NOTE ON GENERALIZED SCHREIER EXTENSIONS OF GROUPS

Willem Kuyk

(received July 5, 1965)

By a (generalized) Schreier extension we mean a group G decomposed into a subinvariant series $G_n \rightarrow G_{n-1} \rightarrow G_{n-2} \rightarrow G_1 \rightarrow G_0 = G$, where G_n is anti-invariant in G, i.e. the only subgroup of G_n which is normal in G is the trivial one. (" \rightarrow " denotes a group monomorphism, i.e. an injection homomorphism.) As is well known, such groups G can be embedded into the repeated wreath product $F_{n-1} \wr (F_{n-2} \wr \cdots)$ $\wr (F_2 \wr (F_1 \wr F_0)) \ldots)$, where $F_i \cong G_i/G_{i+1}$ (cf. [2], notation of M. Hall [1], p.81).

In this note we re-establish this embedding for finite G, by making use of the theory of invariants of groups. The embedding we construct however is not the same as the one constructed in [2]. The proof is by induction, the induction step being provided by the following theorem.

THEOREM. Let $G_2 \rightarrow G_1 \rightarrow G_0 = G$ be a Schreier extension; $F_0 \cong G_0/G_1$, $F_1 \cong G_1/G_2$ Then there exists a monomorphism μ of G into $F_1 \wr F_0$, turning G_1 into a subdirect product of the normal divisor F_1 of $F_1 \wr F_0$, and making the following diagram (which has exact rows) commutative:

Canad. Math. Bull. vol. 9, no. 1, 1966

<u>Proof.</u> One can always find a galoisian field extension N/K (K infinite) with Galois group G. Let $L \subset M$ be the intermediate fields of K and N, which correspond to the subgroups G_1 and G_2 of G, respectively.

Let $L = K(\beta)$ and $M = L(\alpha)$. Take $c \in K$ such that $\gamma = \alpha + c\beta$ with $M = K(\gamma)$. Let τ_i be a K-automorphism of L with $\tau_{i}\beta = \beta_{i}$ ($\beta_{1} = \beta$). Let, for every i, $\overline{\tau}_{i}$ be a K-automorphism of N, extending τ_i ($\overline{\tau}_i = 1 \in G$). Define $\overline{\tau}_{ij}^{\alpha} = \alpha_{ij}^{\alpha}$, where $\alpha = \alpha_{1}^{\alpha}, \alpha_{2}^{\alpha}, \dots, \alpha_{a}^{\alpha}$ in some enumeration of the conjugates of α , and let $\gamma_{ij} = \alpha_{ij} + c\beta_i$. Then, for every i (i = 1,...,b; b = $|F_0|$) one has $f_i = Irr(\gamma_{ij}, L) =$ = Π (X- γ_{ij}), where a = $|F_1|$. One has also j=1 $f = Irr(\gamma_{ij}, K) = f_{1} \dots f_{b}$, and obviously N is the splitting field of f over K. So G has a representation as an imprimitive permutation group on $M = \{\gamma_{11}, \dots, \gamma_{ba}\}$, with domains of imprimitivity $M_i = \{\gamma_{i1}, \dots, \gamma_{ia}\}$ (i = 1,...,b). F_0 and F_1 are permutation groups on the sets $\{\beta_1, \ldots, \beta_b\}$ and $\{\alpha_1, \ldots, \alpha_n\}$, respectively. F_0 permutes the system M_i in the obvious way, but does not necessarily leave the second indices of the γ_{ii} unaltered.

Applying a trick from field theory (cf. [3], §61) we show that the restriction of the Galois group G_1 of N/L to M_1 is precisely equal to the permutation group F_4 (as a permutation group of the $\gamma_{i1}, \ldots, \gamma_{ia}$, instead of the $\alpha_1, \ldots, \alpha_a$, respectively), on the understanding that some element $\sigma \in G_1$ may very well give rise to different permutations in the sets M_i . Denote this restriction by $F_1^{(i)}(F_1^{(1)} = F_1)$. Then, to finish the proof, it is shown that every $g \in G$ gives rise to a permutation of M, which can be split into a product of two permutations (which do not necessarily define automorphisms of L or M), one of which permutes the systems M_i according to F_0 , while leaving the second indices of γ_{ij} invariant; the other one is a permutation of the direct product $\prod_{i=1}^{b} F_1^{(i)} = F_1^{c_0}$.

Let t_1, \ldots, t_a denote indeterminates upon which G acts trivially, and form the expressions $y_{11} = t_1 \gamma_{11} + \ldots + t_a \gamma_{1a}$, σy_{11} with $\sigma \in F_1^{(1)}$. Note that σ acts on $\gamma_{11}, \ldots, \gamma_{1a}$ exactly in the same way as it acts on $\alpha_1 = \alpha_{11}, \ldots, \alpha_a = \alpha_{1a}$, respectively. The set $\{\sigma y_{11} | \sigma \in F_1\}$ is a full set of conjugates of y_{11} with respect to $L_t = L(t_1, \ldots, t_n)$. The coefficients of $f_{1t} = \sigma \prod_{i=1}^{n} (X - \sigma y_{1i}) = Irr(y_{1i}, L_i)$ can be written uniquely in the form

(2)
$$a_0(t) + a_1(t)\beta_1 + \ldots + a_{b-1}(t)\beta_1^{b-1}$$

with $a_i(t) \in K_t$. Now (loc. cit. [4]), the group of all permutations of t_1, \ldots, t_a that leave the joint elements $a_i(t)$, thus obtained from all the coefficients of f_{1t} , invariant, is exactly the same as the permutation group $F_1^{(1)}$ (of t_1, \ldots, t_a instead of $\gamma_{11}, \ldots, \gamma_{1a}$, respectively). This group does not change if a K-automorphism of L is applied. For, let $\overline{\tau}_i f_{1t} = f_{it}$; then the corresponding coefficients of f_{it} are

45

(3)
$$a_0^{(t)} + a_1^{(t)\beta_1} + \ldots + a_{b-1}^{(t)\beta_i} + \ldots$$

while a zero of f_{it} is $\overline{\tau}_{i11} = t_{1}\gamma_{i11} + \ldots + t_{i}\gamma_{i1}$. So (loc. cit. [4]), the Galois group $F_{1}^{(i)}$ of f_{it} is F_{1} (as a permutation group of $\gamma_{i1}, \ldots, \gamma_{ia}$ instead of t_{1}, \ldots, t_{a}).

Finally, let $g \in G$, then g permutes the factors f_i (and the corresponding domains M_i) according to F_0 . Let $gM_1 = M_i$, then g can be written $g = \pi \rho$ where $\rho: \gamma_{1j} \rightarrow \gamma_{ij}$ (j = 1,...,a) and π_i is some permutation of $\gamma_{i1}, \dots, \gamma_{ia}$. One has $\pi \rho f_{1t} = f_{it}$, or $\pi_i \rho f_{1t} = \pi_i f_{it} = \pi_i^{-1} f_{it} = f_{it}$, where π_t is the same permutation of $t_1 \dots t_a$ as π_i is of $\gamma_{i1}, \dots, \gamma_{ia}$. As there are no permutations of t_i turning f_{it} into itself other than those in F_1 one obtains $\pi_t^{-1} \in F_1$ and $\pi_i \in F_1^{(i)}$. Let it be recalled that the full group of permutations of M generated by the ρ 's and those in $\prod_i F_i^{(i)}$ is just the i = 1wreath product $F_1 \ i \in F_0$.

The embedding theorem follows from the following functorial property of $F_1 \ F_0$. Let $F_1^1 \rightarrow F_1$ and $F_0^1 \rightarrow F_0$, be monomorphisms, then $F_1^1 \ F_0^1 \rightarrow F_1 \ F_1 \ F_0$.

Proof of the embedding theorem. Let $G_n \rightarrow G_{n-1} \rightarrow \cdots$ $\Rightarrow G$ be a Schreier extension. Define $G_2^* = \bigcap_{x \in G} x G_2 x^{-1}$. We obtain a Schreier extension $G_2/G_2^* \rightarrow G_1/G_2^* \rightarrow G/G_2^*$. Applying the theorem gives $G/G_2^* \rightarrow F_1 \downarrow F_0$. The next step is carried out as follows. Let $G_3^* = G_2^* \cap G_3$. Then it is readily seen that $G_2^*/G_3^* \rightarrow G_2^*/G_3 = F_2$. Define $G_3^{**} = \bigcap_{x \in G_3} x G_3^{*-1}$. The sub-invariant series $x \in G$ $G_3^{**} \rightarrow G_3^* \rightarrow G_2^* \rightarrow G$ gives rise to a Schreier extension $G_3^*/G_3^{**} \rightarrow G_2^*/G_3^{**} \rightarrow G/G_3^{**}$, from which $G/G_3^{**} \rightarrow F_2 \wr G/G_2^* \rightarrow F_2 \wr F_1 \wr F_0$ follows. This process ends when for some i, $G_i^{**} = \{1\}$. If i < n-1, we have an even more economical embedding than the one stated above.

<u>Remark.</u> Professor B. H. Neumann pointed out to me that, by a modification of a method of his ([3], theorem 3.5, p. 48), one can also establish the embedding of G into $F_{n-1} \ \ldots \ F_0$. This method lends itself to an extension to the infinite case.

REFERENCES

1. M. Hall, The theory of groups, McMillan 1959.

- M. Krasner L. Kaloujnine, Produits complet de groupes de permutations et problème d'extension de groupes, Acta Szeged, 14, 1951, 69-82.
- B. H. Neumann, Hanna Neumann and Peter M. Neumann, Wreath products and varieties of groups, Math. Z. 80, 44-62 (1962).
- 4. B. L. Van der Waerden, Algebra I, Springer 1955.

Mathematical Centre, Amsterdam and McGill University

47 °