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On stationary points and the

complementarity problem

Sribatsa Nanda and Sudarsan Nanda

Let S be a closed convex cone in "t , S* the polar cone, g

a continuous map from " into itself, and e a fixed vector in
S5* . In this paper we prove that there is a connected set T in

S of stationary points of (Dr(e), g) where Dr(e) is the set

of all x in S with re(e, ) < r . This extends the results

of lLemke and Eaves to the complex nonlinear case and arbitrary

closed convex cones in (' . We show that if g is strictly
monotone on S , then 7T is both unique as well as arcwise
connected. This partly solves the open problems raised by Eaves
in this more general setting. We also show that if x 1is a

stationary point of (Dr(e), g) and re(e, ) <r then x is a

stationary point of (S, g)

1. Introduction

Let Cn (Rn) denote the n-dimensional complex (real) space with
hermitian (euclidean) norm and the usual inner product and let Rf be the

nonnegative orthant of R . Let 5 denote a closed convex cone in .
The polar of S , denoted by S* , is defined by

5% = {y ¢ " ore(x, y) 2 0 fcr all x € S} .

Since e € S* and r =z 0 , we write

Received 1 December 1978.
77

https://doi.org/10.1017/50004972700009102 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009102

78 Sribatsa Nanda and Sudarsan Nanda

D (e) = {z €5 : rele, ) < r} ,*

Dg(e) = {x ¢ Dr(e) : re(e, ) < r} ,
and

Sr(e) = {x € Dp(e) : re(e, x) = r}

Note that Dr(e) is the disjoint union of Dg(e) and Sr(e) . A mapping

g : "+ " is said to be monotone on S if re(g(z)-g(y), z-y) = 0 for
each (x, y) € S X S and strictly monotone if strict inequality holds

whenever X # Yy .

Given a continuous function g : Cn he Cn , the nonlinear complement-
arity problem in " consists of finding a 2 such that

(1.1) 2 €5, gla) €s*, and relg(z), 3) =0,

. . N .
where S 1is a closed convex cone in (' . Given a convex set K C Cn and

a continuous map g : Cn > Cn , apoint x € XK 1is said to be a stationary
point of the pair (X, g) if

(1.2) z € arg min re(g(x), y)
y€K

or equivalently, if

(1.3) z € arg min (ly-az+g(x){l ,

yE€K
where arg min means the set of all y € K which minimize the objective.
Notice that the set in (1.3) is either empty or singleton, whereas in (1.2)
it may contain many elements. Note that the existence of a solution to the
complementarity problem (1.1) is equivalent to the existence of a

stationary point of (S, g)

Several authors including Bazaraa, Goode, and Nashed [1], Habetler and
Price [4], Karamardian [6], Mond [§], and Parida and Sahoo [10] have
discussed the solution of the complementarity problems in different
contexts. Lemke [7] and Eaves [3] have discussed the existence of
stationary points of (S, g) in the real case by taking S to be Rf .

A basic theorem of Lemke [7] asserts that given an affine function
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hd and a d € RZ , there is a piecewise affine function

e
. . . 7 .
> Rz such that x(t) is a stationary point of [Dt’ g) with

f‘L +°°=

d-x(t) = t , where DZ is the set of all x in Rf for which dex = ¢ .

The set T = {x(¢)} thus becomes connected (indeed, arcwise connected).
While extending this result to the nonlinear case, Eaves [3] has shown that
the arcwise connectedness property of T 1s false in general and has asked
the following two questions. What conditions give the arcwise connected-

ness property and what properties give a unique T ?

In this paper we extend the results of Lemke [7] and Eaves [3] to the
complex nonlinear case by taking S to be any closed convex cone in .
We show that there is a connected set T in S such that each x € T is

a stationary point of (Dr(e), g) for some r = 0 . We also show that if

g 1is strictly monotone on S , then T 1s both unique as well as arcwise
connected and this partly answers the questions raised by Faves [3] in this
more general setting. Finally we prove the existence of stationary points

of (S, g) under certain suitable conditions.

2. Preliminary results

We start by mentioning some useful results which will be needed in the
proof of our main theorems. The following proposition is the complex
version of a lemma of Hartman and Stampacchia [5]; we omit its proof since
it involves the same arguments as in the real case. For an outline of the
proof in the real case, see [3].

PROPOSITION 2.1. Let g : C" + " be a continuous map on a non-
empty, compact, comvex set K< (. Then (X, g) has a stationary point.

The following lemma has been proved in [9].

LEMMA 2.2. Let S be a closed convex core in C° and let
e € int(S5*) be fixed. Then for any r = 0 , the set Dr(e) i8 compact
and convex.

The following proposition is the complex version of a theorem of
Browder (see [2]).

https://doi.org/10.1017/50004972700009102 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009102

80 Sribatsa Nanda and Sudarsan Nanda

PROPOSITION 2.3. Let G : K x [0, r] > K be a continuous funetion,
where K 1is a nonempty, compact, convex set in ™ and [0, »] denotes

the closed interval in Rl . Then there is a connected set W 1in
K x [0, r] intersecting both K x {0} and K x {r} such that
Glx, t) =x for all (x, t) €W.

Proof. Suppcse that X is a nonempty, compact, convex set in Cn .
Let h :C"~» R®" be the linear homeomorphism of " onto B . Then

K' = h(X) 1is a nonempty, compact, convex set in R2n . Since
G : Kx [0, r] X is continuous, there is a continuous map

¢' . K' x [0, r] » K' detined by

¢'(x, t) = he(h (=), ¢)

for (=, t) € K' x [0, »r] . Therefore, by Browder's Theorem, there is a
connected set W' © K' x [0, »] such that W' n (X' x {0}) # & ,

W' n(K'x{r}) #¢ , and G'(z, t) =2z for all (z, t) € W' . Define a
continuous map 0 : X x [0, r] > X' x [0, ] by the rule

8(x, t) = (hx, t) »

and take W = G_l(W') . Clearly ¥ is connected, W< X x [C, »] , and
G(x, t) =x for all (x, t) € W . Since W' n (K' x {0}) # § , there is a
w' = (2', 0) € W' n (X' x {0}) , and then

"'l t -l 1 1,

8™ (w') = (W (2"), 0) €¥ n (K x {0}) .
Thus W n (X x {0}) # § and similarly it can be shown that
Wn(Kx{r})#@ . This completes the proof.

LEMMA 2.4, Let g¢g : "+ " be a continuous map on a closed convex

cone S ard let e € S* . If & <is a statiomary point of (Dr(e), g)

for some r = 0, then relg(z), z) <0 . In this case if =z € Dg(e) then

re(g(x), z) =0 .

Proof. Suppose that « 1is a stationary point of (Dr(e), 9) . Then
re(g(x), x) = re(glx), 3) for all =z € Dr(e)

In particular,
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re(g(z), z) = % re(g(z), x)

0 .
Therefore re(g(x), z£) S0 . DNow, if =z € Dp(e) , then there is some

A >1 such that Ax € Sp(e) . Then we have

re(g(:r), z) = A re(g(x), x) .

This is impossible unless re(g(x), x) =0 .

LEMMA 2.5, Let g : " + C" be a continuous map on a closed comvex
cone S and e € S* . If =x 1is a stationary point of (Dp(e), g) and

x € Dg(e), then x 1is a stationary point of (S, g) .

Proof. Let x € Dg(e) . Then, from Lemma 2.4, it follows that

re(g(x),x) =0. Let w €S ; then w = Az for some A =0 and

z € Dr(e) . Since x is a stationary point of (Dp(e), g) we have
(2.1) re(g(z), z) < re(g(z), 2) for all z € Dr(e) .

Since re(g(x), :x:) = 0 it follows from (2.1) that
re(g(z), z} = re(g(z), w)

Thus x 1is a stationary point of (S5, g) .

3. The main theorems

We are now ready to prove our main theorem.

THEOREM 3.1. Let g : C" + " be a continuous map on a closed

convex cone S < C* and let e € int(S*) . Then there is a closed
connected set T 1in S such that

(i) for every x €T there is an r = 0 such that x € Sr(e)

and x 1is a stationary point of (Dr(e), g) , and

(ii) for each r =2 0 there is an =z € T such that x 1is a

stationary point of (Dr(e), g)

Proof. It follows from Proposition 2.1 and Lemma 2.2 that [Dr(e), g)
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has a stationary point for each r 2 0 . Let Tr be the set of all
stationary points of (Dr(e), g] and let T Dbe the connected component of

U T_  which contains O € " . Clearly T 1is closed and is the maximal
r=0

connected set containing O and satisfying (7). We now show that T

satisfies (ZZ). Let G : Dp(e) x [0, r] » Dr(e) be defined by

Gz, t) = arg min [ly-z+g(z)| .
yep (e)

Clearly G is continuous. By Proposition 2.3 it follows that there is a
connected set W in Dr(e) x [0, »] which contains (0, 0) and (z, r)
for some x €T, . But T contains the connected set {y : (y, t) €W},
and hence x € T .,

THEOREM 3.2. Let g : C" + " be continuous and strictly monotone

on a closed convex cone S and let e € int{S*) . Then the set T of

Theorem 3.1 is unique; 1t is also arcwise connected.

Proof. Assume that = and x, are two stationary points of

1 2
(b,(e), g} for some » >0 . Then we have
(3.1) re(g(z;), z,-x,) =0
and
(3.2) re(g(z,)» xe-xl] <0.

By adding (3.1) and (3.2) we get
re(g [xl] -g(x,) > xl—.vc2) =0.
Since g 1is strictly monotone, this is impossible unless :x:l = x2 . This

proves the uniqueness of T .

To show that 7T is arcwise connected, it is enough to show that the

correspondence r > z, is a continuous map, where z, is the unique

stationary point of Dr(e) . It will therefore suffice to show that if

r +r (in Rl], then z, +x, in § . Let »_ - r and consider the
n + r " r n
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sequence {xr } in S . Notice first of all that xr is a stationary
n n
. A . <
point of D, (e) ; moreover, if r <7 ., then Dr (e) cp (e)
n n n+l
Thus it follows that {xp } < Dr(e) . Since Dp(e) is compact, there is a
n

subsequence {xr } which converges to =z in Dr(e) . Suppose that
m

x € Dg(e) 5 then we can find an € > 0 such that x € Dr_s(e) . Since

r, > r , it follows that all except a finite number of z, 's will lie
m

outside Dr 6(e) ; thus x cannot be a point of accumulation. This
contradiction shows that « € Sp(e) - Since x, is the unique stationary

point of D (e) we have
(3.3) re(g(a}), xr-y] <0 for all y € Dr(e)

We shall now show that

(3.4) re(g{x), z-y) <0 for all y € Dp(e)

If y € Dg(e) then we have

re(g(xr ), z, —y) =0.
m m

Since g 1is continuous, taking the limits as rm > r we get

re(g(z), =-y) =0 .

If, however, y € Sr(e) , then given x, we can choose Am € [0, 1] such
m

that )\my € D, (e) ; thus
m

re(g(x),.x—kmy] =0.

Notice that as rm +r ., Am + 1 , and thus taking the limit as Am > 1,
we get
re(g(x), z-y) =0 .

Therefore (3.4) holds,and combining (3.3) and (3.4) we have that =z = x, .
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This shows that all convergent subsequences of the sequence {:cr }
n

will have the same limit xr , and therefore the sequence {:cr } converges
n

to xr .
Now if rn -> r+ , we can choose an 8 > 0 such that 8 > rn for all
n . Now since Ds(e) is compact we can go through the same argument as in
the case above to show that xr -> xp . This completes the proof that

n
r —r :z:r is continuous.

In order to show the existence of a stationary point of (S5, g) . We

introduce the following definition.

DEFINITION. Let D ©be a subset of S . We say that a bounded set
ve s nD® separates D from « if each unbounded closed connected set
in S +that meets D also meets U .

THEOREM 3.3. Let g : ¢" > " be a continuous map on S and let
e € int(S*) . Suppose that U separates Dr(e) from <« and that for
each x € U there is a w € D (e) for which re (g(z), ) < re(glx), ) .

Then (S, g) has a stationary point.

Proof. Let T be as in Theorem 3.1. If T nU=¢ , then T is

bounded and therefore the result holds. Assume that x € T n U . Since

x € T, by Theorem 3.1, there is a k > O such that x € Sk(e) and x is
a stationary point of Dk(e) . If k <r , then clearly =x € Dg(e) and by
Lemma 2.4, re(g(x), x) =0 . Now assume that r < k . Then we have

(3.5) re(g(x), z) = re(g(x), 2)

for all =z € Dk(e) . Since x € U Dby the hypothesis, there is a

w € Dr(e) for which

(3.6) re(g(x), w) < re(g(x), x)
From (3.5) and (3.6) it follows that

(3.7) re(g(z), w) = re(g(z), z)
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for all z € Dk(e) . Since r =<k, Dr(e) c Dk(e) , and therefore

w € Dk(e) . If we take 2z = x/2 +w in (3.7), we get

(3.8) re(g(z), z) 2 0 .

Now, from (3.8) and Lemma 2.4, it follows that re(g(x), ) = 0 . The

required result then follows from Lemma 2.5.
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