. For the moment,
let Λ̄ denote the reduction Λ/λΛ. Then the finite part H1

f (Qp, Λ̄) is defined to be the image of
H1
f (Qp, Λ) under the natural map [Rub00, p. 17]. The Selmer group H1

f (Q, Λ̄) is then defined
as above. In the situations we will be interested in, it can be identified with the λ-torsion in
H1
f (Q, W ).

The classes in H1
f (Q, V ) correspond to equivalence classes of certain extensions of the trivial

representation 1 by V having good reduction. To make this precise, consider an extension of
`-adic Gal(Q̄/Q)-modules

0→ V →X → 1→ 0.

It is said to have good reduction at p 6= ` if the sequence remains exact after taking Ip-invariants.
In particular, if V is unramified at p, this simply means that X is unramified at p. Similarly, the
extension is said to have good reduction at ` if the sequence remains exact after applying
the crystalline functor

Dcris(V ) =H0(Q`, Bcris ⊗ V ).

This is a filtered module of dimension at most dimQ`(V ). If the dimensions are equal, V is called
crystalline. In this case, X is required to be crystalline. An extension X with good reduction
everywhere gives rise to a cohomology class in H1

f (Q, V ) via the connecting homomorphism; this
defines a bijection. The other Selmer groups above have similar interpretations. For example,
the finite part H1

f (Q`, Λ̄) is related to the notion of being Fontaine–Laffaille [FL82].

Here we will be content with formulating the Bloch–Kato conjecture [BK90] for classical
modular forms. At first, consider an arbitrary newform f ∈ S2κ(Γ0(N)). We take V above to be
the κth Tate twist ρf,λ(κ) of the Galois representation attached to f . Then, conjecturally, one
has the following identity:

ords=κL(s, f) ?= dimQ` H
1
f (Q, ρf,λ(κ)).

If εf =−1, the L-function vanishes at the point s= κ and so the conjecture predicts that the
pertinent Selmer group is non-trivial. This was proved by Skinner and Urban in [SU06] under
the assumption that f is ordinary at λ (meaning that the Hecke eigenvalue a`(f) is a λ-adic
unit). Their proof relies on the deep results of Kato [Kat04]. However, in the square-free case
they give a different argument, bypassing the work of Kato but instead relying on Conjecture 1
below.

Let ρ be a continuous representation of Gal(Q̄p/Qp) on a finite-dimensional vector space V
over the `-adic field L. Assume p 6= `. Then, by a famous result of Grothendieck, ρ is potentially
semistable. This means that there exists a nilpotent endomorphism N : V → V such that

ρ(σ) = exp(t`(σ)N)

for σ in a finite-index subgroup of Ip. Here t` : Ip � Z` is a homomorphism intertwining the
natural actions of the Weil group at p. The endomorphism N is called the monodromy operator.
The following is basically [SU06, p. 41, Conjecture 3.1.7].
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Conjecture 1. Let Π be a cuspidal automorphic representation of GSp(4) which is neither
CAP nor endoscopic, with Π∞ cohomological. Suppose the local component Πp has non-zero
vectors fixed by the paramodular group. Then the corresponding monodromy operator at p has
rank at most one.

This conjecture follows from the expected compatibility between the local and global
Langlands correspondences for GSp(4). Our application to the Bloch–Kato conjecture is
contingent on Conjecture 1.

Theorem E. Let f ∈ S4(Γ0(N)) be a newform of square-free level N with root number εf =−1.
Assume that f is not of CM type. Let λ|` be a finite place of Q̄, with ` outside a finite set, such
that ρ̄f,λ is irreducible. Assume Conjecture 1 above. Then the mod-λ Selmer groupH1

f (Q, ρ̄f,λ(2))
is non-trivial as predicted by the Bloch–Kato conjecture, since L(s, f) vanishes at s= 2.

By the result of Jordan and Livne on level-lowering for modular forms of higher weight [JL89],
we may assume that ρ̄f,λ is ramified at all primes p|N . Indeed, congruent eigenforms have equal
root numbers (look at the W -operator). This minimality assumption turns out to be crucial for
the proof.

It follows immediately from Theorem E that the Selmer group of ρf,λ(2) is non-trivial,
assuming the `-part of the Tate–Shafarevich group is trivial. This should always be the case
according to [BK90, p. 376, Conjecture 5.15].

We outline the main ideas of the proof of Theorem E. By Theorem D, we obtain a prime q
and an automorphic representation Π. First, we choose a lattice Λ in the space of ρΠ,λ such
that Λ̄ has ρ̄f,λ as its unique irreducible quotient. The goal is then to show that ω̄−2

` embeds
into Λ̄. If not, then ω̄−1

` would be the unique irreducible subrepresentation of Λ̄. Thus we would
get two non-split extensions

0→ ω̄−1
` →X → ω̄−2

` → 0 and 0→ ω̄−2
` → Y → ρ̄f,λ→ 0.

Both X and Y are subquotients of the étale intersection cohomology

IH3
et(S̄K ×Q Q̄, Q̄`),

where K is paramodular at primes dividing N , Klingen at q, and hyperspecial outside Nq. We
denote by S̄K the Satake compactification of the Siegel threefold SK . Obviously, X and Y are
then both unramified outside Nq. In addition, they are both Fontaine–Laffaille. To show that X
and Y both have good reduction at primes dividing N , we use Conjecture 1 and our minimality
assumption. At q the monodromy operator has order two by a result of Genestier and Tilouine;
this allows us to show that X or Y is unramified at q, which is a contradiction. Indeed, by
Kummer theory, H1

f (Q, ω̄`) = 0; and, by Kato’s paper [Kat04], we also have H1
f (Q, ρ̄f,λ(1)) = 0.

Therefore ω̄−2
` does embed into Λ̄, and we get a non-split extension with good reduction

everywhere:

0→ ω̄−1
` → Z→ ρ̄f,λ→ 0.

Twisting the dual extension, we obtain the desired class in H1
f (Q, ρ̄f,λ(2)).

Theorem E, and its proof, should be compared to the main theorem in Bellaiche’s
thesis [Bel02, Theorem VIII.1.7.2]. The latter gives the complete analogue for certain algebraic
Hecke characters of an imaginary quadratic field by studying their endoscopic lifts to U(3),
following Rogawski.
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2. Level-raising

2.1 Algebraic modular forms
2.1.1 The complex case. Let G be an inner form of GSp(4) over Q such that G(R) is compact

modulo its center. Concretely, G is the unitary similitude group of D2, where we take the
hermitian form to be the identity I, and where D is some definite quaternion algebra over Q
with ramification locus S = {∞, r} for some prime r. Let c :G→Gm denote the similitude, and
let Z 'Gm be the center. Then, let

A= {smooth f : Z(Af )G(Q)\G(Af )→ C}.

Here Af is the finite part of the adele ring A. There is an admissible representation r of G(Af )
on this space given by right translations. In turn, the Hecke algebra H of compactly supported
smooth functions on G(Af ) also acts in the usual way. We equip A with the pairing defined by
the integral

〈f, f ′〉=
∫
G(Q)\G(Af )

f(x)f ′(x) dx.

This is well-defined since G(Q) is a discrete cocompact subgroup of G(Af ), and we have

〈r(φ)f, f ′〉= 〈f, r(φ∨)f ′〉,

where the anti-involution φ 7→ φ∨ of H is defined by φ∨(x) = φ(x−1); it reflects taking the
contragredient. Now, let K be a compact open subgroup of G(Af ), and let AK be the space of
K-invariants. The Hecke algebra HK of K-biinvariant compactly supported functions on G(Af )
then acts semisimply:

AK '
⊕

Π

m(Π)ΠK
f ,

where Π varies over the automorphic representations of G(A), with trivial central character,
such that Π∞ is trivial and ΠK

f 6= 0. Let us choose a complete set of representatives {xi} for the
following finite set of cardinality h,

G(Q)\G(Af )/K.

Then the map f 7→ (f(xi)) identifies AK with a subspace of Ch. Let us introduce

Γi =G(Q) ∩ xiKx−1
i .

These finite groups are all trivial if K is sufficiently small (to be precise, if the projection of K
to some G(Qp) does not contain non-trivial elements of finite order). Finally, let us consider
the pairing on A restricted to AK . A straightforward calculation shows that we have the simple
formula

〈f, f ′〉=
∑
i

f(xi)f ′(xi)#Γ−1
i ∀f, f ′ ∈ AK ,

up to normalization. In particular, it follows that the pairing is non-degenerate.

2.1.2 Models over number fields. Let HK,Z denote the natural Z-structure in the Hecke
algebra HK . It preserves the lattice AK,Z consisting of Z-valued functions in AK . If L is a
number field, we then define HK,L and AK,L by extension of scalars. We choose the field L so
large that Aut(C/L) fixes the simple HK-submodules of AK . Then

ΠK
f ' C⊗L ΠK

f (L), ΠK
f (L) = ΠK

f ∩ AK,L.
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Moreover, the L-model ΠK
f (L) is unique up to complex scalars. We retain the decomposition

of AK,L into a sum of the various ΠK
f (L), where Π runs through the usual set of automorphic

representations with Π∞ trivial and ΠK
f 6= 0.

2.1.3 Integral models. Let λ be a finite place of L above `, and let O denote the ring of
integers in the completion Lλ. Then, after extending scalars, AK,Lλ is the sum of the ΠK

f (Lλ)
obtained from ΠK

f (L) by tensoring with Lλ. These components have natural integral models
obtained simply by intersecting with AK,O; that is,

ΠK
f (Lλ)' Lλ ⊗O ΠK

f (O), ΠK
f (O) = ΠK

f (Lλ) ∩ AK,O.

However, the integral models ΠK
f (O) need not be unique up to scalars. We also remark that

their sum need not exhaust AK,O, although the quotient is at worst torsion.

2.1.4 Algebraic modular forms mod `. Let F be the residue field of O. By the Brauer–
Nesbitt principle (see [Vig96, p. 80]), the semisimplification is independent of the lattice (up to
isomorphism) so that we have the usual decomposition, after semisimplification, in the form

Ass
K,F '

⊕
Π

m(Π)ΠK
f (F),

where ΠK
f (F) denotes the semisimplification of F⊗O ΠK

f (O). Indeed, we consider the reductions
of the lattice AK,O and the sublattice discussed above,⊕

Π

m(Π)ΠK
f (O),

and then take their semisimplifications. We say that K is a good small subgroup if the Hecke-
module ΠK

f determines the representation Πf up to isomorphism.

Lemma 2.1. Suppose K is a good small subgroup. For ` outside a finite set of primes determined
by K, the following hold: the HK,F-module AK,F is semisimple, all the ΠK

f (F) are simple, and

ΠK
f (F) occurs with multiplicity m(Π).

Proof. In this proof, let HK,Z denote the image of HK,Z in EndAK,Z. The algebra HK,Z comes
endowed with a natural symmetric pairing given by the trace of the composition. We consider
its discriminant,

det{tr (Ti ◦ Tj)} ∈ Z− {0},

where {Ti} is a basis for HK,Z. To see that this is non-zero, let HK denote the algebra acting
faithfully on AK . It is semisimple, so the natural pairing on HK is non-degenerate since its radical
is contained in the Jacobson radical. Now let ` be a prime not dividing the discriminant. Then
the extended pairing on F⊗Z HK,Z is non-degenerate, and this algebra is therefore semisimple.
It follows that

F⊗Z HK,Z �HK,F

is an isomorphism since its kernel is nilpotent. Consequently, HK,F is semisimple. We now proceed
to compute its dimension in two different ways. Decompose ΠK

f (F) into simple submodules X
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with multiplicity mΠ(X). By Wedderburn theory, HK is a product of matrix algebras. Hence,
by computing dimC HK = dimF HK,F in two ways, we obtain the equality∑

X

(dimX)2 =
∑
Π,X

mΠ(X)2(dimX)2 + mixed terms,

where the mixed terms are contributions coming from distinct types in ΠK
f (F):∑

Π,X 6=X′
mΠ(X)mΠ(X ′)(dimX)(dimX ′).

We deduce that there are no mixed terms, and each X is a constituent of a unique ΠK
f (F) with

multiplicity one. Therefore the ΠK
f (F) must be simple and inequivalent as Π varies. 2

If ` does not divide the order of the finite group Γi for all i, we can define a Hecke-compatible
non-degenerate pairing on AK,F by the previous formula. This is automatic when ` is sufficiently
large. More precisely, one has the following statement.

Lemma 2.2. ` > 5⇒ ` does not divide the #Γi.

Proof. Suppose ` > 5 divides #Γi. Then ` divides the pro-order of GSp(4, Zp),

#GSp(4, Fp) = p4(p− 1)(p2 − 1)(p4 − 1),

for almost all p. Hence p has order at most 4 mod `, contradicting Dirichlet. 2

2.2 Generalized eigenspaces
Let π be a fixed automorphic representation of Gad(A) such that π∞ is trivial and πKf 6= 0. By
Schur’s lemma, the center Z(HK,Z) acts on πKf by a character

η : Z(HK,Z)→ L.

Here we may have to enlarge the field L. Since Z(HK,Z) preserves AK,Z, the values of η are
in fact algebraic integers. We denote by η̄ its reduction modulo λ and look at its generalized
eigenspace

AK,F(η̄) = {f ∈ AK,F : ∃ n such that (r(φ)− η̄(φ))nf = 0 ∀φ ∈ Z(HK,F)}.

This subspace is preserved by HK,F. Its semisimplification is given as follows.

Lemma 2.3. AK,F(η̄)ss '
⊕

Π:Π≡π (mod λ) m(Π)ΠK
f (F).

Proof. In this proof, T denotes the image of Z(HK,O) in EndAK,O. Since O is complete, T is
the direct product of its localizations. Clearly, η̄ factors through T, and we let m = ker(η̄) be the
corresponding maximal ideal in T. Then (AK,O)m = Tm ⊗T AK,O is a lattice in

(AK,Lλ)m =
⊕

η′≡η (mod λ)

AK,Lλ(η′)'
⊕

Π:Π≡π (mod λ)

m(Π)ΠK
f (Lλ).

Also, it is clearly true that (AK,F)m =AK,F(η̄). Now invoke the Brauer–Nesbitt principle. 2

We will assume that ` > 5 from now on.

Lemma 2.4. AK,F(η̄) is self-dual as a module over HK,F.
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Proof. From an easy inductive argument based on the socle filtration, it follows that the pairing
on AK,F restricts to a non-degenerate pairing between the generalized eigenspaces AK,F(η̄) and
AK,F(η̄∨). However, it is well-known that π ' π∨ (this is even true locally for any odd-rank
special orthogonal group), so η̄ = η̄∨. The Hecke actions are intertwined by the compatibility
relation. 2

2.3 The universal module

In this section we fix a prime q 6= r. We let G=G(Qq) and fix a hyperspecial subgroup K.
Also, we fix a Borel subgroup B. Let F be an algebraic closure of F` and consider the spherical
Hecke algebra HK,F. We look at the degree character, giving the Hecke-action on the trivial
representation

deg :HK,F→ F.
We define a category with objects (V, v), where V is a smooth G-representation over F and v ∈ V
is a K-fixed vector on which HK,F acts by deg, and with the obvious morphisms. This category
has a universal initial object. An explicit construction realizes it as the induced module

M= Cc(G/K)⊗HK,F Fdeg.

Obviously,MK is spanned by the class of eK , the neutral element in HK,F. Also observe thatM
is generated by its K-invariants and hence is cyclic. We will need the following theorem of
Lazarus [Laz00].

Theorem 2.5. Suppose q 6= ` and q4 6= 1 (mod `). Then M∨ ' C∞(B\G).

Proof. Let δB denote the modulus character of B. Note that C∞(B\G)∨ is none other than the
principal series of δ1/2

B . By the universal property of M, there is a canonical surjective G-map

M→ C∞(B\G)∨.

By assumption, ` is banal for q, that is, ` 6= q does not divide #G(Fq). Therefore, [Laz00, Theorem
1.0.3] applies. Consequently, the map must be an isomorphism since the two representations have
the same semisimplifications. 2

We say that ` is banal for q if it satisfies the hypothesis of this theorem. Note that we must
then have ` > 5. The result allows us to write down a composition series for M∨. There are
two parabolic subgroups containing B: the Klingen parabolic Pα and the Siegel parabolic Pβ.
The latter has abelian unipotent radical. Let us take B to be the subgroup of upper triangular
matrices:

B =



a

b
cb−1

ca−1




1 x
1

1 −x
1




1 r s
1 t r

1
1


 .

Then, the two maximal parabolic subgroups have the following realizations:

Pα =


c g

c−1 det g




1 x
1

1 −x
1




1 r s
1 r

1
1



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and

Pβ =


(
g

cτg−1

)
1 r s

1 t r
1

1


 ,

where τg denotes the skew-transpose of g, i.e. the transpose with respect to the second diagonal.
Now suppose that qi 6= 1 (mod `) for i= 1, . . . , 4. Then, by [Laz00, Theorem 4.7.2], the natural
filtration,

0⊂ {constants} ⊂ C∞(Pα\G)⊂ C∞(Pα\G) + C∞(Pβ\G)⊂ C∞(B\G),

has subquotients 1, Vα, Vβ and St, all occurring with multiplicity one.

2.4 Existence of certain subquotients
Let π be as above, but assume that m(π) = 1. Moreover, suppose K is a good small subgroup
and that ` lies outside a finite set of primes as in Lemma 2.1.

Let q /∈ {`, r} be a prime such that:

• K =KqK
q with Kq hyperspecial;

• qi 6= 1 (mod `) for i= 1, . . . , 4;

• πq ≡ 1 (mod λ).

Then fix an Iwahori subgroup Iq ⊂Kq and let I = IqK
q. By our assumptions on π and `, we can

identify πKf (F) with a submodule of AK,F(η̄). We look at the Iwahori-modules they generate,
that is, the submodules

HI,F · πKf (F)⊂HI,F · AK,F(η̄)⊂AI,F(η̄).

Here we abuse notation a bit and let AI,F(η̄) denote the generalized eigenspace of η̄ composed
with the canonical homomorphism

Z(HI,F)→ Z(HK,F), φ 7→ eK ? φ.

The connection with the universal module M is given by the next lemma.

Lemma 2.6. The module M has a quotient N such that, as modules over HI,F,

N I ⊗ πKf (F)'HI,F · πKf (F).

Moreover, if πq is a full unramified principal series, we have M=N .

Proof. Note that HI,F · πKf (F) is a multiple of πKf (F), viewed as a simple module over HKq ,F. By
[Vig96, Theorem 3.12], since ` is banal for q, there is a representation N of G(Qq) such that

N I 'HomHKq,F(π
K
f (F),HI,F · πKf (F)).

Moreover, N is generated by its Iwahori-invariants. It remains to show that N is a quotient
of M. By the universal property of M, there is a canonical surjective map of HI,F-modules,

MI ⊗ πKf (F) �HI,F · πKf (F).

This, in turn, defines a surjective mapMI �N I ; indeed, it is enough to show surjectivity after
tensoring with πKf (F). By the result of Vigneras mentioned above, this map comes from a map
of representations M→N , which must be surjective since N I generates N . Now let us assume
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that πq is generic and show that the above canonical map is injective; we do this by comparing
dimensions. Obviously, the source has dimension 8 dim πKf . Furthermore,

HI,F · πKf (F)' F⊗O πIf (O).

As πq is generic, dim π
Iq
q = 8, hence HI,F · πKf (F) has dimension 8 dim πKf . 2

Lemma 2.7. N is the trivial representation only if π is abelian modulo λ.

Proof. Suppose N = 1. Then AI,F(η̄) contains an eigenform f such that the Iwahori–Hecke
algebra acts on F · f by the degree character. Therefore, f is G(Qq)-invariant (on both sides).
Note that

1→Gder(Af )→G(Af ) c→ A∗f → 1

is exact since H1(Qp, G
der) = 1, as Gder is simple and simply connected. We claim that f factors

through c. This follows easily from strong approximation, using the fact that Gder(Qq) is non-
compact. Thus η̄ occurs in the space of F-valued functions on the finite abelian group A∗f/Q∗+c(I).
By the Deligne–Serre lifting lemma [DS74, Lemma 6.11], there is a character η′ ≡ η (mod λ)
occurring in the space C-valued functions. The group characters form a basis for this space, so
there is an automorphic character χ of G(Af ) such that η′ = ηχ. 2

In what follows, we use the notation from [Sch05]; see Appendix A and Appendix B.

Lemma 2.8. Assume that π is non-abelian modulo λ. Then πq must be of type I, IIb or IIIb.
Accordingly, we have the following three possibilities for N∨:

N∨ ' C∞(P\G) where P =


B if πq is of type I,

Pα if πq is of type IIb,

Pβ if πq is of type IIIb.

Proof. The trivial representation is the unique irreducible quotient ofM, so it is also a quotient
of N . However, N 6= 1 by the previous lemma. Write down a composition series for N∨ of the
form

0
1
⊂ 1

V
⊂X ⊂ · · · ⊂ N∨,

with irreducible subquotients. Here X is a non-trivial extension of V by 1. Otherwise V ∨ is a
quotient of M and hence trivial. However, all constituents of M occur with multiplicity one.
Thus

Ext1(1, V ) 6= 0
by self-duality. According to [Clo00], the arguments in Casselman’s paper [Cas81] remain valid
as long as ` is banal for q. Therefore, V ' VP for a maximal parabolic subgroup P . Moreover,
there is an isomorphism

X ' C∞(P\G).
Suppose P = Pα. Then C∞(Pα\G)∨ is a quotient of N . In turn, there is a map

N J ⊗ πKf (F)'HJ,F · πKf (F) � C∞(Pα\G/J)∨ ⊗ πKf (F)

for any J . If we take J = Jβ, we deduce that dim π
Jβ
q is at least 3. Since πq is also unramified, it

follows from Appendix B that it must be of type I or IIb. In the latter case, note that dimN I

and #Pα\G/I both equal 4. Similarly, if P = Pβ, we conclude that πq must be of type I or IIIb. 2
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2.5 Proof of Theorem A
Let P be a maximal parabolic subgroup such that N∨ contains C∞(P\G). Thus P = Pα if πq is
of type IIb, and P = Pβ if πq is of type IIIb. When πq is generic, P can be taken to be arbitrary.

Lemma 2.9. The modules V I
P ⊗ πKf (F) and 1I ⊗ πKf (F) both occur with multiplicity one in

HI,F · AK,F(η̄).

Proof. By the universality of M, there is a canonical surjective HI,F-map,

MI ⊗AK,F(η̄) �HI,F · AK,F(η̄).

Recall that M satisfies multiplicity one, and πKf (F) occurs once in AK,F(η̄). 2

Lemma 2.10. V I
P ⊗ πKf (F) occurs in the quotient AI,F(η̄)/HI,F · AK,F(η̄).

Proof. First we show that V I
P ⊗ πKf (F) or 1I ⊗ πKf (F) occurs in the quotient in the lemma; then

we rule out the latter. Otherwise, both modules would occur with multiplicity one in AI,F(η̄) by
the previous lemma. Now, AI,F(η̄) has a composition series where the constituent V I

P ⊗ πKf (F)
is the left neighbor of 1I ⊗ πKf (F). Now we recall that AI,F(η̄) is self-dual by Lemma 2.4.

Therefore,
C∞(P\G/I)⊗ πKf (F)

is also a subquotient. In particular, it has a composition series where the constituents form a
subseries of the above composition series. By multiplicity one, we must have an exact sequence

0→ V I
P ⊗ πKf (F)→ C∞(P\G/I)⊗ πKf (F)→ 1I ⊗ πKf (F)→ 0.

However, this is impossible since 1 is not a quotient of C∞(P\G). Suppose 1I ⊗ πKf (F) occurs in
the quotient. Then there exists an automorphic representation Π≡ π (mod λ), with ΠK

f = 0,
such that 1I ⊗ πKf (F) is a summand of ΠI

f (F). Applying the idempotent eK , we reach a
contradiction. 2

We can now finish the proof of Theorem A as follows. Suppose that P = Pα. Then there
exists an automorphic representation π̃ ≡ π (mod λ), with π̃Kf = 0, such that V I

α ⊗ πKf (F) is a

summand of π̃If (F). Applying the idempotent eJβ , we see from Appendix B that dim π̃
Jβ
q is at

least 2. Since π̃q is also ramified, we conclude (again using Appendix B) that it must be of
type IIIa. The type IVb is immediately ruled out as it is not unitary. Analogously, if P = Pβ, we
deduce that π̃q is of type IIa.

3. Matching orbital integrals

3.1 Twisted orbital integrals
For the time being, we let G denote the non-split inner form of G′ over Qr. It splits over
the unramified quadratic extension E. Let θ be the generator of Gal(E/Qr), and fix an inner
twisting ψ defined over E. We define a norm mapping N from G(E) to itself by setting
Nδ = δθ(δ). For δ ∈G(E), we then define N δ by intersecting the stable conjugacy class of Nδ
with G(Qr). It may happen that N δ is empty, since G is not quasi-split. Otherwise, the stable
twisted conjugacy class of δ is defined to be the fiber of N through δ; it is a finite union of twisted
conjugacy classes. We consider the Qr-group I obtained from G by restriction of scalars from E.
Then θ defines an automorphism of I over Qr, again denoted by θ. Now let δ ∈G(E) be an
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element such that Nδ is semisimple. The extended twisted centralizer of δ is the Qr-group Iδθ
with rational points

Iδθ(Qr) = {x ∈G(E) : x−1δθ(x) ∈ Z(Qr)δ}.
Choose measures on G(E) and Iδθ(Qr), and consider the twisted orbital integral

Oδθ(fE) =
∫
Iδθ(Qr)\G(E)

fE(x−1δθ(x)) dx

of a function fE ∈ C∞c (Gad(E)). Now let {δ̃} be a set of representatives for the twisted conjugacy
classes within the stable twisted conjugacy class of δ mod Z(Qr). Then Iδ̃θ is an inner form of Iδθ,
and we transform the measure as usual. Next, define the stable twisted orbital integral of fE to
be the sum

SOδθ(fE) =
∑
δ̃

e(Iδ̃θ)Oδ̃θ(fE).

To be precise, we put SOδθ(fE) = 0 if N δ is empty. Consider a test function f ∈ C∞c (Gad(Qr)).
We say that the two functions f and fE have matching orbital integrals if for all semisimple
γ ∈G(Qr),

SOγ(f) =

{
SOδθ(fE) if γ belongs to N δ mod Z(Qr),
0 if γ does not come from G(E).

We note that Gγ and Iδθ are inner forms if γ ∈N δ, and we use compatible Haar measures on
both sides. Also, the measures on G(Qr) and G(E) are fixed; in practice, they will be normalized
compatibly. Finally, we note that all these definitions carry over to G′. Indeed, things are more
well-behaved since G′ is quasi-split: for example, the norm map N is defined everywhere.

3.2 Base change for idempotents
Let K be a paramodular subgroup of G(Qr), and let x be the vertex in the tree fixed by K.
Since E/Qr is unramified, we may view x as a θ-invariant point in the building of G over E. Then
let KE be the parahoric subgroup of G(E) fixing x. We choose measures on G(Qr) and G(E) such
that K and KE have the same measure. The following crucial result is due to Kottwitz [Kot86].

Theorem 3.1. The idempotents eK and eKE have matching orbital integrals.

Proof. Let L be the completion of the maximal unramified extension of Qr, and let σ be the
Frobenius over Qr. We view x as a point in the building of G over L and let KL be the open
bounded subgroup of G(L) fixing x. We claim that KL satisfies the three conditions on [Kot86,
p. 240]. Clearly, KL is fixed by σ. Secondly, to see that k 7→ k−1σ(k) defines a surjective map
from KL to itself, we argue as in [Kot86]. Specifically, let G be the smooth affine group scheme
over Zr attached to x in Bruhat–Tits theory; it has generic fiber G and OL-points KL. Since Gder

is simply connected, the special fiber Ḡ is connected and we can refer to [Gre63, Proposition 3].
Now the result follows by paraphrasing the arguments in [Kot86] with our definition of orbital
integrals. 2

Similarly, we let K ′ be the paramodular subgroup of G′(Qr) fixing the vertex x′ in the
building. Extending scalars, we view x′ as a point in the building of G′ over E, and we let K ′E
be the parahoric subgroup of G′(E) fixing x′.

Theorem 3.2. The functions eηK′ and eηK′E have matching orbital integrals.
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Proof. As before, the idempotents eK′ and eK′E have matching orbital integrals. We have

e〈η,K′〉 = eK′ + eηK′ ,

and similarly over E, so it remains to show that e〈η,K′〉 and e〈η,K′E〉 match. Again, this follows from
the arguments in [Kot86]. However, the proof is not as straightforward as above, since the group
〈η, K ′L〉 does not satisfy the conditions on [Kot86, p. 240]. Indeed, the map k 7→ k−1σ(k) only
maps onto the subgroup K ′L. This, however, is sufficient: in fact, using the notation of [Kot86],
it is still true that X mod center is identified with the set of fixed points of the Frobenius σ
on XL modulo the center. 2

3.3 The comparison over E

It is well-known that G′ has a unique inner form over Qr. Thus, by the inflation–restriction
sequence, we compute the Galois cohomology of the adjoint group:

H1(E/Qr, G
′ad(E))'H1(Qr, G

′ad)' {±1}.

The non-trivial cohomology class is represented by the cocycle θ 7→ η. We may therefore choose
our twisting ψ such that θψ ◦ ψ−1 is conjugation by η. With this choice of ψ, the following
integrals match.

Lemma 3.3. Oδθ(eKE ) =Oδ′θ(eηK′E ) where δ′ = ψ(δ)η−1.

Proof. Obviously, ψ restricts to an isomorphism between Iδθ and Iδ′θ. Moreover, a simple explicit
computation shows that

Oδθ(eKE ) =Oδ′θ(eψ(KE)η−1).

Now, ψ−1(K ′E) is θ-invariant, hence it stabilizes a conjugate of x so that

ψ(KE) = ξK ′Eξ
−1

for some ξ ∈G′(E). It follows that θ(ξ)−1ηξ normalizes K ′E , and then ψ(KE)η−1 is a θ-conjugate
of ηK ′E mod center. Their characteristic functions therefore have the same twisted orbital
integrals. 2

Lemma 3.4. SOδθ(eKE ) = SOδ′θ(eηK′E ) where δ′ = ψ(δ)η−1.

Proof. First we deal with the case where N δ is non-empty. Let {δ̃} be a set of representatives
for the twisted conjugacy classes within the stable twisted conjugacy class of δ mod Z(Qr). It is
straightforward to check that {δ̃′} is then an analogous set of representatives for δ′. The result
then follows from the previous lemma. If N δ is empty, it remains to show the vanishing statement

SOδ′θ(eηK′E ) = 0.

Suppose otherwise; then Oδ̃′θ(eηK′E ) is non-zero for some δ̃′. However, it equals Oδ̃θ(eKE ) by the
previous lemma. By the theorem on [Kot86, p. 243], there is a corresponding γ̃ ∈N δ̃. Hence N δ
is non-empty, and this is a contradiction. 2

3.4 Proof of Theorem B
To prove Theorem B, let γ′ ∈G′(Qr) be an arbitrary semisimple element. First, we assume
that γ′ does not come from G(Qr). Then, we must show that SOγ′(eηK′) vanishes. We may
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clearly assume that γ′ belongs to N δ′ for some δ′ ∈G′(E). Write δ′ = ψ(δ)η−1; then, from what
we have shown,

SOγ′(eηK′) = SOδ′θ(eηK′E ) = SOδθ(eKE ).
As a result, it suffices to show that N δ is empty. If N δ is non-empty, there must exist a γ ∈G(Qr)
that is stably conjugate to Nδ mod center. However, ψ(Nδ) = rNδ′, so ψ(γ) would then be stably
conjugate to γ′ modulo the center; but this contradicts our assumption that γ′ does not come
from G(Qr). Next, we assume that γ′ is stably conjugate to ψ(γ) for some γ ∈G(Qr). We must
show that

SOγ′(eηK′) = SOγ(eK).
It is easy to check that γ ∈N δ mod center if and only if γ′ ∈N δ′ mod center. If this does not
hold, then both sides are zero. If it does hold, the first string of equalities can be extended by
SOγ(eK). 2

4. Functoriality

4.1 Endoscopy
4.1.1 The endoscopic group H. Up to equivalence, G, or its class of inner forms, admits a

unique non-trivial elliptic endoscopic triple (H, s, ξ). The underlying endoscopic group is

H = (GL(2)×GL(2))/Gm,

where Gm is embedded in the center by identifying x with (x, x−1). The dual is

Ĥ = {(x, x′) ∈GL(2, C)×GL(2, C) : det x= det x′}.

There is a natural embedding ξ : Ĥ ↪→ Ĝ defined as follows:

ξ :
(
a b
c d

)
×
(
a′ b′

c′ d′

)
7→


a′ b′

a b
c d

c′ d′

 .

In this way, Ĥ is being identified with the centralizer of the semisimple element

s=


1
−1

−1
1

 .

4.1.2 Transfer and the fundamental lemma. Let p be a prime. A semisimple element
δ ∈H(Qp) is said to be (G, H)-regular if α(δ) 6= 1 for every root α of G that does not come
from H. We have the following fundamental result in our case.

Theorem 4.1. For every test function f ∈ C∞c (Gad(Qp)) there exists a matching function
fH ∈ C∞c (Had(Qp)), that is, a function such that

SOδ(fH) =
∑
γ

∆G,H(δ, γ)e(Gγ)Oγ(f)

for all (G, H)-regular semisimple δ ∈H(Qp). Here the sum runs over a set of representatives for
the conjugacy classes in G(Qp) belonging to the stable conjugacy class associated to δ. We use
compatible measures on both sides. The ∆G,H(δ, γ) are the Langlands–Shelstad transfer factors.
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Proof. By a descent argument due to Langlands and Shelstad (see [LS90, p. 495]), it suffices
to prove the theorem for G and its centralizers near the identity. Here we have Shalika germ
expansions of the orbital integrals, and Hales computed and matched these germs in [Hal89]. 2

We remark that since H has no endoscopy itself, SOδ equals Oδ up to a sign. We also note
that, by a more recent result of Waldspurger (see [Wal97, p. 157]), the previous theorem in fact
follows from the following supplementary result known as the standard fundamental lemma.

Theorem 4.2. Let p 6= r, and let K and KH be hyperspecial subgroups of G(Qp) and H(Qp),
respectively. Then, if f equals the characteristic function eK , we may take fH above to be the
characteristic function eKH (up to a constant).

Proof. This is due to Hales [Hal97]. 2

By [Wal97], one can also transfer functions f on G(Qp) to functions fG′ on G′(Qp) with
matching orbital integrals. The archimedean case of Theorem 4.1 was proved by Shelstad
in [She79] and [She82]. Finally, we mention that, of course, all we have said is also true for G′.

4.1.3 Local character identities. Let ρ be an irreducible admissible representation of H(Qp).
It factors as ρ1 ⊗ ρ2, where the ρi are representations of GL(2) with the same central character.
Since H has no endoscopy, the character tr ρ is a stable distribution. By results of Arthur [Art96]
and Shelstad [She82], there is an expansion

tr ρ(fH) =
∑
π

∆G,H(ρ, π)tr π(f)

for any f ∈ C∞c (G(Qp)). Here π runs over irreducible representations of G(Qp), and the
∆G,H(ρ, π) are spectral analogues of the Langlands–Shelstad transfer factors. There is a similar
expansion of tr ρ in terms of representations of G′(Qp). Using θ-correspondence, Weissauer has
made this expansion explicit in [Wei1] and [Wei2]. We recall his results below. There are precisely
two isomorphism classes of quaternary quadratic spaces X with discriminant one, namely the
split space Xs and the anisotropic space Xa. Now, the key is the two identifications

GSO(Xs)'H, GSO(Xa)' H̆ = (D∗ ×D∗)/Gm.

Here D is the division quaternion algebra over Qp, and GSO(X) denotes the identity component
of the orthogonal similitude group GO(X). Note that, by the Jacquet–Langlands correspondence,
there is a one-to-one correspondence between irreducible representations ρ̆ of H̆(Qp) and discrete
series representations ρ of H(Qp). Later, we will transfer representations to GSp(4) by using
θ-correspondence for similitude groups. For that purpose, we now briefly review a result of
Roberts [Rob96] on θ-correspondence in our special case. Assume that p is odd, and fix a non-
trivial character of Qp. Correspondingly, we have the Weil representation ω of Sp(4)×O(X)
on the Schwartz space of X2. It extends naturally, with formulas as given in [Rob96], to a
representation ω̃ of the group

{(x, x′) ∈GSp(4)×GO(X) : c(x) = c(x′)}.

Let RX(GSp(4)) denote the set of irreducible representations π of GSp(4) such that the
restriction to Sp(4) is multiplicity-free and has a constituent that is a quotient of the usual
Weil representation ω. Define the set R4(GO(X)) similarly. Since discX = 1, the condition
Hom(ω̃, π ⊗ ρ) 6= 0 defines a bijection

RX(GSp(4))↔R4(GO(X))
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by [Rob96]. We denote this map and its inverse by π 7→ θ(π) and ρ 7→ θ(ρ), respectively. These
maps turn out to be independent of the additive character used to define ω. Now let ρ= ρ1 ⊗ ρ2

be a representation of GSO(X); it is said to be regular if ρ1 6= ρ2. In this case, by Mackey theory,
the induced representation of ρ to GO(X) is irreducible and we denote it by ρ+. When ρ1 = ρ2,
we say that ρ is invariant. If so, it has exactly two extensions to GO(X). However, by [Rob99],
there is a unique extension ρ+ occurring in the θ-correspondence with GSp(4).

Theorem 4.3. Let ρ be a discrete series representation of H(Qp). Then we have the endoscopic
character relation

tr ρ(fH) = tr θ(ρ+)(f)− tr θ(ρ̆+)(f)

for any f ∈ C∞c (G(Qp)). Here ρ̆ is the Jacquet–Langlands correspondent of ρ.

Proof. This is due to Weissauer; see [Wei2, Proposition 1]. 2

Weissauer makes the following supplementary remarks. The lift θ(ρ+) is always generic,
whereas θ(ρ̆+) is non-generic. If ρ is regular, both θ-lifts are discrete series representations
(indeed, θ(ρ̆+) is always supercuspidal). On the other hand, if ρ is invariant, the θ-lifts are
limits of discrete series. When ρ is not a discrete series, one can still expand tr ρ using the
compatibility properties described on [Wei2, p. 4]; this is done in great detail on [Wei1, p. 93].

4.1.4 Weak endoscopic lifts. Following [Wei2], we say that a cuspidal automorphic
representation π of G′(A) is endoscopic if there exist two cuspidal automorphic representations ρi
of GL(2), with the same central character ωπ, such that the L-functions satisfy

L(s, πp, spin) = L(s, ρ1,p)L(s, ρ2,p)

for almost all p. Then we also say that π is a weak endoscopic lift of ρ= ρ1 ⊗ ρ2. Moreover,
let us recall what it means for π to be CAP (cuspidal associated to parabolic): π is said to
be CAP with respect to a parabolic P , with Levi component M , if there exists a cuspidal
automorphic representation τ of M(A) such that π is weakly equivalent to the constituents of
the induced representation of τ to G′(A). The CAP representations for G′(A) are described
in [Pia83] and [Sou88].

Theorem 4.4. Let π be a weak endoscopic lift of ρ that is non-CAP. Then for all p we have

∆G′,H(ρp, πp) 6= 0.

Proof. This is part 3 of the main theorem on [Wei2, p. 16]. The main ingredient is a result of
Kudla et al. [KRS92], which shows that any constituent of π restricted to Sp(4) is a global θ-lift
from some O(X), since the degree-five L-function of π has a simple pole at s= 1. 2

4.1.5 Representations of type IIIa and θ-correspondence. As we have shown in Theorem A,
by raising the level of a suitable automorphic representation π of G(A) we obtain a π̃ ≡ π
(mod λ) with π̃q of type IIIa. This means precisely that π̃q is of the form

χo σStGL(2)

for unramified characters χ and σ of Q∗q such that χ 6= 1 and χ 6= | · |±2; they are both unitary in
our case. Throughout, we use the notation of [ST93] so that the above representation is induced
from the Klingen–Levi. In our case, it has trivial central character, i.e. χσ2 = 1. We note that
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χ2 6= 1: indeed, π̃q is congruent (mod λ) to its unramified relative χo σ1GL(2), which has Satake
parameters

{qα−1, q2α−1, qα, q2α}, α= σ(q),

up to a twist. Since π̃q ≡ πq ≡ 1, the above parameters are congruent to

{1, q, q2, q3}.

If α4 = 1, this can only happen if q4 ≡ 1 (mod `), contradicting banality. Therefore χ2 6= 1, and
by [ST93, Theorem 5.2(iv)] the restriction of π̃q to Sp(4) must remain irreducible.

Lemma 4.5. Let χo σ StGL(2) be a unitary representation of G′ad(Qq) of type IIIa, where
χ2 6= 1. Let X be an even-dimensional quadratic space over Qq of discriminant 1. The
representation does not occur in the θ-correspondence with GO(X) if X is anisotropic or if
dimX is at most 4.

Proof. By [Rob96, Lemma 4.2], it suffices to show that χo StSL(2) does not occur in the θ-
correspondence with O(X). In other words, by Frobenius reciprocity, we need to show that

HomGL(1)×SL(2)(r(ω), χ⊗ StSL(2)) = 0.

Here r(ω) is the Jacquet module for the Weil representation ω with respect to the Klingen
parabolic in Sp(4). We will utilize Kudla’s filtration of r(ω) as described in [Kud, Theorem 8.1]:

0→ IndO(X)
P (ω̆ ⊗ ω1,X̆)→ r(ω)→ χX ⊗ ω1,X → 0.

Here, up to a real twist, χX is a quadratic character. Of course, ω1,X denotes the Weil
representation for the pair SL(2)×O(X). The submodule of r(ω) is to be regarded as being
trivial if X is anisotropic. Otherwise, P denotes the parabolic subgroup of O(X) with Levi
component GL(1)×O(X̆), where X̆ is the space in the Witt tower of X with index one less
than that of X. Up to a twist, ω̆ is the representation of GL(1)×GL(1) on Schwartz functions
on Qq given by translation composed with multiplication. Let us first note that the following
space vanishes:

HomGL(1)×SL(2)(χX ⊗ ω1,X , χ⊗ StSL(2)) = 0.

Otherwise, χ= χX ; however, χ is unitary and non-quadratic. This proves the lemma when X is
anisotropic. We may then assume that X is split of dimension 2 or 4. It remains to show that

HomGL(1)×SL(2)(IndO(X)
P (ω̆ ⊗ ω1,X̆), χ⊗ StSL(2)) = 0.

If not, then it follows immediately from [GG05, Lemma 9.4] that χ⊗ StSL(2) is also a quotient of
the representation ω̆ ⊗ ω1,X̆ . Consequently, StSL(2) occurs in the θ-correspondence with O(X̆).
However, it is well-known that StSL(2) does not come from split O(2); see the example on
[Kud, p. 86]. 2

Corollary 4.6. Let π be a cuspidal automorphic representation of G′ad(A) having a local
component of type IIIa of the form χo σStGL(2) where χ2 6= 1. Then π is neither CAP nor
endoscopic.

Proof. Suppose π is CAP with respect to the Siegel parabolic Pβ or B. Note that PGSp(4) is the
same as split SO(5); then, by [Pia83], it comes from S̃L(2) via global θ-lifting. Locally, one can
compute these θ-lifts and check that they are all non-generic (we will have more to say about
this in the next section). However, type IIIa representations are generic. Now suppose that π
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is CAP with respect to the Klingen parabolic Pα. By [Sou88], there exists a two-dimensional
anisotropic quadratic space X over Q such that π is a global θ-lift from GO(X). However,
by Lemma 4.5, type-IIIa representations do not occur in the θ-correspondence with any two-
dimensional quadratic space. Finally, suppose π is a weak endoscopic lift of ρ. By Theorem 4.4,
the local component πq = χo σStGL(2) occurs in the expansion of tr ρq. If ρq is a discrete series,
this is impossible by Theorem 4.3 and Lemma 4.5; otherwise, its character expansion is given
by a single representation (see [Wei1, p. 94]). This representation is irreducibly induced from Pβ
or B, and thus it cannot be of type IIIa. 2

4.2 Stability

4.2.1 Stabilization of the trace formula. The trace formula for G′ is an equality between
two expansions of a very complicated invariant distribution IG′ on G′(A). One expansion is in
terms of geometric data such as conjugacy classes, Tamagawa numbers, and (weighted) orbital
integrals. The other expansion is in terms of spectral data such as automorphic representations,
multiplicities, and (weighted) characters. For our purpose, we are only interested in the terms
occurring discretely in the trace formula. Their sum defines an invariant distribution denoted
by IG′disc. The main contribution comes from the trace on the discrete spectrum, but there are
also terms coming from what Arthur refers to as surviving remnants of Eisenstein series. The
distribution has an expansion of the form

IG′disc(f
′) =

∑
Π

aG′disc(Π)tr Π(f ′)

for a smooth function f ′ on G′(A). Here aG′disc(Π) is a complex number attached to the discrete
automorphic representation Π. If Π is cuspidal but not CAP, the number aG′disc(Π) is simply the
multiplicity of Π. The distribution IG′disc is unstable (recall that a distribution is said to be stable
if it is supported on the stable orbital integrals). However, by the work of Arthur announced
in [Art98],

SG′disc(f
′) = IG′disc(f

′)− 1
4I

H
disc(f

′H)

does define a stable distribution. Here, if f ′ =⊗f ′p is a pure tensor, we may take the matching
function to be f ′H =⊗f ′Hp . Now we turn our attention to the trace formula for G. Since G is
anisotropic modulo its center, the trace formula takes its simplest form. All terms occur discretely,
that is,

IGdisc(f) =
∑
π

aGdisc(π)tr π(f)

for a smooth function f on G(A). Here aGdisc(π) is always the multiplicity of π. Again, this
distribution is unstable, but it can be rewritten in terms of stable distributions on the endsocopic
groups:

IGdisc(f) = SG′disc(f
G′) + 1

4I
H
disc(f

H).

This was first proved by Kottwitz and Langlands, but it is also a very special case of the
aforementioned work of Arthur. If f =⊗fp is a tensor product, we may take fG′ =⊗fG′p as
before.

4.2.2 A semilocal spectral identity. As already observed, we have global transfer. For
example, if f is a function on G(A), there is a function fH on H(A) with matching orbital
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integrals. There is also a global character identity,

tr ρ(fH) =
∑
π

∆G,H(ρ, π)tr π(f)

for any f ∈ C∞c (G(A)), where ρ is an irreducible admissible representation of H(A). In the sum,
π runs over irreducible admissible representations of G(A), and ∆G,H(ρ, π) is the product of
the local transfer factors ∆G,H(ρp, πp). If we insert this expansion into the stable trace formula,
we see that ∑

π

{
aGdisc(π)− 1

4

∑
ρ

aHdisc(ρ)∆G,H(ρ, π)
}

tr π(f)

equals ∑
Π

{
aG′disc(Π)− 1

4

∑
ρ

aHdisc(ρ)∆G′,H(ρ,Π)
}

tr Π(f ′)

for any pair of matching functions f and f ′. We want to refine this identity. The point is that G
is split over Qp for all p /∈ S. Thus, if we fix an irreducible representation τS of the group G(AS),∑

πS

{
aGdisc(πS ⊗ τS)− 1

4

∑
ρ

aHdisc(ρ)∆G,H(ρ, πS ⊗ τS)
}

tr πS(fS)

equals ∑
ΠS

{
aG′disc(ΠS ⊗ τS)− 1

4

∑
ρ

aHdisc(ρ)∆G′,H(ρ,ΠS ⊗ τS)
}

tr ΠS(f ′S)

for any pair of matching functions fS and f ′S , by linear independence of characters for G(AS).
From now on, we assume that τS comes from an automorphic representation τ of G(A) such
that

∆G,H(ρp, τp) = 0 for some p /∈ S,

for every discrete automorphic representation ρ of H(A). This is true, for example, if τS has
a local component of type IIIa as above. Under this assumption, the above identity simplifies
immensely to ∑

πS

aGdisc(πS ⊗ τS)tr πS(fS) =
∑
ΠS

aG′disc(ΠS ⊗ τS)tr ΠS(f ′S)

for any pair of matching functions fS and f ′S . Let us mention that if the above hypothesis on τS

does not hold, then there exists a ρ such that ∆G,H(ρp, τp) is non-zero for all p /∈ S. We may
then construct a weak transfer of τ to G′(A) by looking at the global θ-lift of ρ as in [Wei2].

4.2.3 Incorporating Shelstad’s results at infinity. For now, let us fix a pair of matching
functions fr and f ′r at r, and consider

T =
∑
ΠS

aG′disc(ΠS ⊗ τS)tr Πr(f ′r)tr Π∞.

This is a distribution on G′(R). From our previous considerations, this is clearly stable. Recall
that by the Langlands classification, the irreducible admissible representations of G′(R) are
partitioned into finite L-packets Πµ parameterized by admissible homomorphisms µ :WR→ LG.
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Then, by [She82], T has an expansion

T =
∑
µ

cµtr Πµ, tr Πµ =
∑

Π∞∈Πµ

tr Π∞,

where µ varies over the tempered parameters, i.e. all µ such that the projection of µ(WR) onto
the neutral component of LG is bounded. Indeed, we assume that τS is part of a non-CAP
representation, so it is tempered by [Wei05]. From an argument in [BR94] using the congruence
relation, it follows that Π∞ must be tempered for ΠS ⊗ τS to be cuspidal. For every tempered
µ, the coefficient cµ is given by

cµ =
∑
Πr

aG′disc(Π∞ ⊗Πr ⊗ τS)tr Πr(f ′r)

for any choice Π∞ ∈Πµ. Now, since G(R) is compact, its L-packets are singletons {πµ}. The
finite-dimensional irreducible representations πµ are parameterized by discrete L-parameters µ
(i.e. any µ which does not map into a Levi subgroup). In this case, the L-packet Πµ for G′(R)
consists of two classes of discrete series representations {ΠH

µ ,Π
W
µ } with the same central and

infinitesimal characters as πµ. The representation ΠH
µ is a holomorphic discrete series, whereas

ΠW
µ is generic. We will now invoke the following character identity over R proved by Shelstad

in [She79]:

tr Πµ(f ′∞) =

{
tr πµ(f∞) if µ is discrete,
0 otherwise,

for matching functions f∞ and f ′∞. Inserting this into the trace formula derived in the last
section, we obtain

cµ =
∑
πr

aGdisc(πµ ⊗ πr ⊗ τS)tr πr(fr)

for any discrete µ. To elaborate on this, we compute T (f ′∞) in two ways and then use linear
independence of characters for G(R). Comparing this with the above, we obtain our key identity∑

πr

aGdisc(πµ ⊗ πr ⊗ τS)tr πr(fr) =
∑
Πr

aG′disc(Π∞ ⊗Πr ⊗ τS)tr Πr(f ′r),

which is valid for any discrete µ, any Π∞ ∈Πµ, and any matching pair fr and f ′r at r.

4.3 Proof of Theorem C
Let τ be an automorphic representation of G(A) having a local component of type IIIa outside S.
Suppose τ∞ = πµ. Then, by linear independence of characters for G(Qr), there exists a function fr
such that the left-hand side of the key identity above is non-zero. Let f ′r be any matching
function. Then the right-hand side is non-zero, and there exists a Πr with tr Πr(f ′r) 6= 0 such that
Π∞ ⊗Πr ⊗ τS is a discrete automorphic representation of G′(A); call it Π. It has a tempered
component (namely the one of type IIIa), so Π must in fact be cuspidal. This is a standard
argument using the fact, proved by Langlands [Lan76], that residual representations arise from
residues of Eisenstein series for non-unitary parameters. The same argument is used in a paper
of Labesse and Muller [LM04, p. 6]. As we have shown, since Π has a component of type IIIa,
it is neither CAP nor endoscopic. Finally, we note that our argument can be extended to allow
central characters.
To conclude, we refine our argument to gain information at the prime r. Let τ be as above, but
insist that ωτ = 1 and that τr is para-spherical. This means τKrr 6= 0 for a paramodular group Kr
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in G(Qr). If we take fr = eKr , the left-hand side of the key identity is positive. By Theorem B, we
may then take f ′r = eηK′r . Hence there exists a cuspidal automorphic representation Π of G′ad(A)

with Π∞ ∈Πµ and ΠS = τS such that the trace of η on ΠK′r
r is positive. In particular, Πr is

para-spherical. We claim that Πr is also ramified. Suppose not; then since Π is not CAP, Πr is
tempered, by [Wei05, Theorem I]. Thus Πr must be a full unramified principal series. However,
the Atkin–Lehner operator on ΠK′r

r would then be traceless by [Sch05, Table 3], and this is a
contradiction. 2

Remark 1. The aforementioned table yields that Πr must be of type IIa, Vb, Vc or VIc. We
suspect that Πr is necessarily tempered. If this is true, we deduce that Πr is of type IIa of
the form χSt o σ (induced from the Siegel parabolic) where χσ is the non-trivial unramified
quadratic character of Q∗r .

5. Saito–Kurokawa forms

5.1 Modular forms and root numbers

Let f ∈ S4(Γ0(N)) be a newform of square-free level N , and consider its L-function given by the
usual Euler product: for an the nth Hecke eigenvalue of f and for Re(s) sufficiently large,

L(s, f) =
∞∑
n=1

ann
−s =

∏
p|N

(1− app−s)−1 ·
∏
p-N

(1− app−s + p3−2s)−1.

This function has analytic continuation to the s-plane and satisfies the functional equation

Λ(s, f) = (2π)−sΓ(s)L(s, f) = εfN
2−sΛ(4− s, f),

where the root number εf ∈ {±1} is given by the parity of the order of vanishing of L(s, f)
at the point s= 2. Now, we wish to work in the context of automorphic representations. By
an elementary construction, one associates to f a cuspidal automorphic representation τ of
PGL(2, A). Specifically, one first pulls back f to a function on GL(2, R)+, the neutral component;
then, by strong approximation, one views it as a function on GL(2, A), and τ is the representation
it generates. The representation τ is uniquely determined by the following properties: τp is
unramified for p -N , and its Satake parameters {αp, α−1

p } satisfy

ap = p3/2(αp + α−1
p ).

Moreover, up to an appropriate twist, τ∞ is the (holomorphic) discrete series representation of
GL(2, R) with the same central and infinitesimal characters as Sym2(C2). For p dividing N ,
the component τp is in fact an unramified quadratic twist of StGL(2), since N is assumed to be
square-free. We note that the Jacquet–Langlands L-function L(s, τ) is simply Λ(s+ 3/2, f). In
addition, εfN1/2−s equals the exponential function ε(s, τ) in its functional equation. Thus

ε(1/2, τ) = εf .

5.2 The Saito–Kurokawa lifting

Let f be as above, but now assume that εf =−1. We then lift τ to PGSp(4).

Proposition 5.1. There exists a cuspidal automorphic representation Π of PGSp(4), with Π∞
being the cohomological holomorphic discrete series representation, such that for all primes p we
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have

Πp ' L(ν1/2τp o ν−1/2).
Here ν denotes the normalized absolute value, and L(−) is the unique irreducible quotient. In
particular, Πp is of type IIb for p -N . On the other hand, for p dividing N , Πp is of type VIc
or Vb according to whether τp is StGL(2) or its non-trivial unramified quadratic twist ξ0StGL(2).

Proof. Let S̃L(2) denote the twofold metaplectic covering of SL(2). Throughout, we also fix a
non-trivial additive unitary character ψ =⊗ψp. Each τp is infinite-dimensional, so it determines
a local Waldspurger packet Aτp of irreducible unitary representations of S̃L(2) over Qp. This
packet is a singleton {σ+

τp} when τp is a principal series. Otherwise, when τp is a discrete series,

Aτp = {σ+
τp , σ

−
τp}.

Here σ+
τp is ψp-generic, whereas σ−τp is not. Recall that PGL(2) is the same as split SO(3), and

its inner form PD∗ is anisotropic SO(3). Then σ+
τp can be described as the θ-lift of τp. In the

discrete-series case, σ−τp is the θ-lift of the Jacquet–Langlands transfer τ̆p. Consider the tensor
product

Aτ =⊗Aτp = {σ =⊗σεpτp with εp =± and εp = + for almost all p}.
This is the global Waldspurger packet determined by τ . It is a finite set of irreducible unitary
representations of S̃L(2) over A. They are not all automorphic; the signs have to be compatible.
Indeed, by a famous result of Waldspurger,

σ =⊗σεpτp is automorphic ⇔ ε(1/2, τ) =
∏

εp.

For example, in our case, σ = σ−τ∞ ⊗p<∞ σ+
τp is automorphic since εf =−1. Now we think of

PGSp(4) as split SO(5) and look at the global θ-series lifting θ(σ). This is non-zero. Indeed, we
are in the stable range. We claim that θ(σ) is contained in the space of cusp forms. Otherwise,
by the theory of towers due to Rallis, σ would have a cuspidal lift to PGL(2). However, a result
of Waldspurger then implies that σ is generic; on the other hand, σ∞ is non-generic. From a
short argument (see, for example, [Gan08, Proposition 2.12] and its proof) it then follows that
we have local–global compatibility, that is,

Π = θ(σ) = θ(σ−τ∞)⊗p<∞ θ(σ+
τp).

In particular, θ(σ) is irreducible. We should mention that local Howe duality is known in this
special situation. The case p= 2 can be checked by hand. It remains to compute the local lifts
above. Using [Kud, Proposition 4.1], it is not hard to show that θ(σ+

τp) is the Langlands quotient
given in our proposition. Furthermore, by [Li90], θ(σ−τ∞) is the holomorphic discrete series with
minimal K-type (3, 3). 2

It follows immediately that Π is of Saito–Kurokawa type (that is, CAP with respect to the
Siegel parabolic). Moreover, it is non-tempered and para-spherical at all finite primes.

5.3 Transferring to an inner form
We now assume that ψ =⊗ψp has trivial conductor. Then, as is well-known,

ε(1/2, StGL(2), ψp) =−1, ε(1/2, ξ0StGL(2), ψp) = +1.

We have N > 1, so we pick a prime r such that τr = StGL(2). Then let D be the division quaternion
algebra over Q with ramification locus S = {∞, r}, and let G be the unitary similitude group
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of D2. The reduced norm of Dr maps onto Qr, so all hermitian forms on D2
r are equivalent. For

example, we may take

G(Qr) =
{
x ∈GL(2, Dr) : x∗

(
1

1

)
x= c(x)

(
1

1

)
, c(x) ∈Q∗r

}
.

Consider the isotropic subspace Dr ⊕ 0. Its stabilizer is the minimal parabolic

P =
{(

a
cā−1

)
: a ∈D∗r and c ∈Q∗r

}
n
{(

1 b
1

)
: b+ b̄= 0

}
.

It has Levi component D∗r ×Q∗r and abelian unipotent radical. Furthermore,

δP :
(
a

cā−1

)
7→ |NDr/Qr(a)|3 · |c|−3,

as can be shown by a standard calculation. We now transfer Π to G using θ-correspondence.

Proposition 5.2. There exists an automorphic representation π of G(A), with ωπ and π∞
being trivial, which agrees with Π outside of S and is such that the local component at the
ramified prime r is

πr ' ν1/21D∗ o ν−1/2.

Proof. We use the notation from the proof of the previous proposition. Since τr is a discrete
series representation, the global Waldspurger packet Aτ contains another automorphic member,
namely

σ̆ = σ+
τ∞ ⊗ σ

−
τr ⊗p6=r σ

+
τp .

Now we realize the adjoint groupGad as a certain anisotropic SO(5) and look at the global θ-lift to
this group θ(σ̆). We are no longer in the stable range, so to make sure that this is non-vanishing,
we appeal to the Rallis inner-product formula. The case we need is reviewed on [Gan08, p. 9].
Our quadratic space has dimension 5, so all special L-values in the inner product formula are
non-zero. Consequently, θ(σ̆) 6= 0 if and only if all the local lifts θ(σ̆p) are non-vanishing. However,

θ(σ+
τ∞) = 1, θ(σ−τr) = L(ν1/21D∗ o ν−1/2).

The first identity is a consequence of [Kud, Theorem 5.1], and the second is easily derived
from [Kud, Proposition 4.1]. As before, we have local–global compatibility, and we take π = θ(σ̆).
It remains to show that the unramified principal series ν1/21D∗ o ν−1/2 is irreducible. This is an
easy exercise using the expression for δP and the results of Kato reviewed on [Car79, p. 144]. 2

We note in passing that the unramified principal series ν1/2ξ01D∗ o ν−1/2 is reducible.
Therefore it is crucial that we pick r such that τr is the actual Steinberg representation StGL(2)

and not its twist ξ0StGL(2). The following lemma allows us to apply Theorem A to raise the level
of π.

Lemma 5.3. The representation π occurs with multiplicity one.

Proof. We first recall that for S̃L(2, A), Waldspurger proved multiplicity one. Essentially, this
follows from the multiplicity-one theorem for PGL(2, A), using the θ-correspondence. We can
therefore identify the abstract representation σ̆ with a space of cusp forms on the metaplectic
group. By a formal argument like the one on [Gan08, p. 8], the θ-correspondence preserves
multiplicity. Thus, the representation π = θ(σ̆) occurs with multiplicity one in the spectrum
of G. 2
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Gan proves a more general result in [Gan08]. Analogous to work of Piatetski-Shapiro and
Sayag in the isotropic case, Gan characterizes (certain) CAP representations of an anisotropic
inner form of GSp(4) as θ-lifts from the metaplectic group. As a corollary, he deduces that all
these CAP representations have multiplicity one. We will use this characterization later.

Let us end this section with a few words about the Bruhat–Tits theory of G(Qr). We denote
by ODr the maximal compact subring of Dr, and we let pDr be its (bilateral) maximal ideal. We
choose a uniformizing parameter $Dr . The order ODr defines an integral model for G/Qr , and
we introduce the subgroup

K =G(Zr) =
{
x ∈GL(2,ODr) : x∗

(
1

1

)
x= c(x)

(
1

1

)
, c(x) ∈ Z∗r

}
.

This is the special maximal compact subgroup of G(Qr), which becomes the Siegel parahoric over
the unramified quadratic extension of Qr. Inside K, there is the Iwahori subgroup I consisting of
matrices which are upper triangular modulo pDr . We then let K̃ be the subgroup of G generated
by I and (

$−1
Dr

$Dr

)
.

This K̃ is the paramodular maximal compact subgroup of G. Both K and K̃ are special, so they
fit into Iwasawa decompositions of G relative to P . Consequently, the representation πr is both
K-spherical and K̃-spherical.

5.4 Galois representations
Let Lf be the number field generated by the Hecke eigenvalues of f . A classical construction
due to Deligne [Del71], generalizing Eichler–Shimura theory, provides a compatible system of
continuous irreducible Galois representations

ρf,λ : Gal(Q̄/Q)→GL(2, Lf,λ),

indexed by the places λ|` of Lf , such that ρf,λ is unramified at p -N` and

Lp(s, f) = det(1− ρf,λ(Frobp)p−s)−1

for such p. Here Frobp denotes a geometric Frobenius. This result has been generalized to GSp(4)
by Laumon [Lau97] and Weissauer [Wei05]. Specifically, suppose Π is a cuspidal automorphic
representation of GSp(4) with Π∞ being a cohomological discrete series; then there exists a
number field LΠ and a compatible system of continuous semisimple four-dimensional Galois
representations

ρΠ,λ : Gal(Q̄/Q)→GL(4, LΠ,λ),

indexed by the finite places λ|` of LΠ, such that ρΠ,λ is unramified at p 6= ` outside the
ramification locus of Π. Moreover, for such primes p there is the following relation with the
spinor L-factor:

L(s− w/2,Πp, spin) = det(1− ρΠ,λ(Frobp)p−s)−1.

Here w = k1 + k2 − 3, where (k2, k2) is the weight of Π∞. We note that when Π is not CAP,
the representation ρΠ,λ can be shown (see [Wei05]) to be pure of weight w. This means that the
eigenvalues of Frobp have absolute value pw/2. When Π is CAP or endsocopic, ρΠ,λ is reducible
and essentially given by the above construction of Deligne. For example, for our Saito–Kurokawa
form, it is given by the following lemma.
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Lemma 5.4. Let Π be the Saito–Kurokawa lift of f as in Proposition 5.1.

Then

ρΠ,λ ' ρf,λ ⊕ ω−1
` ⊕ ω

−2
`

for all λ|`, where ω` denotes the `-adic cyclotomic character.

Proof. Suppose p -N` and that τp is induced from the unramified character χ:

Πp ' L(ν1/2χ× ν1/2χ−1 o ν−1/2)' χ1GL(2) o χ−1.

This allows us to calculate the Satake parameters, and it follows that

L(s,Πp, spin) = L(s, τp)ζp(s− 1/2)ζp(s+ 1/2).

In our case, k1 = k2 = 3, so w = 3. Now use the fact that ω`(Frobp) = p−1 for p 6= `. 2

In contrast, when Π is neither CAP nor endoscopic, the Galois representation ρΠ,λ is expected
to be irreducible. For large ` there is the following precise result in this direction.

Theorem 5.5. Let Π be a cuspidal automorphic representation of GSp(4) with Π∞
cohomological. Assume that ` > 2w + 1. Suppose ρΠ,λ is reducible and that all of its two-
dimensional constituents are odd. Then Π is CAP or endoscopic.

Proof. See [SU06, Theorem 3.2.1]. It relies on work of Ramakrishnan [Ram08]. 2

5.5 Proof of Theorem D
Let K =

∏
Kp, where Kp is hyperspecial for p -N and paramodular for p|N . We want to apply

Theorem A to the automorphic representation π from Proposition 5.2. However, we cannot prove
that K is a good small subgroup (in the sense that πKf determines πf ). Indeed, the paramodular
groups do not have Iwahori factorizations with respect to any parabolic. There is a way to
circumvent this problem: all we need is that the module πKf has multiplicity one in AK . To see
this, suppose that

π′Kf ' πKf
for an automorphic representation π′ with ωπ′ and π′∞ trivial. We wish to show that π′ ' π.
Our claim then follows from Lemma 5.3. Clearly, π′p ' πp for p -N . Thus π′ is weakly equivalent
to the CAP representation Π of G′(A). Then, by [Gan08, Theorem 7.1], we have π′ = θ(σ′) for
some automorphic representation σ′ in the Waldspurger packet Aτ ′ for some τ ′. Here τ ′ must be
weakly equivalent to τ . Hence τ ′ ' τ by strong multiplicity-one for GL(2). Now consider a prime
p|N ; then π′p = θ(σ±τp). First, look at the case where p 6= r. Here θ(σ−τp) is supercuspidal or of type
VIb; see, for example, [Gan08, Proposition 5.5]. Both are para-ramified, so π′p = πp. Finally, let
p= r. Since τr is the Steinberg representation, θ(σ+

τr) = 0 by [Gan08, Proposition 6.5]. Therefore
π′r = πr.

Now we apply Theorem A to π. Let λ|` be a finite place of Q̄, with ` not dividing the
discriminant of HK,Z, such that ρ̄f,λ is irreducible. Then π is non-abelian modulo λ (otherwise
Π would be congruent to an automorphic character, and its Galois representation would be a
sum of characters modulo λ, contradicting Lemma 5.4).

Now suppose that q -N` is a prime number satisfying:

• qi 6= 1 (mod `) for i= 1, . . . , 4;

• ρ̄f,λ(Frobq) has a fixed vector.
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The Satake parameters of πq are {αq, q−1/2, q1/2, α−1
q }. Since ρ̄f,λ(Frobq) has eigenvalues {1, q3},

the level-raising condition in Theorem A is satisfied. As a result, we find an automorphic
representation π̃ ≡ π (mod λ) of G(A), with ωπ̃ and π̃∞ trivial, such that π̃K

q

f 6= 0 and π̃q
is of type IIIa. Next, we apply Theorem C to π̃. As we have seen earlier, π̃q must have the
form χo σStGL(2) with χ2 6= 1. Pick a cohomological discrete series representation Π1 of G′(R),
holomorphic or generic of weight (3, 3). Then we find a cuspidal automorphic representation Π̃
of G′ad(A), with Π̃∞ = Π1, such that Π̃p = π̃p for p 6= r. Moreover, Π̃r is para-spherical since
π̃r is. Thus Π̃p is para-spherical for all p|N , unramified and tempered (see [Wei05]) for p -Nq,
and of type IIIa for p= q. Obviously, Π̃p ≡Πp (mod λ) for almost all p. Therefore the Galois
representations ρΠ̃,λ and ρΠ,λ have the same semisimplifications modulo λ. In other words,

ρΠ̃,λ ' ρ̄f,λ ⊕ ω̄
−1
` ⊕ ω̄

−2
`

by Lemma 5.4.
It remains to show that ρΠ̃,λ is irreducible. Suppose it is reducible; then it must be a sum

%⊕ %′ of a pair of two-dimensional representations. Interchanging the two, we may assume that

%̄' ρ̄f,λ, %̄′ ' ω̄−1
` ⊕ ω̄

−2
` .

Then, clearly, % and %′ are both odd. Theorem 5.5 applies for ` > 7. Hence Π̃ is CAP or endoscopic,
contradicting Theorem C. This proves irreducibility of ρΠ̃,λ and finishes the proof of Theorem D.

5.6 Existence of good primes
To apply Theorem D, we need to know the existence of primes q where we can raise the level.
Assume that ` > 13; then choose g ∈ Z prime to `, which is a generator for F∗` modulo `. Thus

gi 6= 1 (mod `)

for i= 1, . . . , 12. If f is not CM, in a suitable basis the image of ρf,λ contains

{x ∈GL(2, Z`) : det x ∈ (Z∗` )3},

by [Rib85, Theorem 3.1]. In particular, the diagonal matrix with entries {1, g3} lies in the image
of ρ̄f,λ. Then, by the Chebotarev density theorem, there exists a positive density of primes q -N`
such that ρ̄f,λ(Frobq) has eigenvalues {1, g3}. The determinant is q3, so we must have g = ζq for
some ζ ∈ F` with ζ3 = 1. If qi ≡ 1 (mod `) for some i= 1, . . . , 4, we deduce that g3i ≡ 1 (mod `).

6. The Bloch–Kato conjecture

6.1 An application of Theorem D
We continue to let f ∈ S4(Γ0(N)) be a newform of square-free level N , not of CM type, having
root number εf =−1. This sign condition implies that the L-function of f vanishes at the critical
center s= 2 (under the classical normalization of the functional equation s 7→ 4− s). In this
situation, a conjecture of Bloch and Kato [BK90, p. 376] predicts that an associated Selmer
group is positive-dimensional. This expectation was proved in [SU06] for when ` is ordinary for
f (i.e. a`(f) is an `-adic unit), and our object in this section is to make progress on the conjecture
when ` is supersingular. Let λ|` be a finite place of Q̄, with ` outside a finite set, such that ρ̄f,λ
is irreducible. We fix a prime q -N` such that the following two conditions hold:

• qi 6= 1 (mod `) for i= 1, . . . , 4;
• ρ̄f,λ(Frobq) has a fixed vector.
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Here Frobq is a fixed geometric Frobenius in the Galois group of Q. Then, by Theorem D, there
exists a cuspidal automorphic representation Π of PGSp(4) such that Π∞ is the cohomological
holomorphic discrete series representation, Πp is unramified and tempered for p -Nq, and:

• ρΠ,λ is irreducible, but ρ̄Π,λ ' ρ̄f,λ ⊕ ω̄−1
` ⊕ ω̄

−2
` ;

• Πq is of type IIIa (hence tempered, generic and ramified);

• Πp is para-spherical for all primes p dividing N .

Recall that ρΠ,λ is the four-dimensional λ-adic representation associated to the form Π by
Weissauer and Laumon, and that ρ̄Π,λ is its reduction modulo λ.

In the following, we let V denote the space of ρΠ,λ. This is a four-dimensional vector space
over the `-adic field L. We let O be the ring of integers in L. By an abuse of notation, we let λ
also denote the maximal ideal it generates in O. Moreover, F denotes the residue field of O.

6.2 Choosing a lattice

Under our assumptions, ρ̄Π,λ(Frobq) has eigenvalues {1, q, q2, q3}. By banality, they are all
distinct; therefore, by Hensel’s lemma, ρΠ,λ(Frobq) has eigenvalues {α, β, γ, δ} reducing to
{1, q, q2, q3} modulo λ. Let v ∈ V be an eigenvector for α≡ 1 (mod λ). Consider the module
it generates,

Λ =O[Gal(Q̄/Q)] · v.
This is a non-zero Galois-stable cyclic O-module. By the irreducibility of ρΠ,λ, we must have
Λ⊗ L= V , implying that Λ is a Galois-stable O-lattice in V . We look at its reduction ΛF; this
is cyclic, generated by the class of v. Hence ρ̄f,λ is the unique irreducible quotient of ΛF.

6.3 Kummer theory

It is known from Kummer theory that H1
f (Q, ω`) = 0 (as it should be since ζ(0) is non-zero).

Here, as in [Bel02, Proposition 5.1], we observe that the analogous statement modulo ` is true.

Lemma 6.1. H1
f (Q, ω̄`) = 0.

Proof. The connecting homomorphism for the Kummer sequence yields

H1(Q, ω̄`)'Q∗/Q∗`.

Fix a ∈Q∗ and let δ(a) be the corresponding cohomology class. Clearly, δ(a) is unramified at
p 6= ` if and only if ` divides ordp(a). By the discussion in Rubin’s book [Rub00, p. 26], it is
also true that δ(a) restricts to a class in H1

f (Q`, ω̄`) if and only if ` divides ord`(a). Therefore
H1
f (Q, ω̄`) = 0. 2

6.4 Kato’s result

Since ρf,λ(1) has positive weight, the Bloch–Kato conjecture predicts that

H1
f (Q, ρf,λ(1)) = 0,

which was proved in [Kat04]. From this, we deduce the analogous result mod `.

Lemma 6.2. H1
f (Q, ρ̄f,λ(1)) = 0 for almost all `.
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Proof. In this proof, take V to be the space of ρf,λ(1) and let Λ be a Galois-stable lattice in V .
Let W denote the quotient V/Λ. By [Rub00, p. 22, Lemma 1.5.4], there is a natural surjection

H1
f (Q, Λ/λΛ) �H1

f (Q, W )[λ].

This is, in fact, an isomorphism for almost all `, since H0(Q, W ) = 0 by [Kat04, p. 241,
Proposition 14.11]. However, H1

f (Q, W ) = 0 by [Kat04, p. 235, Theorem 14.2]. 2

6.5 Existence of certain submodules

In this section, we show that ω̄−2
` embeds in ΛF. Suppose it does not; then ω̄−1

` would be the
unique irreducible subrepresentation of ΛF. Writing down a composition series, we get non-split
extensions

0→ ω̄`→X → 1→ 0 and 0→ ρ̄f,λ(1)→ Y → 1→ 0.

Up to a Tate twist, X and Y ∨ are subquotients of ΛF. By Lemmas 6.1 and 6.2, to get a
contradiction it suffices to show that one of the corresponding cohomology classes lies in the
Selmer group.

Lemma 6.3. X and Y are both Fontaine–Laffaille at `.

Proof. Since Π is neither CAP nor endoscopic, it follows from [Wei05] that ρΠ,λ is the
representation on the ΠK

f -isotypic component of the étale intersection cohomology (for the middle
perversity),

IH3
et(S̄K ×Q Q̄, Q̄`).

Here K is paramodular at primes dividing N , Klingen at q, and hyperspecial outside Nq.
Moreover, S̄K denotes the Satake compactification of the Siegel threefold SK . The latter has
good reduction at ` -Nq, so ρΠ,λ is crystalline, with Hodge–Tate weights contained in {0, 1, 2, 3};
see [SU06, p. 41]. Now, X and Y ∨ are both torsion subquotients of ρΠ,λ(2). If `− 1 is bigger
than the Hodge–Tate weights, i.e. if ` > 5, then X and Y ∨ are Fontaine–Laffaille by [BM02,
Theorem 3.1.3.3]. 2

From the theory of Fontaine and Laffaille [FL82], reviewed by Breuil and Messing in [BM02], it
follows that the above extensions are reductions of lattices in certain crystalline representations;
see [BM02, Theorems 3.1.3.2 and 3.1.3.3].

Now consider a prime p 6= `. Clearly, X and Y are then both unramified at p -Nq. We are
thus left with the two cases p|N and p= q. In the first case, we need to show exactness of

0→ ρ̄f,λ(1)Ip → Y Ip → 1→ 0,

where Ip is the inertia group at p, and similarly for X. This requires our minimality assumption
that ρ̄f,λ is ramified at all primes p|N . Moreover, we need to appeal to Conjecture 1.

Lemma 6.4. Conjecture 1 implies that X and Y have good reduction at p|N .

Proof. Let us first consider X. We need to show that it is unramified at p|N . Since ρ̄f,λ is the
unique irreducible quotient of ΛF, the quotient of ΛF(2) by X is ρ̄f,λ(2). Therefore, we have
inequalities

3− dimXIp ≤ dim V Ip − dimXIp ≤ dim ΛIpF − dimXIp ≤ dim ρ̄
Ip
f,λ ≤ 1.
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The first inequality follows from Conjecture 1, and the last is our minimality assumption. It
follows that X is unramified. Next, let us consider Y . Here the dual of the quotient of ΛF by ω̄−1

`

equals Y (2). By the same arguments as before, we then have the following string of inequalities:

2≤ dim V Ip − 1≤ dim ΛIpF − 1≤ dim Y Ip ≤ dim ρ̄
Ip
f,λ + 1≤ 2.

We conclude that all of these inequalities are in fact equalities, so dim Y Ip = 2. 2

To get a contradiction, it now suffices to show that X or Y is unramified at q. For this, we
invoke a result of Genestier and Tilouine [GT05] on the order of the monodromy operator.

Lemma 6.5. X or Y is unramified at q.

Proof. In this proof, let N be the monodromy operator on V at q. From Appendix B, we see
that Πq has a unique line fixed by the Klingen parahoric, since it is of type IIIa. Then [GT05,
p. 12, Theorem 2.2.5(1)] tells us that N2 = 0. The operator preserves Λ and the composition
series of ΛF. Suppose X and Y are both ramified. Then, in some basis, N has the form

N ∼


0 e a b

0 c d
0 0

0


with e and (c, d) non-zero. However, this cannot happen since N2 = 0. 2

This contradicts Lemmas 6.1 and 6.2; therefore ω̄−2
` does embed into ΛF.

6.6 Proof of Theorem E
Embed ω̄−2

` as a submodule of ΛF, and extend it to a composition series. After twisting, this
gives an extension

0→ ρ̄f,λ(2)→ Z→ 1→ 0,

which is non-split since ρ̄f,λ is the unique irreducible quotient of ΛF. Up to a twist, Z∨ is the
quotient of ΛF by ω̄−2

` . The exact same arguments as in the previous section then show that Z
has good reduction away from q (assuming Conjecture 1). It remains to deal with the prime q.

Lemma 6.6. Z is unramified at q.

Proof. The extension Z determines a cohomology class in H1(Qq, ρ̄f,λ(2)). Let c be a cocycle
representing this class. Since ρ̄f,λ(2) is unramified at q, the cocycle restricts to a homomorphism
from the inertia group Iq to the space of ρ̄f,λ(2). As q 6= `, it obviously factors through the tame
quotient; indeed, it factors through the homomorphism t` : Iq � Z`. Recall from [Tat79, p. 21]
that

t`(Frob−1
q · σ · Frobq) = q · t`(σ)

for σ ∈ Iq. Clearly, the left-hand side is independent of the choice of a Frobenius Frobq in the
Galois group of Qq. We then immediately deduce an analogous relation satisfied by c. Now we
invoke the cocycle relation satisfied by c. Using it twice, we find that

c(Frob−1
q · σ · Frobq) = c(Frob−1

q ) + Frob−1
q · c(σ · Frobq) = Frob−1

q · c(σ)

for σ ∈ Iq, since ρ̄f,λ is unramified at q, and

c(Frob−1
q ) =−Frob−1

q · c(Frobq).
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The action of Frob−1
q on the vector c(σ) is given by the Tate twist ρ̄f,λ(2):

Frob−1
q · c(σ) = ρ̄f,λ(Frob−1

q ) · q2c(σ).

Consequently, we end up with the identity

ρ̄f,λ(Frobq) · c(σ) = q · c(σ).

Therefore, if c(σ) 6= 0 for some σ ∈ Iq, we see that c(σ) is an eigenvector for ρ̄f,λ(Frobq) with
eigenvalue q. However, the eigenvalues of ρ̄f,λ(Frobq) are {1, q3} by assumption. 2

This finishes the proof of Theorem E.
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Appendix A. Iwahori-spherical representations

Table A1 is essentially [Sch05, Table 1]; it is included it here for the reader’s convenience, and
we are grateful to Ralf Schmidt for his permission to do so. Throughout, we use the notation

Table A1. Iwahori-spherical representations of GSp(4).

Constituent of Representation Tempered L2 Generic

I χ1 × χ2 o σ χ1 × χ2 o σ |χi|= |σ|= 1 •

II a ν1/2χ× ν−1/2χo σ, χStGL(2) o σ |χ|= |σ|= 1 •
b χ2 /∈ {ν±1, ν±3} χ1GL(2) o σ

III a χ× ν o ν−1/2σ, χo σStGL(2) |χ|= |σ|= 1 •
b χ /∈ {1, ν±2} χo σ1GL(2)

IV a ν2 × ν o ν−3/2σ σStGSp(4) • • •
b L((ν2, ν−1σStGL(2)))
c L((ν3/2StGL(2), ν

−3/2σ))
d σ1GSp(4)

V a νξ0 × ξ0 o ν−1/2σ, δ([ξ0, νξ0], ν−1/2σ) • • •
b ξ2

0 = 1, ξ0 6= 1 L((ν1/2ξ0StGL(2), ν
−1/2σ))

c L((ν1/2ξ0StGL(2), ξ0ν
−1/2σ))

d L((νξ0, ξ0 o ν−1/2σ))

VI a ν × 1 o ν−1/2σ τ(S, ν−1/2σ) • •
b τ(T, ν−1/2σ) •
c L((ν1/2StGL(2), ν

−1/2σ))
d L((ν, 1 o ν−1/2σ))
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Table B1. Dimensions of the parahoric fixed spaces.

Representation Remarks K K̃ Jα Jβ I

I χ1 × χ2 o σ 1 2 4 4 8

II a χStGL(2) o σ 0 1 2 1 4
b χ1GL(2) o σ 1 1 2 3 4

III a χo σStGL(2) 0 0 1 2 4
b χo σ1GL(2) 1 2 3 2 4

IV a σStGSp(4) 0 0 0 0 1
b L((ν2, ν−1σStGL(2))) not unitary 0 0 1 2 3
c L((ν3/2StGL(2), ν

−3/2σ)) not unitary 0 1 2 1 3
d σ1GSp(4) irrelevant 1 1 1 1 1

V a δ([ξ0, νξ0], ν−1/2σ) 0 0 1 0 2
b L((ν1/2ξ0StGL(2), ν

−1/2σ)) 0 1 1 1 2
c L((ν1/2ξ0StGL(2), ξ0ν

−1/2σ)) 0 1 1 1 2
d L((νξ0, ξ0 o ν−1/2σ)) 1 0 1 2 2

VI a τ(S, ν−1/2σ) 0 0 1 1 3
b τ(T, ν−1/2σ) 0 0 0 1 1
c L((ν1/2StGL(2), ν

−1/2σ)) 0 1 1 0 1
d L((ν, 1 o ν−1/2σ)) 1 1 2 2 3

of [ST93]. Let B be the Borel subgroup of upper triangular matrices in GSp(4). Let Pα and Pβ
be the maximal parabolic subgroups containing B. Their matrix realizations are given in § 2.3.
If χ1, χ2 and σ are characters of GL(1), we denote by χ1 × χ2 o σ the representation of GSp(4)
obtained by normalized induction from the following character of B:

a
b

cb−1

ca−1

 7→ χ1(a)χ2(b)σ(c).

Similarly, if τ is a representation of GL(2), we let τ o σ be the representation of GSp(4) obtained
by normalized induction from (

g
cτg−1

)
7→ σ(c)τ(g).

Moreover, σ o τ denotes the representation induced from the Klingen parabolic,c g
c−1 det g

 7→ σ(c)τ(g).

In Table A1, ν = | · | is the normalized absolute value, χ0 is the unique non-trivial unramified
quadratic character, St is the Steinberg representation, 1 is the trivial representation, and L((−))
denotes the unique irreducible quotient when it exists.
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Appendix B. Parahoric fixed spaces

Table B1 is essentially [Sch05, Table 3]. Here K is hyperspecial, K̃ is paramodular, I is Iwahori,
and Jα and Jβ denote the Klingen- and Siegel-parahoric subgroups, respectively. For example,
Jα is the inverse image of Pα over the residue field under the natural reduction map.
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Rap90 M. Rapoport, On the bad reduction of Shimura varieties, in Automorphic forms, Shimura
varieties, and L-functions (Ann Arbor, MI, 1988), vol. II, Perspectives in Mathematics, vol.
11 (Academic Press, Boston, MA, 1990), 253–321.

Rib85 K. Ribet, On `-adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985),
185–194.

Rob96 B. Roberts, The theta correspondence for similitudes, Israel J. Math. 94 (1996), 285–317.

Rob99 B. Roberts, The non-Archimedean theta correspondence for GSp(2) and GO(4), Trans. Amer.
Math. Soc. 351 (1999), 781–811.

Rub00 K. Rubin, Euler systems (Hermann Weyl lectures, The Institute for Advanced Study), Annals of
Mathematics Studies, vol. 147 (Princeton University Press, Princeton, NJ, 2000).

ST93 P. Sally and M. Tadic, Induced representations and classifications for GSp(2, F ) and Sp(2, F ),
Mem. Soc. Math. France 52 (1993), 75–133.

952

https://doi.org/10.1112/S0010437X09004084 Published online by Cambridge University Press

http://www.math.utoronto.ca/~skudla/ssk.research.html
https://doi.org/10.1112/S0010437X09004084


Level-raising for Saito–Kurokawa forms

Sch05 R. Schmidt, Iwahori-spherical representations of GSp(4) and Siegel modular forms of degree 2
with square-free level, J. Math. Soc. Japan 57 (2005), 259–293.

She79 D. Shelstad, Characters and inner forms of a quasi-split group over R, Compositio Math. 39
(1979), 11–45.

She82 D. Shelstad, L-indistinguishability for real groups, Math. Ann. 259 (1982), 385–430.
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