First Yale New Haven International Congress on Disaster Medicine and Emergency Management

September 12-13, 2005

Omni New Haven Hotel
155 Temple Street
New Haven, Connecticut, USA

The conference will provide hospital, pre-hospital, public safety, public health and emergency management professionals with:

◆ Current best practices in health emergency management, including healthcare and public health organizations
◆ Recent progress in clinical disaster medicine
◆ Lessons learned from recent international and national disasters
◆ Latest research and development in disaster medicine and emergency management

Registration will begin on April 15, 2005 and can be accessed through our Web site at: http://yalenewhavenhealth.org/emergency/commu/natconf.html

Abstracts are being accepted until June 1, 2005 at: http://yalenewhavenhealth.org/emergency/commu/call_abstracts.html

Contact:
203-688-3224 or center@ynhh.org

Conference Co-sponsors:

Yale New Haven Health
Pan American Health Organization
Yale University School of Medicine
World Association for Disaster and Emergency Medicine
Be Prepared for the Unexpected!

Protopam (pralidoxime chloride) is indicated as an antidote in the treatment of poisoning due to those pesticides and chemicals of the organophosphate class which have anticholinesterase activity.

Protopam is not effective in the treatment of poisoning due to phosphorous, inorganic phosphates, or organophosphates not having anticholinesterase activity. Protopam is not indicated as an antidote for intoxication by pesticides of the carbamate class since it may increase the toxicity of carbaryl.

When atropine and pralidoxime are used together, the signs of atropinization (flushing, mydriasis, tachycardia, dryness of the mouth and nose) may occur earlier than might be expected when atropine is used alone.
PROTOPAM Chloride (pralidoxime chloride) for Injection

DESCRIPTION

Pralidoxime chloride occurs as an odorless, white, nonhygroscopic, crys-

talline powder. It is odorless when dried. The principal action of pralidoxime

is to reactivate cholinesterase (mainly acetylcholinesterase). It is distributed

throughout the extracellular water: it is not bound to proteins, and it is em-

ployed in the therapy of organophosphorous (organophosphate) poisoning.

PROTOPAM is not indicated as an antidote for intoxication by pesticides of the carbamate class since it may increase the toxicity of carbaryl.

PRECAUTIONS

There are no known absolute contraindications for the use of PROTOPAM.

Pralidoxime may be given in a dosage of 1 to 2 g intravenously followed by

860 mg PROTOPAM Chloride. The supra half-life of PROTOPAM Chloride

is 10-15 hours. A loading dose of 330 mg in 1 mL in rabbits caused myonecrosis.

It has been reported that the supplemen
tary use of oxime cholinesterase reactivators such as pralidoxime and dialkyl

phosphates may be useful in the treatment of myasthenia gravis. This supplementary effect of oximes was shown to be dose related.

The drug has its most critical effect in releasing paralized muscles of the splanchnic nerves. Pralidoxime is distributed throughout the extracellular water. It is not bound to plasma proteins. The drug is rapidly excreted in the urine partly unchanged and partly in the form of metabolites. The plasma half-life is probably relatively short, and repeated doses may be necessary, especially if there is an elderly or debilitated patient on the operating table for surgery.

The minimum therapeutic concentration of pralidoxime is 4 nM. A concentration of 10 nM is seen 15 minutes after an injection of 860 mg PROTOPAM Chloride. The apparent half-life of PROTOPAM Chloride is 10-15 hours. A loading dose of 330 mg in 1 mL in rabbits caused myonecrosis. The LD sub50 in rabbits was 95 mg/kg.

The LD sub50 for men was 14 mg/kg (toxic effects: CNS). The LD sub50 in rats was 96 mg/kg. The LD sub50 for rabbits was 225° C. with decomposition.

Intravenous administration of PROTOPAM should be carried out slowly and cautiously. Too-rapid administration may result in temporary worsening of cholinergic manifestations.

The principal action of pralidoxime is to reactivate cholinesterase (mainly acetylcholinesterase). It is distributed throughout the extracellular water: it is not bound to proteins, and it is employed in the therapy of organophosphorous (organophosphate) poisoning.

It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when pralidoxime is administered to a nursing woman.

Pralidoxime chloride is indicated for short-term emergency use only. No investigations of its potential for carcinogenesis, mutagenesis, or impairment of fertility and sexual function have been performed. Animal reproduction studies have not been conducted with pralidoxime. It is not known whether pralidoxime chloride is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when pralidoxime is administered to a nursing woman.

Pregnancy

Since pralidoxime chloride is indicated for short-term emergency use only, no investigations of its potential for carcinogenesis, mutagenesis, or impairment of fertility and sexual function have been performed. Animal reproduction studies have not been conducted with pralidoxime. It is not known whether pralidoxime chloride is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when pralidoxime is administered to a nursing woman.

Pralidoxime chloride is not a fumigant and is not suitable for use in the treatment of organophosphorous (organophosphate) poisoning. However, it may be used in the treatment of organophosphorous (organophosphate) poisoning caused by accidental or suicidal ingestion of the drug.
Scandinavian Update 2005 on trauma, resuscitation and emergency medicine.

Meet, have fun, share ideas and look into the future of trauma, resuscitation and emergency medicine.

Stavanger, Norway
September 8-10th, 2005

Multi-disiplinary meeting
Interactive learning
International expert faculty
Heated pro-con debates - panel discussions
Hot topics - scientific breakthroughs
Consensus process and Utstein meeting
Simulation and workshops
Meet-the-experts

www.scandinavian-update.org
www.akuttjournalen.com
Bringing Simulation to Life

SimMan®

There is a growing awareness that health care is behind other high risk operations in its attention to ensuring basic safety and that there is a need to grasp the scale of the problem. (1,2)

Use of patient simulation is considered an important part of the solution as many scenarios can be presented including uncommon but critical situations where a rapid response is needed. Errors can be allowed to occur and reach their conclusion without any risk to a patient. Team member interactions and leadership can also be explored and developed.

Two manikin-based simulators from Laerdal, SimMan® and AirMan®, represent a new generation of affordable and portable solutions to meet these needs.

References:
1) BMJ Volume 320, 18 March 2000

For more information visit www.laerdal.com/simman
LAERDAL MEDICAL AS, PO Box 377, N-4002 Stavanger, Norway
Tel. 47-51 51 17 00, Fax 47-51 52 35 57, E-mail laerdal.norway@laerdal.no
SMART TAG®

for triage that works

RECORD VITAL INFORMATION ABOUT TREATMENTS

GLOWING LIGHT STICK FOR MAXIMUM VISIBILITY IN ALL CONDITIONS, NIGHT AND DAY

HIGHLIGHTS INFECTED AND CONTAMINATED CASUALTIES

ENHANCED PATIENT TRACKING WITH BARCODED TRANSPORT STRIP

STAYS WITH CASUALTY THROUGHOUT DECONTAMINATION

CLEAR IDENTIFICATION OF PRIORITY

WMD Tag™
The ultimate resource for improving casualty management at scenes suspected to involve nuclear, chemical or biological agents. Completely waterproof, the Smart WMD Tag® goes with The Smart Tag® through casualty Decontamination. Included as a standard in the Smart Triage Pac™.

FOR MORE DETAILS AND FREE TRAINING GO TO smartmci.com NOW!

DECONTAMINATION

INFECTION

CONTESTED
Decontamination
The Total Solution
Incl. Local distribution, training, maintenance, education, etc.

Normeca A/S
SUPPLIER OF MOBILE HOSPITALS
Number One in the world

For more information, contact:
Normeca A/S
E-mail: mobile-hospital@normeca.com
P.O. BOX 404, 1471 LOERENSKOG
NORWAY
PHONE: +47 67 92 76 00, FAX: +47 67 97 17 66

For more information, contact:
Normeca A/S
E-mail: mobile-hospital@normeca.com
P.O. BOX 404, 1471 LOERENSKOG
NORWAY
PHONE: +47 67 92 76 00, FAX: +47 67 97 17 66

For more information, contact:
Normeca A/S
E-mail: mobile-hospital@normeca.com
P.O. BOX 404, 1471 LOERENSKOG
NORWAY
PHONE: +47 67 92 76 00, FAX: +47 67 97 17 66