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On stationary points and the

complementarity problem

Sribatsa Nanda and Sudarsan Nanda

Let S be a closed convex cone in C , S* the polar cone, g

a continuous map from C into itself, and e a fixed vector in

S* . In this paper we prove that there is a connected set T in

S of stationary points of [D, (e) , g) where D (e) is the set

of all x in 5 with re(e, x) 5 r . This extends the results

of Lemke and Eaves to the complex nonlinear case and arbitrary

closed convex cones in C . We show that if g is strictly

monotone on 5 , then T is both unique as well as arcwise

connected. This partly solves the open problems raised by Eaves

in this more general setting. We also show that if a; is a

stationary point of (D (e), <?) and re(e, x) < r then x is a

stationary point of (S, g) .

1 . Introduction

Let C \R ) denote the n-dimensional complex (real) space with

hermitian (euclidean) norm and the usual inner product and let ir be the

nonnegative orthant of H . Let 5 denote a closed convex cone in C

The polar of S , denoted by 5* , is defined by

S* = {y € Cn : re(x, y) 2: 0 for all x 6 S] .

Since e € S* and r > 0 , we write
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Dr(e) = {x £ S : re(e, x) £ r} ,•

and

D°(e) = {x € Die) : r e ( e , x) < r) ,

Sr(e) = {x 6 Dr(e) : re(e, x) = r} .

Note that £>r(e) is the disjoint union of Dr(e) and 5 (e) . A mapping

g : C •* C: is said to be monotone on S if re[g(x)-g(y), x-y] > 0 for

each (x, y) € S * S and strictly monotone if strict inequality holds

whenever x ± y .

Given a continuous function g : C •+ C , the nonlinear complement-

arity problem in C consists of finding a z such that

(1.1) z € S , g{z) € S* , and re[g(z), z) = 0 ,

where 5 is a closed convex cone in C . Given a convex set K c: C and

a continuous map g : C -*• C , a point x € K is said to be a stationary

point of the pair (K, g) if

(1.2) x € arg min re(g(x), y)

or equivalently, if

(1.3) x € arg min \\y-x+g{x)\\ ,

where arg min means the set of all y € K which minimize the objective.

Notice that the set in (1.3) is either empty or singleton, whereas in (1.2)

it may contain many elements. Note that the existence of a solution to the

complementarity problem (l.l) is equivalent to the existence of a

stationary point of (5, g) .

Several authors including Bazaraa, Goode, and Nashed [/], Habetler and

Price [4], Karamardian [6], Mond [£], and Parida and Sahoo [70] have

discussed the solution of the complementarity problems in different

contexts. Lemke [7] and Eaves [3] have discussed the existence of

stationary points of (S, g) in the real case by taking S to be FQ •

A basic theorem of Lemke [7] asserts that given an affine function
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g : FT -*• H and a d € R , there is a piecewise affine function

x : fr -*• ft such that x(t) is a stationary point of \D , g\ with
+ + { v )

d'x(t) = t , where Dn is the set of all x in if" for which d-x £ t .

The set T = {x{t)} thus becomes connected (indeed, arcwise connected).

While extending this result to the nonlinear case, Eaves [3] has shown that

the arcwise connectedness property of T is false in general and has asked

the following two questions. What conditions give the arcwise connected-

ness property and what properties give a unique T 1

In this paper we extend the results of Lemke [7] and Eaves [3] to the

complex nonlinear case by taking S to be any closed convex cone in C

We show that there is a connected set T in S such that each x € T is

a stationary point of [p (e), g) for some r > 0 . We also show that if

g is strictly monotone on S , then T is both unique as well as arcwise

connected and this partly answers the questions raised by Eaves [3] in this

more general setting. Finally we prove the existence of stationary points

of (S, g) under certa.in suitable conditions.

2. P r e l i m i n a r y r e s u l t s

We start by mentioning some useful results which will be needed in the

proof of our main theorems. The following proposition is the complex

version of a lemma of Hartman and Stampacchia [5]; we omit its proof since

it involves the same arguments as in the real case. For an outline of the

proof in the real case, see [3].

PROPOSITION 2.1. Let g : c" -»• C* be a continuous map on a non-

empty, compact, convex set Kc C . Then (K, g) has a stationary point.

The following lemma has been proved in [9].

LEMMA 2.2. Let S be a closed convex cone in Cn and let

e € int(S*) be fixed. Then for any r > 0 , the set D (e) is compact

and convex.

The following proposition is the complex version of a theorem of

Browder (see [2]).
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PROPOSITION 2 .3 . Let G : K x [0, r) •* K be a continuous function,

where K is a nonempty, compact, convex set in u and [0, r] denotes

the closed interval in .« . Then there is a connected set W in

K x [0 , r] intersecting both K x {0} and K x {?} such that

G{x, t) = x for all (x, t) € W .

Proof. Suppose that K i s a nonempty, compact, convex set in C

Let h : C -*• R be the l inear homeomorphism of C onto R . Then

K' = h(X) i s a nonempty, compact, convex set in R . Since

G : K x [o, r] -*• K i s continuous, there i s a continuous map

G' : K' x [o, r] -* K' defined by

G'{x, t) = hG(h-\z), t)

for (s, t) f K' x [o, r] . Therefore, by Browder's Theorem, there is a

connected set W c K' x [o, r] such that W n (K' x {0}) ̂  0 ,

W' n {K' x {r}) t 0 , and G'(s, t) = z for all (2, t) € (/' . Define a

continuous map 9 : K x [0, r] ->• K' x [0, r] by the rule

6{x, t) = {hx, t) ,

and take W = e"1(V) . Clearly W is connected, We: K x [C, r] , and

G(x, t) = x for all {x, t) (. W . Since W n (̂ ' x {0}) t 0 , there is a

u' = (z1, 0) e V n (ii:1 x {0}) , and then

e"1^1) = (>z"1(3'), 0) S W n (K x {0}) .

Thus W n (K x {0}) # 0 and similarly it can be shown that

W n (K x {r}) # 0 . This completes the proof.

LEMMA 2.4. £et g : C •*• C be a continuous map on a closed convex

cone S and let e € S* . If x is a stationary point of [D (e), g)

for some r > 0 , then re(g-(x), x] < 0 . In this case if x £ D (e) then

re{g(x), x) = 0 .

Proof. Suppose that x is a stationary point of [D (e), <?) . Then

, x) < re[g(x), z) for all s t D (e) .

In particular,
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re(g(x), x) S % re[g(x), x) .

Therefore re[g(x), x) £ 0 . Now, if x € D^e) , then there is some

X > 1 such that Xx € Sp(e) . Then we have

re[g(x), x) < X re[g{x), x) .

This is impossible unless re(^(x), x) = 0 .

LEMMA 2.5. Let g : (f1 -*• (f1 be a continuous map on a closed convex

cone S and e (. S* . If x is a stationary point of [D (e), g) and

x € D (e) , then x is a stationary point of (S, g) .

Proof. Let x i D (e) . Then, from Lemma 2.It, it follows that

re[g(x), x) = 0 . Let W € S ; then W = \z for some X > 0 and

2 € #,(e) • Since x is a stationary point of [D (e), g) we have

(2.1) re(g(x), x) < re{g(x), z) for all z € ̂ (e) .

Since re{g(x), x) = 0 it follows from (2.1) that

re(g(x), x] 5 re(g(x), w) .

Thus x is a stationary point of (S, g) .

3 . The main theorems

We are now ready to prove our main theorem.

THEOREM 3.1 . Let g : Cw -»• Cn be a continuous map on a closed

convex cone Set/1 and let e € int(S*) . Then there is a closed

connected set T in S such that

(i) for every x € T there is an r 2 0 such that x i. S (e)

and x is a stationary point of {p^e), g) , and

(ii) for each r 2 0 there is an x £ T such that x is a

stationary point of [D ( e ) , g) .

P r o o f . I t f o l l o w s from P r o p o s i t i o n 2 . 1 and Lemma 2 . 2 t h a t [D ( e ) , g)
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has a stationary point for each r 2 0 . Let T be the set of all

stationary points of [pr(e), g) and let T be the connected component of

U T which contains 0 € C . Clearly T is closed and is the maximal
r>0 r

connected set containing 0 and satisfying (i) . We now show that T

satisfies (ii) . Let G : Dp{e) x [0, r] -+ Dp{e) be defined by

G(x, t) = arg min \\y-x+g(x) ||' .

Clearly G is continuous. By Proposition 2.3 i t follows that there i s a

connected set W in D (e) x [0, r] which contains (0, 0) and (x, r)

for some x £ T . But T contains the connected set [y : (y, t) € W] ,

and hence x (. T .

THEOREM 3.2. Let g : Cn •* Cn be continuous and strictly monotone

on a closed convex cone S and let e € int(5*) . Then the set T of

Theorem 3.1 is unique; it is also arawise connected.

Proof. Assume that x and x^ are two stationary points of

[p (e), g] for some r > 0 . Then we have

(3.1) reOOcJ, xx-x2) < 0

and

(3.2) refo(z2), x&-x^ S 0 .

By adding (3.1) and (3.2) we get

re{g{x^)-g{x^, x^-x^ £ 0 .

Since g is strictly monotone, this is impossible unless x = x . This

proves the uniqueness of T .

To show that T is arcwise connected, it is enough to show that the

correspondence v i—>• a; is a continuous map, where x is the unique

stationary point of D (e) . It will therefore suffice to show that if

r -*• v (in R^ ) , then x -*• x in S . Let x> -* r~ and consider the
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sequence {x } in S . Notice first of all that x is a stationary
rn n

point of D (e) ; moreover, if r <*•_.,, then D (e) c D (e) .
rn n n+1 rn rn+l

Thus it follows that {x } c D^{e) . Since D (e) is compact, there is a
n

subsequence {x } which converges to x in D (e) . Suppose that
m

x € D(e) ; then we can find an e > 0 such that x € D (e) . Since

r •* r , it follows that all except a finite number of x 's will lie
m

outside D Ae) j thus x cannot be a point of accumulation. This

contradiction shows that x t. S {e) . Since x is the unique stationary

point of Dp(e) we have

(3.3) reigfaj, xp-y) £ 0 for all y € Dp{e) .

We shall now show that

(3.4) re[g(x), x-y) £ 0 for all y € Dj,e) .

If y € D (e) then we have

refofx J , x -it) £ 0 .
m m

Since g is continuous, taking the limits as r -»• r we get

re(g(x), x-y) £ 0 .

If, however, y € S (e) , then given x we can choose X € [0, l] such
m

that X u i D (e) ; thusX u

£ 0 .

Notice that as r •*• r , X ->• 1 , and thus taking the limit as X •* 1
in ni m

we get

re(#(x), x-y) £ 0 .

Therefore (3.1*) holds,and combining (3.3) and (3.It) we have that x = x
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This shows that a l l convergent subsequences of the sequence {x }
n

will have the same limit x , and therefore the sequence {x } converges
n

to xr .

Now if v •*• r , we can choose an 8 > 0 such that s > r for all
n n

n . Wow since D (e) is compact we can go through the same argument as in
8

the case above to show that x •*• x This completes the proof that
rn r

r i—• x is continuous.

In order to show the existence of a stationary point of (S, g) , we

introduce the following definition.

DEFINITION. Let D be a subset of S . We say that a bounded set

U c 5 n D separates D from °° if each unbounded closed connected set

in S that meets D also meets U .

THEOREM 3.3. Let g : Cn •* Cn be a continuous map on S and let

e € int(S-*) . Suppose that U separates D (e) from °° and that for

each x € U there is a w € D (e) for which re[g(x), w) < re(^(x), x) .

Then (S, g) has a stationary point.

Proof. Let T be as in Theorem 3.1. If T n U = 0 , then T is

bounded and therefore the result holds. Assume that x (. T n U . Since

x 6 2" , by Theorem 3.1, there is a k > 0 such that x € ̂ iAe^ a n d x is

a stationary point of O-Ae) . If k < r , then clearly x £ D (e) and by

Lemma 2.U, re[g(x), x) = 0 . Now assume that r £ k . Then we have

(3.5) re[g(x), x) < re[g(x), z)

for all z £ ̂ (e) . Since x € U by the hypothesis, there is a

w € D (e) for which

(3.6) re[g{x), w) 5 re(#(x), x) .

From (3.5) and (3.6) it follows that

(3.7) re[g(x), w) < re(g(x), z)
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for a l l z € 0fe(e) • Since r < k , D^e) c Dfc(e) , and therefore

w € 0,(e) . If we take z = x/2 + w in (3 .7) , we get

(3.8) re[g(x), x) > 0 .

Now, from (3.8) and Lemma 2.U, it follows that re(g-(x), x) = 0 . The

required result then follows from Lemma 2.5.
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