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On a class of diophantine inequalities

Kurt Mabhler

Dedicated to B. Segre, on his 70th birthday, 16 February 1973.

As a special case of more general results, it is proved in this
note that, if o is any real number and & any positive number,
then there exists a positive integer X such that the

inequality
3k
[X(3)"-¥,-a] <&
has infinitely many solutions in positive integers & and Yh .

The method depends on the study of infinite sequences of real
linear forms in a fixed number of variables. It has relations
to that used by Kronecker in the proof of his classical theorem

and can be generalised.

For real o put

lloll = min lo-y| >
y=0,+1,%2,...

so that J|lal denotes the distance of o from the nearest integer and
hence that

1.
0={af =3
By HO we understand a fixed strictly increasing infinite sequence of

positive integers & [Ho usually will be the set of all positive
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integers), and H denotes some infinite subsequence of 110 , not

necessarily always the same,

2.
Let r be a fixed and 7 a variable positive integer; let further
Sn be the set of all r-vectors- - X = [a:l, ceny xr) with integral
components satisfying

1= max(lxll, tees I.'zrl) =n.

Thus Sn is a finite set, and all vectors in Sn are distinct from the
zero vector
o0=(0, ..., 0) .

Next consider an infinite sequence of r-vectors

o = (s wos ) O € B)
with real components and the associated linear forms
Ly(x) = az + ... +aq (n € Ho)
in X . Then put

M, (n) = min |IL,(X)| (» €&)
h ’ﬁ;n h 0

M(n) = 1lim sup Mh(n) .
h-oo
helg
It is obvious that
0o=Mn) =1 (ne 110)
and hence that also

Q = M(n) s-%.

3.

For n =2 3 these upper bounds for Mh(n) and M(n) can be improved.
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For this purpose, denote by y a further integral variable. The system of

r + 1 Jlinear forms

-1 -1 r
N IRTPPE B BN (ahlxl + ...+ ahrxr—y) (h € HO)
in Tys eees T Y has the determinant -1 . Hence, by Minkowski's

Theorem on linear forms, there exist integers

.’thl, “vey .’Ehp, yh

not all zero, which in general will depend on h , such that simultaneously

max{lzy, [ -oos Iz l) =7y lay @, + oo * a2 gl < T (hoe Hy)

Here at least one of the first »r integers

Thyo 0> T

does not vanish. For otherwise Yy, # 0 , vhence

15yl <n =2,

which is impossible.

The vector

X, = (xhl’ cees xhr)

therefore lies in Sn and in addition satisfies the inequality

-r
"Lh (Xh) | <n (h € Ho)
From this it follows immediately that
-r
(1) 0=M(n) <n (h € 8p)
and hence also that
(2) o<Mn)<nT.

On the other hand, since obviously 5, €S ., , it is clear that

M (1) 2M(2)2M(3)2...20 (hed),

https://doi.org/10.1017/50004972700042507 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700042507

250 Kurt Mahler

from which it is easily deduced that also

v
o

M(1) = M(2) = M(3) = .

4,
The definition of M(n) as an upper limit implies that there exists

a subsequence H of HO such that

lim Mh(n) = M(n) .
heo
heH
Here, to each suffix A4 in H , we can find a vector xh in Sn such

that

Mh(n) = ”Lh(xh)” (h € H) H
note that xh need not be the same as the vector xh constructed in §3.

As h runs over H N xh is restricted by the condition of belonging
to the finite set Sn . Therefore, if necessary, H can be replaced by an

infinite subsequence which we call again H such that, without loss of

generality,

X = X, for all h €H
is a fixed vector in Sn independent of % ; naturally,

X # 0.
Since this vector has the basic property that
(3) lim |IL (X)]| = M(n) ,
h-oo
hed
the following result has been established.

LEMMA 1. For every positive integer n there exist an infinite
subsequence H of HO and a constant vector X in S, with the property

(3).
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5.
In this lemma, H will in general be a proper subsequence of HO as
the following example shows.
Fix n and choose r =1 so that ah and X are now scalars ah
and x . As the linear forms take

x if h is even,
Lh(x) =
/2 if h is oda.

In this example, M%(n) evidently vanishes for even % (we may put

x =1 ), but is positive and independent of h for odd h . Hence also

M(n) is positive. Thus, if H is the set of all positive integers h, ¥

0
in (3) essentially (that is, except for possibly finitely many even
numbers ) is the sequence Sf all odd integers.

6.

Consider again the general case, but assume that, for a certain =n ,
M(n) = 0 . Since Mﬁ(n) >0 for all h € Hy » it is clear that now the

upper limit in the definition of M(n) becomes the imit, hence that (3)
takes the form

() lim tth(x)II =0 .

hoo

h€H0

Denote by a an arbitrary real number which is not an integer. The
relation (4) implies that
lim [IL, (x)-all = Jlaf| >0 .
h-»co
h5H0

This formula suggests the problem whether there exist an infinite

subsequence H of Ho and an integral vector X distinet from X such
that
lim HLh(X)-aH =0 .

hoo

heH
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The answer to this problem depends very much on the special forms Lh and

the sequences HO and H .

A positive answer can be given in the following trivial example. Let

r=1 and n =2 ; let Ho and H be the sequences of all positive
integers and of all odd positive integers, respectively; and let further

Lh(:c) = -%:z: for h € HO .
Since Lh(2) =1, eviéently
M, (2) = M(2) =0 .
On the other hand,
Iz, (1)-21 =0 for al1 h €& .

A negative answer holds in the following rather more interesting

example. Let again r =1 , and let H., be again the sequence of all

0
positive integers. Assume that the forms Lh have the property
(5) lim [z, (1) =0 .
hee
hGHO
Then obviously also
(6) 1im IILh(x)H = 0 for every integer =x ,
horoo
tho
and hence there cannot exist a subsequence H of Ho and an integer X
satisfying
(1) lim ||I, (X)-af = 0
hroo
heH

unless @ is an integer.

7.

A simple example in which the condition (5) is satisfied and therefore

also the conclusion sbout (7) is given by the linear forms
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Lh(x) = hlex for h € HO

where HO still denotes the sequence of all positive integers.
Of much greater interest is, however, the sequence of forms

(8) Lh(m) = A"z for h € Ho

vhere 06 > 1 is a fixed algebraic number, and X > 0 is a constant. A
theorem due to Pisot [1] (see also Salem [2]) asserts that the limit

equation

1lim ||A6h|| =0,

ho
that is, the condition (5), is satisfied if and only if the following two

properties hold.

(i) 0= 9(1) ig an algebraic integer of some degree m z 1 such

o(2) .., olm

that all its algebraic conjugates are less

than 1 1in absolute value.
(i1) X 1lies in the algebraic number field Q(6) generated by © .

Call {6, A} a Pisot pair whenever these two properties are satisfied. By

(7), such pairs have the following further property.
(i) If o is any real number, H any subsequence of H, , and X

any integer, then the equation

1lim |]Aehx—a|| =0
o0
heH
implies that o 18 an integer.
If {6, A} is a Pisot pair, then by (6) the forms (8) satisfy
9) Mn) =0 for all n=1.

This result has a converse. For assume that {6, A} is not necessarily a

Pisot pair, but that (9) is true. This equation (9) is equivalent to
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(10) lim min ||>.ehx|| =0 .
oo =1 ,£2,... .0
heﬂo

Now for every real number « and for every integer g ,

llgall = |g|.llal ,

hence
IniAe® < n min ezl
Z=t1,%2,. .. 0
because all factors &« are divisors of #n! . The equation (10) implies
then that

lim llnnehu =0 .

hoo
This, however, means that {8, n!A} and hence also {6, A}  are Pisot
pairs. Thus the following result holds.

LEMMA 2. Let 6 > 1 be an algebraic number and A a positive

number, let again H, be the sequence of all positive integers, and

0
let

Lh(x) = Aehx for h €Hy .
Then {0, A} <is a Pisot pair if and only if

Mn) =0 forqll n=1,

8.

We return to the general case of §2, but assume now that for a certain

value of 7n ,
Mn) >0 .

Denote by X the constant vector in Sn given by Lemma 1 and for which

(3) ;Llim lth(x)” = M(n) .

heH

It follows that there exists an infinite subsequence of H which we call
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again H such that

%M(n) < Ith(x)Il < ‘-;M(n) for a1l h € H

In explicit form, X = (xl, ey xr) , and there exists to each' h € H

an integer ¥y such that the sum

8p = A% Yo T G T T Yy
satisfies the equation

ley,| = lB, (01

and therefore also the inequality

(11) %M(n) < |shl < -‘3!M(n) for all h € H .

9.

Next let o be an arbitrary real number, and let ¥ Dbe the unique
integer for which the real number

B=a+y
satisfies the inequality
2 S
(12) §<85-3.
The integral multiples

8,8 (z =0, %1, 2, ...)

of 8, form an arithmetic progression of distance |sh| >0 . By (11),

every open interval of length %M(n) contains then at least one element of

this progression.
We apply this property to the open interval
from B - %M(n) to B + %M(n)
of this length and deduce that

for every h € H there extsts an integer 2 such that

“ZM(n) < 5,3, - B < B(n) .

h
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Here B <2 and M(n) =< % , so that by (11),

3
| < 230 seauin)
P quy T 2O
and therefore
(13) 2 < iy -

On the other hand, B > % , and so ageain by (11),

2 2 1
thh>8--3M(n)2§—§>0,

whence also

zh;fo.

In this construction, a3, is a function of h € H which, by (13),

has only finitely many possible velues. Since H may, if necessary, once
more be replaced by a suitable infinite subsequence, we may without loss of

generality assume that
z =z for all h € H

has a fized integral value independent of % , where by (13) and (1}4)

3
(15) 0 < |a| < oy
10.
Put finally
Xl =xlz, cany Xr=xrz N Yh=yhz+y .
Then X = {X s sees Xr) is an integral nr-vector independent of h such
that
3n
(16) 1= max(|x [, .., |xrl] < WY >

while .Yh is an integer which in general depends on h . In this new

notation, the lower and upper estimates for 8,2, ~ B take the form
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—%M(n) <L (X) - Y, -ac< %M(n) for all h € H .

Since %M(n) < % , this is equivalent to

(aT) Iz, (X)=all < %M(n) for all h € H .

Thus the following result has been obtained.

LEMMA 3. For a certain n21 let M(n) >0 . Then, to every real

number o , there exist an infinite subsequence H of Hy and a constant

integral vector X such that both (16) and (17) are satisfied.

This lemma becomes particularly interesting when M(n) is positive

for all positive integers n . For, by the earlier estimate (2),

lim M(n) = 0 .
N

Therefore, for sufficiently large n , the right-hand side of (17) can be
made arbitrarily small, giving the following result.

THEOREM 1. Let r =1 be a fized integer, and let H, be a
strictly increasing infinite sequence of positive integers. Associate with

each h in H_ a real linear form

0
Lh(x) = 9n% e ATy s

and assume that the upper limit M(n) , as defined in 82, is positive for

every positive integer n .

Then, given any real number o and any positive number 6 , there

exist an infinite subsequence H of Hy and an integral vector X # 0
independent of h such that
IILh(X)—all <8 for all suffices h in H .

1.

We combine this theorem with Lemma 2, taking =1 . Let 6 and A
be as in Lemma 2, but assume that {8, A} is not a Pisot pair. Then M(n)

is positive for all »n = 1 , and Theorem 1 gives the following consequence.

THEQREM 2. Let 6 > 1 be an algebraic number, and A > 0 a
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constant. Assume that at least one of the following two properties is not
satisfied.

1)

(1) 8 = e( i8 an algebraic integer of degree m = 1 such that

o2 .. e(m

all its algebraic conjugates have absolute

.

values less than 1 .

(iz) X lies in the algebraic number field Q(0) generated by 6 .
Then, given any real number o and any positive number &8 , there exists a
positive integer X such that the inequality

Ixr6"-all < 6
has infinitely many solutions in positive integers h .
By way of example, this theorem can be applied to each of the

inequalities

h
|22 o] <6 . meaem el <6 L 1@l <6

where in the last inequality A may be an arbitrary positive number.

12,

We conclude this note with an application of Theorem 1 when r is an

arbitrary positive integer. For this purpose, assume that

Lh(x) =az + ...+ az,

does not depend on h . Any relation M(n) = 0 where 7 =1 now implies

that the numbers

al, sees Gy 1

are linearly dependent over the rational field Q . Conversely, if these

numbers are linearly independent over Q , then M(n) is positive for all

n >1 . In this case it follows from Theorem 1 that for every real number
o and for every positive number &8 there exist 2 integers Xl’ cey Xr

not all zero such that

||ale + ...+ arXr—all <6 .
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We obtain thus a rather special case of Kronecker's Theorem.
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