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A NOTE ON CONTAINMENT OF OPERATORS

RICHARD I. LOEBL

Two new types of containment of operators on Hilbert space,

namely partial containment and semi-containment are introduced.

We show in Proposition 11 that A is semi-contained in 5 if

and only if the map p(B) -*• p(A) for polynomials p extends to

be an ultra-weakly continuous completely positive map from all

bounded operators on the underlying Hilbert space of B . We

show in Theorem 15 that if an isometry is semi-contained in a

contraction T , then T has a non-zero invariant subspace on

which T is isometric. The semi-equivalence class of the

simple unilateral shift is characterized in Theorem 18, and we

show that a unilateral positive-weighted shift semi-contains

the unilateral shift if and only the weights are eventually 1.

0. The purpose of this note is to make some observations about

containment relations for operators on Hilbert space. The basic problem

is to derive information about one operator from information about another

operator. Most of the containment relations we will mention are well-

known but we will introduce two new ones which we feel are interesting and

merit further study. All these containment relations are reflexive and

transitive, and thus give rise to equivalence relations. Our basic
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280 Richard I. Loebl

reference for operator theory is [6]; operators are taken to be acting

on a separable Hilbert space and are non-zero.

1. We begin with some definitions; A and B denote operators.

DEFINITION 1. A is contained in B if A is the restriction of

B to a reducing subspace. We also say A is a suboperator of B in this

case.

DEFINITION 2. A is unitarily contained in B if A is unitarily

equivalent to a suboperator of B .

DEFINITION 3. A is quasi-contained in B if there is a *-

homomorphism <j> of k(B) , the von Neumann algebra generated by B , onto

&(A) such that §(B) = A . This was introduced by Ernest [4, p. 9] ,

who said B covers A .

DEFINITION 4. A is weakly-contained in B if there is a *-

homomorphism <j> of C(B) , the C*-algebra generated by B and the

identity, onto C*(A) such that <t>(B) = A , cf[4 , Definition 1.46].

Notice that in all four of these situations that if B is normal,

then A must also be normal. In particular, if B is the usual bilateral

shift, then A cannot be the usual unilateral shift.

DEFINITION 5. A is approximately contained in B if B is the

norm limit of operators, each having a suboperator unitarily equivalent to

A . Bunce and Deddens, who introduced this notion in [3], say that A is

a subspace approximant of B.

It is clear that the first four containments are in decreasing order

of restrictiveness. We comment here that [3, Proposition 1] shows that

approximate containment implies weak containment. Once again, we have

that if B is normal and A is a subspace approximant of B , then A is

normal.

Each of these containment relations engenders a corresponding notion

of equivalence, namely, equality, unitary equivalence, quasi-equivalence,

weak equivalence, and approximate equivalence. We are told that an

unpublished work of Wai-Fong Chuan shows that in the special case of

irreducible operators, weak equivalence implies approximate equivalence.

(In general, approximate equivalence implies weak equivalence, as noted in
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the paragraph above.)

2. We now introduce some containments that are probably new. Let

K denote a (separable) Hilbert space.

DEFINITION 6. The subspace 5 £ H is said to be a semi-invariant

subspace for the operator T e L(H) if P^P^ = (PCTP^ , k = 0,1,2,... .

This definition is due to Sarason [7], who characterized semi-

invariant subspaces as follows.

LEMMA. [7]; S is a semi-invariant subspace for T if and only if

S = S Q S where So c S are invariant subsvaoes for T. Note that

since S- € Sp = S* 8 SI , S will be semi-invariant for T* also.

For B e L(H) , we let 5 denote the operator B 0 B 9 B....

foo )
countably many times, acting on the Hilbert space H = H 9 H # H ....

countably many times; or equivalently, B — B & I , I the identity

on a fixed separable infinite-dimensional Hilbert space H? . Notice that

even if B is irreducible, B is very far from being irreducible.

(2)
LNote that the *-commutant of B @ I contains I 0 LCf^J] . In fact B

already has H 9 0 as a non-trivial reducing subspace.

DEFINITION 7. A is partially contained in B if A is unitarily

equivalent to B restricted to an invariant subspace; that is,

A — P uB Py j where M is an invariant subspace for B

DEFINITION 8. For operators A and B , we say A is semi-contain-

ed in B if A is unitarily equivalent to B restricted to a semi-

invariant subspace, that is, A = P~B P^, where S is a semi-invariant

subspace for B . It is clear that partial-containment implies semi-

containment .

We recall that A is a part of B if A is unitarily equivalent

to B restricted to an invariant subspace [6]; and A is a suboperator

of B if A is unitarily equivalent to B restricted to a reducing
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subspace £41. Thus if A is a part of B , or A is a suboperator of

B , then A is partially-contained in B; the converse fails, as we

shall see from the example below. For example, if S is the usual

unilateral shift and B is the unitary bilateral shift, then S is

partially-contained in B . Hence, A partly contained in B and B

normal does not imply A normal; the case of suboperators shows that even

if A is normal and actually contained in B , then B need not be normal

Notice also that if A is contained in B in any of the seven ways

listed above, then \\A\\ < \\B\\.

Here is an example of partial-containment, see [2],

0 1 0 0

EXAMPLE: In M , suppose I \T\ I < 1 and 2""= 0. Let C =

. 0

0. . . .0

Then T is partially contained in C .

Proof. Let D = Sl-T*T , and for z e if , let Vz = (Dz,DTz,..,

z). Then {Vz3Vz) = {(l-T*T)z,z) + {T*(l-T*T)Tz,zy + ...+

) " ' 2 (l-T*T)in~1z3z)= {ll-(T*)n^-]z,z) = {z,z) . Thus V is

isometric, hence unitary. Let

~0 I . . 0~

C =n

0 . . . 0

= I 0 C
n n

s o C is u n i t a r i l y e q u i v a l e n t t o C Q I = C . A n easy calculation
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shown that Vt = C V , and so T = V*C V . Then T is unitarily
n n

Cn) (°>)
equivalent to a part of C , which is a suboperator of C . B y

the comments after Definition 8, it now follows that T is partially

contained in C
n

Actually more is true; the above proof shows that T is quasi-
contained in C . Note that since C is irreducible, A is unitarily

n n '

contained in C if and only if A = 0 or 4 is unitarily equivalent to

C . On the other hand, the interesting operator x = Oil is
0
0
0

1
0
0

1
1
0

(partially) quasi-contained in C , (at least after we scale by

\X\ \ = (1 + /E)/2), but is not unitarily contained in C .

o

As an elementary remark, we note that A is partially and semi-

contained in A for 1 < n,m <, °° .

LEfWA 9. If A is partially (semi)-contained in B , then A* is

partially (semi)-contained in B*.

(a,)

Proof. We have A = U*P B PU for some unitary U and appropriate

projection P . Taking adjoints and using the fact that

[Sr™;]*= [_B*1(CO) , we are done.

Note that for the first five containments, the conclusion of Lemma 9

also holds.

PROPOSITION 10. A is semi-contained in B if and only if there is

an isometry V such that An = V*lB(°>)'flV for all n > 0 .

Proof. If A is semi-contained in B , we have A = U P(B )PU ,

so AU = U*LP(B(a>))PlnU; but by Definition 5, {.P(B(m) )pf= P\_B(c°'' ]"p , and

lBMf-= [ B " ] M . Hence A
n = j V ] W ? l / = (PU) W ^ (PU) . Letting

V = PU , we see that V is the desired isometry.

Conversely, let P be the projection on VH , that is, P = W
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Then there is a unitary U from H to the range of P with V = PU

Thus, A=V B V = CPU) B (PUl = U (PBK JP)U. But then

U*PLBCco)lnPU = V*lBnlCco)V = An = U*(PB(a>)P)nU . Since £/ is unitary,

PCS °° ]nP = (P B P)n , and so the range of P is a semi-invariant

subspace.

Hence, if A is semi-contained in B , then A is semi-contained

in S for k > 0 . Since an invariant subspace is perforce semi-invari-

ant, the first paragraph of the proof of Proposition 10 shows that if A

k k
is partially contained in B , then A is partially contained in B

The same result is true for the other five containments, with elementary

proofs.

We recall that the linear map (j> between C*-algebras A and 8

is said to be completely positive if for all n > 0 , the map

<j> = 6 8 id : A 8 M -> 8 8 M is positive, where M denotes the n * nyn n n n n

complex matrices. The fundamental theorem of Stinespring asserts that

<j> is completely positive

a *-representation of A

(j> is completely positive if and only if $(A) = W u(A)W , where IT is

PROPOSITION 11. A is semi-contained in B if and only if the map

p(B) -»• p(A) for polynomials p extends to be an ultra-weakly continuous

positive map <J> from L(H ) -*• L(H ) with, in particular, <t>(Bn) = An

for n > 0 .

Proof. Suppose there exists such a <f> ; by Stinespring's theorem

<J> = V TTV , for some V and -representation it of L(H ) . Then
D

<j>(l) = 1 implies that V is an isometry; this fact and the ultra-weak

continuity of <f> imply that n(T) = T , 1 < n . By separability

* fn) * f<»)
n < » , so (fiCr; = V T V . If n < ~ , we can write $CT) = Vyr V±

* (°°)
where V- is still isometric. Hence $(T) = V T V for some isometry

V , and hence A™ = $(Bn) = V*CBn)C°°)V for n > 0 , so A is semi-

contained in B by Proposition 10.

n * ._n . f<*>)
mapConversely, Proposition 10 says that A™ = V (BU) V; then the
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* (<*>)= V T V provides the desired extension.

COROLLARY 12. Semi-aantairment is transitive.

Proof. Suppose A is semi-contained in B and S is semi-contain-

ed in C . Then by Proposition 5, there are completely positive maps cj> ,¥

with ¥.Bn) = J>n
 t Vftf1) = Bn for n > 0 . Then i = (j> ° Y is completely

positive and T(C ) = A for n > <? . By Proposition 10, A is semi-
contained in C.

COROLLARY 13. Jf A is semi-contained in B , then A is semi-

contained in B.
(ca)

Proof. By an earlier remark, A is semi-contained in A . The

result then follows from Corollary 12.

LEMMA 14. Partial-containment is transitive.

Proof. Suppose A is partially contained in B , and B is

partially contained in C , then V AV = QB Q , and U*BU = PC P ,

where P,Q are projections onto invariant subspaces and U}V are

unitaries.

Then (V*BU)(CO) = U*BU 0 1 = (U* 8 I ) (B 8 I ) (U 8 I ) = U B^U,

~ (a,) («,) (a,)

where (f is a unitary. Further, (PC P) = PC P & I =

(<a) (<x>)

(P 0 I )(C 0 I )(P 0 I ); however, C 0 I is unitarily equivalent
00 C O 0 0 OO

('oo) (<x>)

to C , and therefore we can say that (P 0 I )(C 0 I )(P 0 I ) =
"* OO 09 OO

PC P , where P is also a projection.

Then we can write U*(V*AV)U = U*(Q B(a>)Q)U = (U*QU) (U*B(a>)U) (U*QU)=

Q P C P Q • Remembering that P and Q were projections onto

(°>)invariant subspaces, we see that A is now unitarily equivalent to C

restricted to an invariant subspace.

COROLLARY. If A is partially-contained in B , then A(a>) is

partially contained in B.
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Proof. A is partially contained in A.

We will now establish the main result of this paper. Although every

Coo)
invariant subspace for T yields a (semi-) invariant subspace for T ,

there is no a priori connection between a semi-invariant subspace of T °°

and an invariant subspace of T . In this light, the following result is

somewhat surprising.

THEOREM 15. Suppose T e L(W is a contraction and W is an

isometry. If W is semi-contained in T , then there is a non-zero

subspace M of H , invariant under T , such that T\ .. is isometric.

Proof. Let K denote the space on which W acts. By Proposition

10, fft = V* (T(a>))kV for k > 0 , where V:K + H ^ is isometric. We

can write V = 9 V. , where each V.:K-* H .
•z. %

Since V and W are isometric, we also have that for k > 0 and

z e K , T . \ \ V . ^ z \ \ 2 = M v A l l 2 = M ^ s l l 2 = | | B | | 2 . Hence | | 3 | | 2 =
Is

z\\v.^z\\2 = | \\^z\ | 2 = H / ' V - r A a l l 2 < W^-T^VZW1 = z | | / y . 2 | | 2
 s

If IS

pji Q ?1* 2 21* 2

I I T 1 ! ! H i / J< — l l v l l I I 1/? I I ^ I I T M I I I P I I C i -nee* T -i e a
I I I I I I — [ I I I I I I I I I I I I " u i - I I ^ C X JLo Ct

contraction, one can conclude that | \x V.z\ \ = \ \V.z\ | for all k > 0 ,

z e K3 and all i . Furthermore, for k = 1 , we state that | |l̂s: | | =

, . , , . . . C<=°J 11 (<»)

\\z\\ = | \Wz | | = ||Ws|| = \\T Vz\\ , so T is isometric on the

range of V . Further, since I = V V = ZV. *V. , there is an in with

V. ¥ 0 , and so | \T"V . z\\ = | \V. z\ \ for all k > 0 , z e H . Let

M = {x e H:\ \^x\ \ = | |x| | for all k > 0} . Then M 2 V. K => {0}, JH

is invariant under T , and moreover T\.. is isometric.
M

Notice that if instead of requiring that T be a contraction, it

nOhad been required that T were a contraction, we could have produced

a non-zero subspace M , invariant under T , so that T |., would be
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isometric.

More importantly, notice that a contraction semi-contains an

isometry if and only if the contraction has an isometric part. We now

study an important case in which an isometry can semi-contain a contraction.

S will again denote the simple unilateral shift. The following result

generalizes the earlier example of semi-containment.

PROPOSITION 16. T is semi-contained in S if and only if

\\T\\ < 1 and (T ) converges to 0 in the strong operator topology.

Proof. If T is semi-contained in S , then ||T|| < ||s|| = 1

and T is semi-contained in S , so by Proposition 10,

(T*)n = V*[(S )nT V for n > 0 and appropriate isometry V . But the

* (">) * n
map X -*• V X V is strongly continuous, and (S ) -*• 0 strongly, hence

* n
(T ) -y 0 strongly.

The converse is a well-known result [6] . For completeness we

* (n)
include the proof, which shows that T is a part of (S*) for some

* * n
" j ̂  i " i ™ j s o that T is semi-contained in (S ) , which is semi-

contained in S , hence T is semi-contained in S and T is semi-

contained in S .

K =S§ S $ S 9 ... countably many times. For z e H , we have

B(T*)nz e S for n > 0 , and moreover I | | B(T*)3'z\ | 2 = E CC1-TT*) (T*)K,
3=0 3=0

(T*)jz) = i [ | | r r V * | | 2 - M r r V ^ I I 2 ] = | M | 2 - \ \ ( T * ) k + 1 z \ \ 2 .
3=0

* k+1
Since | | (T ) z \ \ •*• 0 by hypothesis, we have that for z e H , the

mapping V defined by Vz= (Bz,BT z,B(T ) Z,...) is an isometry from

tf to K. . If 5 denotes the unilateral shift on K t that is,

S(fo,fvf2,...) = (O,fo,fr..) , then VT*z = S*Vz for all z e H .
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This last equation also shows that S (VH) S VH > s ° that VH is

invariant under S , hence T is a part of 5 . However S is

* (n)
unitarily equivalent to (S ) , where n is the dimension of S , and

the proof is complete.

In particular, Proposition 16 implies that S dominates every

contractive unilateral weighted shift and also every nilpotent contract-

ion. Since S is irreducible [6], hence has no proper suboperators, and

since every part of 5 is isometric, we see that suboperators and parts

of S do not constitute all the operators dominated by 5 . Also, it

follows that S does not dominate S ; hence S does not dominate 5 .

Remark. Theorem 15 suggests the conjecture that W is unitarily

equivalent to ^lu • W e previously noted that A is always semi-

contained in A ; so consider the case of A = S , the simple unilateral

shift. The proof of Theorem 15 gives M = H in this case, and it is

evident that S is not unitarily equivalent to S itself, nor to

any part of 5 .

DEFINITION 17. We say that A is semi-equivalent to B if both

A semi-contains B and B semi-contains A .

It is clear that semi-equivalence is an equivalence relation.

THEOREM 18. Let S be the simple unilateral shift. Then T is

semi-equivalent to S if and only if \ \T\ \ < 1 } (T )
n -»• 0 strongly,

and there is an infinite dimensional subspaae M , invariant under T ,

such that T\^ is a completely non-unitary isometry.

Proof. By Proposition 16, T is semi-contained in S if and only

if | |T| I < 1 and (T ) •*• 0 strongly; so the question is whether also

S is semi-contained in T .

If S is semi-contained in T , then by Theorem 15, there is a

non-zero subspace M , invariant under T , such that T\ is isometric.
M

*̂  n
But the condition (T ) -*• 0 strongly forces M to be infinite-
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dimensional for otherwise TU = M and T\ . is unitary. Since M is
M

infinite-dimensional, 211w contains a completely non-unitary isometry.

Conversely, suppose there is such an M ; then T\ ̂  is unitarily

equivalent to a multiple of S [6] . Hence, for suitable n , we have

S' " is a part of T , so that T semi-contains S"" which in turn

semi-contains S .

COROLLARY 19. If \\T\\ < 1 and (T )n ->• 0 strongly, then S is

semi-aontained in T if and only if T contains a copy of S .

COROLLARY 20. S(m) . . . 7 . . ji 7
%s semu-equvoalent to S , 1 _ m,n _

(Notice that S is unitarily equivalent to £> if and only if m = n.)

COROLLARY 21. Let T be a unilateral weighted shift with weights

{w } , 0 < w < 1 . Then T is semi-contained in S always, and S

is semi-contained in T if and only if T g 5 if and only if w = 1

for n > N .

Proof. This is an easy calculation based on the fact that T ,

hence all powers of T , are isometric on an infinite-dimensional subspace.

We remark that T is similar to 5 if and only if Z(l-w ) <°° [6].

Thus T semi-equivalent to S implies T similar to S , but not

conversely. Since T is semi-equivalent to 5 if and only if T is

semi-equivalent to S* , it follows that S* is the model for certain

backward shifts. Further, we have that for any two irreducible operators

R and T that R is quasi-equivalent in the sense of Ernest if and

only if R is unitarily equivalent to T [3, Theorem 1.34]. Thus an

irreducible weighted shift quasi-equivalent to S in the sense of Ernest

is semi-equivalent, but not conversely.

We now make some simple ovservations about semi-containment.

1. If A is semi-contained in T = T , then A is self-adjoint;

this follows from Proposition 10.
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2. If j is semi-contained in N and N is normal, then A

need not be normal; the case of the unilateral and bilateral shifts is

an example.

3. If A is semi-contained in B , then Re A is semi-contained

in Re B and Im A is semi-contained in Im B . The converse need not

hold.

If we temporarily ignore separability of the spaces, then the

following hold.

4. If A is semi-contained in B and B is separably acting,

(°°)then A is also separably acting. For B is separably acting, hence

B restricted to any subspace is separably acting.

5. If A is semi-contained in B and B is irreducible, then A

is separably acting; for B irreducible implies that B is separably

acting.

6. For all A , A is semi-contained in 0 implies A = 0 .

However, it is not true that A ^ 0 implies 0 is semi-contained in A ,

for 1 does not semi-contain 0 . If A does not have dense range, then

the infinite-dimensional 0 is semi-contained by A . Let P denote

the projection onto the closure of the range of A so A = PA . Then

the range of 1 - P is a semi-invariant subspace for A , with

(l-P)A(l-P) = 0 . Thus we can produce an infinite dimensional semi-

invariant subspace for A on which A = 0 .

We conclude with some questions. If T and 2" are weighted

a 0

shifts given by sequences a = { a . } 1 J 0 < a. < 1 and 8 = {0.}7 3

0 < 6. < 1 , what conditions on a and B imply that T is semi-
Ts Ot

contained in T and T is semi-equivalent to T ? Further, what
S B p

conditions on a and B imply that T is a part of T ? It is our

belief that the methods presented in this paper may help in the study

of weighted shifts, see Corollary 21.

Also, Ernest has defined a notion of weak equivalence [4]. What is

the relationship, say for irreducible operators, between Ernext's weak

equivalence and our semi-equivalence? Aspects of Ernest's work are also
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treated in [5].
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