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BOUNDARY VALUE PROBLEMS SINGULAR IN THE
SOLUTION VARIABLE WITH NONLINEAR BOUNDARY DATA

by DONAL O'REGAN

(Received 3rd November 1994)

Existence results are established for the equation y" + f(t,y) = O, 0<(< 1. Here / may be singular in y and / is
allowed to change sign. Our boundary data include y{O) = y'(l) + ky{l) = Q, k> — \ and y(O) = / ( l ) + cy*(l) = O,
c>0.

1991 Mathematics subject classification: 34B15.

1. Introduction

This paper discusses problems of the form

(y"+f(t,y)=O,O<t<l

J 340)=0 (1.1)

[y'(l) + ml/(y(l)) = 0, n^O a constant

where / is not a Caratheodory function due to the singular behavior of its y variable.
Here \\i may be nonlinear and includes for example the Sturm Liouville boundary
condition / ( l ) + /cy(l) = O, k> - 1 and Stefan's condition / ( l ) + c / ( l ) = 0, c>0. Also
our nonlinearity / is allowed to change sign.

Our study is motivated by the problem

L 2/(l)-( l+v)y(l) = 0, K>OandO<v<l

which arises in nonlinear mechanics; see [1, 9] and their references. The problem models
the stress in the spherical membrane of a spherical cap.

The literature [2-4, 7-8, 10-12] on singular problems of the above type is almost
totally devoted to the Dirichlet problem
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506 DONAL O'REGAN

jf+f(t,y)=O,0<t<l
\

usually when f(t,y)^O for te(0,1) and y>0. Very little seems to be known concerning
the class of problems (1.1), which includes (1.2). In this paper we obtain a general
existence theory for problems of the form (1.1).

The analysis used throughout rely on fixed point methods. We state, for convenience,
the two fixed point theorems we will use.

Theorem 1.1. (Schauder [11]). Let K be a convex subset of a normed linear space E.
Then every compact map F:K^*K has at least one fixed point.

Theorem 1.2. (Nonlinear Alternative [5, 11]). Assume U is a relatively open subset of
a convex set K in a normed linear space E. Let N:U->K be a compact map with peU.
Then either

(i) N has a fixed point in U; or
(ii) there is a uedU and a Ae(0,1) such that u = ANu + (l—X)p.

Remark. By a map being compact we mean it is continuous with relatively compact
range. For later purposes, a map is completely continuous if it is continuous and the
image of every bounded set in the domain is contained in a compact set in the range.

2. Existence

Several existence results are presented for the singular problem

fy"+f(t,y) = O,O<t<l

J j,(0)=0 (2.1)

[ y'(l) + ml/(y(l))=0, /i^Oa constant.

Our first two results were motivated by the boundary value problem (1.2); in particular
by the boundary condition 2/(1) — (1 + v)y(l)=0. By a solution to (2.1) we mean a
function j>eC[0,1] n Cl(0,1] n C2(0,1) which satisfies the differential equation on (0,1)
and the stated boundary data.

Theorem 2.1. Suppose the following conditions are satisfied:

/ : (0,1) x (0, oo)-»R is continuous (2.2)

\\i: R->R is continuous with i//(x) g0 for x ^ 0 (2.3)
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ant/

here

\f(t,y)\^ql(t)g(y) + q2(t)h(y) on (0,l)x(0,oo) with g>0

continuous and nonincreasing on (0, oo), /i^O continuous

on [0, oo) and- nondecreasing on (0, oo); here g,eC(0,1),
8

- i = 1,2 with q{ > 0 on (0,1) and Jo <?i(*) dx<co

let ne{3,4,. . .} and associated with each n we have a constant

pn such that {pn} is a nonincreasing sequence with limn_oop,,=0

. and such that for - ^ t ̂  1 we have f(t, pn) ^ 0
n n

f there exists a function aeC[0,1] n C^O, 1] n C2(0,1) with

< a(O) = a'(l)+/x^(a(l)) = O, a>0 on (0,1) such that

-a"(t)>0 for (t,y)e(0,1) x {ye(O, oo):);<a(f)}

J qJix)g{a(x))dx<ao, «=1,2
1/2

/or any i?>0, - is differentiate on (0,R] wi(/i
g

and ^2GL1 [0,/?]; in addition f Is l / l dt = oo
£ o ( )

tnere exists a constant M>0 sucli t/iat /or z>0,

. implies z^M;

#x(l)) ,z<a(l) .

Tncn (2.1) «as a solution in C[0,1] n Cl(0,1] n C2(0,1).

Remark. Note i/̂ *(z) ^ 0 for z e R.

Proof. Fix n e {3,4,...}. We begin by showing that

a.e.

^ ' '

,~ ~\

(2.6)

(2.7)

'

^ ( 2 . 9 )
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{y"+f(t,y)=o,(
(2.10)"

has a solution in £'[0,1] n C2(0,1). To show (2.10)" has a solution we consider the
family of problems

where

(2.11)5

f*(t,y) =

We first show that

f(t,pn) + pn-y,y<pn and - ^ t g 1 - -
n n

and 1 - - ^ £ ^
nn

^Pn, te[0,l] (2.12)

for any solution yeC'fJ), 1] n C2(0,1) to (2.11)". To see this suppose y — pn has a
negative minimum at toe{0,1]. If toe(0,1) then /(lo) = 0 a n d y"(to)^0. However

1 1

y"(to)=-l.f*(t0,y(t0))=

i.e. y"(to)<0, a contradiction. It remains to consider the case t o = l . Then
However

a contradiction. Thus (2.12) holds.
Suppose the absolute maximum of y occurs at say tn. Note we take tBe(0,1]. There

are two cases to consider, namely fne(0,1) and tn=\. Notice for xe(0,1) we have
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•

Case(i) t.e(O,l).

Then y'(tn)=O. Integrate (2.13) from t(t <tn) to tn to obtain

and so

Integrate from 0 to tn to obtain

Integrate from 0 to 1 to obtain

Consequently (2.9) implies

tfU^Af. (2.14)*

Case (ii) t n=l .

Now since y'(l) = Pn~^/ll/'*(y(l)) w e n a v e

| | | (2-15)

Integrate (2.13) from t to 1 to obtain

and so

Consequently (2.9) implies

(2.14)*
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Thus in both cases

^y(t)^M for te [0,1]. (2.16)

Also the mean value theorem implies that there exists te(0,1) with |y'(T)| = |y(l) — y(0)\
<L2M. For re[0,1] we have

f*(x,y(x))\dx\

Define the mappings

by

and

Here Co[0, l] = {ueC[0,l]:u(0) = 0} and Cl
Pn[0, l] = {u£C1[0, l]:u(0) = pn}. Now F is

completely continuous by the Arzela-Ascoli theorem. Also if Ly = (u(t), y) then

u{x)dx;
0

hence L~l exists and is continuous.
Solving (2.11)5 is equivalent to finding a fixed point of y = kL~lFy = kNy where

N = L~iF: C£n[0, l]->C^n[0,1] is completely continuous. Let

^[0,l] and £ = C1[0,l];

here |u|1=max{|u|0,|u'|0} and |u|o = sup(Otl]|u(r)|. Now Theorem 1.2 implies that (2.11)"
has a solution yneCl[Q, 1] n C2(0,1). Also pn^yn(t)^M for (e[0,1]. Next we obtain a
sharper lower bound on yn, namely we will show

<x(t)Syn(t)^M for te[0,l]. (2.17)

If this is not true then yn — a would have a negative minimum at say toe(0,1]. If
toe(0,1) then y'^(to)—a"(to)^0. However since 0<)>n(t0)<a(ro) and yn(t0)^pn we have

) - «"(«o) = - U(t0, ym(t0))+or (t0)] < o,
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a contradiction. It remains to consider the case to=l. Then _y^(l)^a'(l) and 0<_yn(l)<
a(l). However

a contradiction. Hence (2.17) is true. In particular _yn(l)^a(l) and consequently
yne C'CO, 1] n C2(0,1) is a solution of (2.10)".

We shall now obtain a solution to (2.1) by means of the Arzela-Ascoli theorem, as a
limit of solutions of (2.10)". To this end, we will show

{yn}?=3 is a bounded, equicontinuous family on [0,1]. (2.18)

Of course {yn} is uniformly bounded by (2.17). To show equicontinuity, some more
estimates are needed.

The differential equation yields

^ J for xe(0,l). (2.19)

Also y'n(l) = pn-n*l>(yn(l)) together with (2.17) yields

max \
ze[0,M]

Divide (2.19) by g(yn(x)) and integrate from 0 to 1 to obtain

K. (2.20)

Then since y^(0)^0 (note yn(0) = pn and yn^pn on [0,1]) we have

Now consider

Notice / is an increasing map from [0, oo) onto [0, oo) with / continuous on [0,fl] for
any Q>0. For t,se[0,1] we have from Holder's inequality that
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\i(y.(t)) - i(yn(s)) I=
M *(«)

11/2

It follows from this inequality, the uniform continuity of / ' o n [0, /(M)] and

that {yn} is equicontinuous on [0,1]. Thus (2.18) is established.
The Arzela-Ascoli theorem guarantees the existence of a subsequence N of integers

and a function yeC[Q, 1] with yn converging uniformly on [0,1] to y as n->oo through
N. Also .y(0) = 0 and <x(t) ^y(t) ^ M for r e [0,1]. Now yn, neAf, satisfies the integral
equation

for t e [ 0 , l ] . (2.22)

We would like to let M->OO through N in (2.22). First notice

1 \f(x,yn(x))\dx^ } g(*
1/2 1/2 . J

Fix te(0 ,1] . Let n->oo through N in (2.22), and so the Lebesgue dominated
convergence theorem implies

Also for (e(0,1] we have

(2.23)

so yeCl{0,l]. In addition - / ' (0=/( t ,3 ' ( ' ) ) for te(0,1) and yeC2(0,l). Finally (2.23)
implies y'(l) + / z^ ( l ) ) = 0. •

The next theorem is a "general upper and lower solution theorem" for singular
problems with nonlinear boundary data.

Theorem 2.2. Suppose (2.2)-(2.8) hold. In addition assume
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f there exists a function Pe C[0,1] n Cl(0,1] n C2(0,1) wit/j 0(0) ^p 3 ,

j P'(l) + ̂ (p(l))>p2,p^p3 on (0,1) and 0(l)>a(l) (2.24)

I such that f(t, p(t)) + p"(t) ^0 forte (0,1)

is satisfied. Then (2.1) has a solution in C[0,1] n C^O, 1] n C2(0,1).

Proof. Fix n e {3,4,...}. We first show

f y"+f(t,y) = 0,0 <t<l

I y(0) = Pn (2.25)"

has a solution. The idea is to look at

y" + f**(t,y) =

where

f**(t,y) =

t,pn) + r{pn-y),y<pnand-
n

-
n

)J

and r:R-»[— 1,1] is the radial retraction defined by

u if \u\ = l

' 7—; otherwise.

(2.26)"
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514 DONAL O'REGAN

Remark. Notice ip**{z) g 0 for z e R.
Let Co[0,1], Cpn[0,1] be as in Theorem 2.1 and define mappings

L,F:Ci,[0,l]-»Co[0,l]xR

by

and

Now L""1 exists and is continuous as in Theorem 2.1. Notice also that F is compact.
Hence solving (2.26)" is equivalent to finding a fixed point of y = L~1Fy = Ny where
N = L~1F:C1

Pn[0,l]-+Cl
Pn[0>1] is compact. Theorem 1.1 implies (2.26)" has a solution

yneCl[0,1] n C2(0,1). Essentially the same reasoning as in Theorem 2.1 yields

yn(t)ZPn for re [0,1]. (2.27)

Next we claim

for re[0,1]. (2.28)

If (2.28) is not true then yn — ft would have a positive maximum at say roe(0,1]. If
roe(0,1) then y'^(t0)-(}"(to)^0. However since yn(r0)>P{to) we have

y'tto) - P"(to) = ~ [/(to, )8(

a contradiction. If ro= 1 then y'n(l)^f}'(l). However since _yn(l)>/?(l) we have

a contradiction. Thus (2.28) is true. Consequently

pnSyn(t)^P(t) for re[0,l]. (2.29)

Essentially the same reasoning as in Theorem 2.1 establishes

a(r):g>>n(r)^(r) for re[0,1]. (2.30)

In particular ix(\)^yn(l)^P(l) so yneC'[0,l]nC2(0,l) is a solution of (2.25)". The
reasoning in Theorem 2.1 (from (2.18) onwards) now establishes that (2.1) has a
solution. •

We now discuss condition (2.6). One can usually "construct" a explicitly from the
differential equation; see [2, 10, 11]. However if (2.5) is replaced by the conditions
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let ne{3,4,...} and associated with each n we have a constant

pn such that {pn} is a decreasing sequence with Hmn_0Opn=0,
1 1

and there exists a constant fc0 >0 such that for - < t < 1 and
n n

^pn we have f(t,y)^k0

., . . .

and

(2.32)

then we can construct an explicit a off the sequence of constants {pn}; this is a standard
argument, see [6] for example.

The details are as follows. Let O ^ x ^ and

k

x=0.

Remark. Notice ro{x)=fe<f>(s)ds for O ^ x ^ where «A:[0,5]->[0,oo) is the step
function defined by

fo, t=o

/ A " / I 1\ (\ 1 1 , , .
x - 7 + Z P-n 7 )' x e 7'̂  7\> k = 4,5,...

\ kj m=r+l \m-l m) \kk-\\

Here r0eC[0,3] and notice

Next define

^pk for ^ '7rTY ' fc =

for
oo

Notice 0(f)^Pt for t e | -, , fe=4,5,... and so
V/c/c-lJ

/(t,y)^fco for {t,y)e(o,j\x{ye{0,ao):y£0(t)}- (2-33)

Let
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Here q: [i§]->(0,p3] is such that g e C 2 ^ , ! ] with g(i) = 0(i) = g(§), *'(*) = ̂ (3) =
-« '(!) and 9"(i) = 0"(i) = «-(*).

Notice since 0<g(t)^p3 for teQ,2;] we have

(2.34)

Consequently (2.33) and (2.34) imply

f(t,y)Zk0 for (t,y)e(0,l)x{ye(0,ao):y£a*(t)}. (2.35)

Finally define

a(t) = //a*(t) (2.36)

where

Now <XEC2[0, 1] with a(0) = 0 and a > 0 on (0,1). Also since a(t)^<x*(t) we have

f(t,y)^k0 for {t,y) e(0,l) x {y e(0, co): y«x(t)}.

In addition for (t,y)e(0,1) x {ye(0, oo):y<a(t)} we have

f(t,y) + a"(t) }zko + a"(t) >k0- H ^ r j f ) j >fe0-fe0 = 0.

Finally since (<x*)'(t)=-ji
o-'ro(x)dx for f ^ t ^ l we have (<z*)'(l) = 0 and so a'(l) +

^(a( l ) ) = 0 + /xî (0) = 0 since (2.32) holds.
Consequently we have constructed an a which satisfies (2.6). However since (2.7) must

also be satisfied it is desirable to construct the "best" a. Usually it is possible to obtain
an explicit a from the differential equation. We now provide a general result for the
boundary value problem

\y"+f(t,y)=0,0<t<l
I y(0) = 0 (2.37)

[
Remark. Note (2.37) is a special case of (2.1); here ip(u)= —u.
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Theorem 2.3. Suppose (2.2), (2.4), (2.8) and (2.31) are satisfied. In addition assume

there exists a function 0eC[0,1] n Cl(0,1] n C2(0,1) with P(0)^p3,

p'(l)-nP(l)>p3J^p3 on (0,1) and P(l)>p3 (2.38)

SMC/I t/iaf f(t,P(t)) + P"{t)£O for te(0,1),

and

there exists x e (0,1) with /(t, y) > 0 for t e [T, 1) and 0 < >> ̂  ^ (2.39)
1 - / X ( 1 - T )

are satisfied. Then (2.37) /ias a so/ufion in C[0,1] n C^O, 1] n C2(0,1).

Proof. Let y denote the a given above (i.e. as in (2.36)). Without loss of generality
assume 5 < T ^ | . Define

^

and

a(0 = Wi(0 (2-40)

where

Here OJ:Q, t]^(0,p3] is such that a>eC2Q, T] with

«(i)=y(i), w'(i)=/(i), ^"(i)=y"(i), o>W=y«, CB'(T) = ^ ^ ^ and O>"(T)=0.

Remark. Notice

We now claim that a satisfies (2.6). First notice a(0) = a'(l)—/ia(l)=0. Also a > 0 on
(0,1) since 0^/i< 1. Also from above

f(t,y) + a"(t)>0 for (t,y)e(O,t) x {ye(0,oo):y<a(t)}. (2.41)
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Now for t > x we have a"(t) = 0 and also

Consequently

a"(t)=f(t,y)>O for (r,j0e[T,l)x{j,e(O,oo):3><a(t)}. (2.42)

Thus (2.41) and (2.42) imply that a satisfies (2.6). Notice also that (2.7) is trivially
satisfied since /^(t)^y(T) for t>z. Existence of a solution is now guaranteed from
Theorem 2.2. •

Example 2.1. (Membrane response of a spherical cap).
The boundary value problem

has a solution.
We will apply Theorem 2.3. First choose noe{3,4,...} such that

1 < 1-/1
K2) 2(l+fi)K

Notice that (2.31), with

is true since for - £ (^ 1 and 0 < v ̂  p . we have
n n

2P2 8 - 8 8

Now let

Notice ^ ^ p 3 on [0,1] and
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(1+A*)«

In addition f(t,P(t)) + P"(t)=f(t,P(t))^O on (0,1) and so (2.38) holds. Also let

t2 K2

Qi(t) = ^:,g(y) = y~2,q2(t) = -^ and h(y) = l
32 8

so (2.4) and (2.8) are clearly true. Let

T = rrn r so for T < t < 1 and n " - *
-M1 - t )

we have

•/(f>y)- 3271 T - 32 y 1 > u

and so (2.39) is satisfied. Existence of a solution to (2.43) is now guaranteed from
Theorem 2.3.

Our next two results are modelled on the Stefan boundary condition / ( l ) + cy4(l) =
0,c>0.

Theorem 2.4. Suppose (2.2), (2.4), (2.5), (2.6), (2.7) and (2.8) hold. In addition suppose
the following conditions are satisfied:

i/>:R->R is continuous and nondecreasing with î (0) = 0 and ^ ( M ) > 0 for u>0 (2.44)

and

' there exists a constant M > 0 such that for z > 0,

] ^ \ l ^ \ ]xq2(x)dx + 'i -^- (2.45)
o g(u) S(z) S(")

. implies z^M.

Then (2.1), with n>0, has a solution in C[0,1] n C'(0,1] n C2(0,1).

Remark. The case n = 0, is included in Theorems 2.1 and 2.2.

Proof. Fix n 6 {3,4,...} and look at
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h"+f(t,y)=o,o<t<i
(2.46)"

To show (2.46)" has a solution we consider the family of problems

h *{t,y) = 0,

(2.47)3

where / * is as in Theorem 2.1 and

(.0,

We first show

y(t)^pn, te [0,1] (2.48)

for any solution yeC'[0 , l ]nC2(0, l ) to (2.47)". To see this suppose y — pn has a
negative minimum at toe(0,1]. If foe(0,1) then we obtain a contradiction as in
Theorem 2.1. It remains to consider the case to = \. Then y'(l)^0. However since
y(\)<pn we have

y'(l)=pn-y(l)-^*(y(l))=pn-y(l)>0,

a contradiction. Thus (2.48) holds.
Next suppose the absolute minimum of y occurs at fne[0,1]. In fact we may take

tn e(0,l) , and so y'{tn) = O. To see this notice if y(tn) = pn then y = pn. Next if y(tn)>pn

then if t n = 1 we have y'(1)^.0 and so

a contradiction.
For xe(0,1) we have

Integrate from t(t < tn) to tn and then from 0 to tn to obtain

I ^ i ( ) d + f \ A ( ) d + \
o #(«) o ^(y(tn)) o o
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Consequently (2.45) implies

for re[0,1]. (2.49)

Define the mappings

L,F:C; j0 , l ] -C o [0 , l ]xR

by

and Fy(t)J -\f*(x,y(x))dx,4,:(y(l))\

If Ly = (u(t),y) then

hence L l exists and is continuous. Also F is completely continuous. Essentially the
same reasoning as in Theorem 2.1 implies (2.47)" has a solution yneCl[0,1] n C2(0,1).
Also pn^yn(t)-^M for te[0,1], so yn is a solution of (2.46)".

Next we show

<*(t)^yn(t)^M for te[0,1]. (2.50)

If this is not true then yn — a would have a negative minimum at say toe(0,1]. If
£oe(0,1) then we obtain a contradiction as in Theorem 2.1. If to=l then ^ ( l ) ^ a ' ( l )
and 0<yn(l)<a(l). However

y'n( 1) - a'( 1) = ^ ( p n ) - ^ ( ^ n ( 1)) + //^(a( 1)) ̂  ^«A(pn) > 0,

a contradiction. Hence (2.50) is true.
Essentially the same reasoning as in Theorem 2.1 (from (2.18) onwards) now

establishes the result. •

Theorem 2.5. Suppose (2.2), (2.4), (2.5), (2.6), (2.7), (2.8) and (2.44) hold. In addition
assume

there exists a function PeC[0,1] n C'(0,1] n C2(0,1) with

^p3 on [0,1], /?'(!) + ml/(P(l))^ml>(p3) and such that (2.51)

Then (2.1), with j />0 , /ias a so/ution in C[0,1] n C^O, 1] n C2(0,1).
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Proof. Fix ne{3,4,...} and look at (2.46)". The idea is to first consider

h"+f**(t,y)=O,O<t<l

(2.52)"

where /** is as in Theorem 2.2 and

[O, z<Pn.

Let

L,F:C^[0,l]->Co[0,l]xR

be defined by

Ly(t)=(y'(t)-y'(O),pn-y'(l)-y(l)) and Fy(t) = (-\f**(x,y(x))dx,^*(y(l))\

Now F is compact so essentially the same reasoning as in Theorem 2.2 implies (2.52)"
has a solution yn e C1 [0,1] n C2(0,1).

The reasoning in Theorem 2.4 yields

yM^Pn for te[O,l]. (2.53)

Next we claim

yn(t)£fi(t) for re [0,1]. (2.54)

If (2.54) is not true then yn — /? would have a positive maximum at say toe(0,1]. If
tQe(0,1) then we obtain a contradiction as in Theorem 2.2. If to = l then
and yn(l)>/3(l). However

a contradiction. Thus (2.54) is true.
Hence yn is a solution of (2.46)". The same reasoning as in Theorem 2.4 establishes

for re [0,1].
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Essentially the same argument as in Theorem 2.1 (from (2.18) onwards) now
establishes the result. •
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