ON THE VOLUME OF LATTICE MANIFOLDS

Krzysztof KoŁodziejczyk

The volume of a general lattice polyhedron P in \mathbb{R}^{N} can be determined in terms of numbers of lattice points from $N-1$ different lattices in P. Ehrhart gave a formula for the volume of "polyèdre entier" in even-dimensional spaces involving only $N / 2$ lattices. The aim of this note is to comment on Ehrhart's formula and provide a similar volume formula applicable to lattice polyhedra that are N-dimensional manifolds in \mathbb{R}^{N}.

Denote by \mathbb{Z}^{N} the fundamental lattice of points with integer coordinates in \mathbb{R}^{N}. Elements of \mathbb{Z}^{N} are called lattice points. We say that a simplex $\Delta \subset \mathbb{R}^{N}$ is a lattice simplex if all its vertices belong to \mathbb{Z}^{N}. A lattice simplex Δ is called fundamental if $\Delta \cap \mathbb{Z}^{N}$ consists only of the vertices of Δ. A set $P \subset \mathbb{R}^{N}$ is said to be a polyhedron, if P is the underlying point set of a simplicial cell complex. A polyhedron P is called lattice if all its vertices (0 -simplexes) lie in \mathbb{Z}^{N}. Any lattice polyhedron P can be represented as the union

$$
\begin{equation*}
P=\bigcup_{i=1}^{m} \Delta_{i}, \tag{1}
\end{equation*}
$$

where each Δ_{i} is a fundamental lattice simplex and $\Delta_{j} \backslash \Delta_{k} \neq \emptyset$ for $j \neq k$ (no Δ_{j} is contained in another simplex). Lattice polyhedra in \mathbb{R}^{2} are called, as usual, lattice polygons. A lattice polyhedron P in \mathbb{R}^{N} is called proper if every Δ_{i} in the union (1) is N-dimensional.

Reeve [15] introduced additional lattices (often called the rational lattices)

$$
\mathbb{Z}_{n}^{N}=\left\{x \in \mathbb{R}^{N}: n x \in \mathbb{Z}^{N}\right\}, \quad n \geqslant 1 .
$$

Notice that $\mathbb{Z}_{1}^{N}=\mathbb{Z}^{N}$.
For a given lattice polyhedron P in \mathbb{R}^{N} denote by B_{n} and $I_{n}, n \geqslant 1$, the numbers of points of the lattice \mathbb{Z}_{n}^{N} on the boundary and in the interior of P, respectively. Thus

$$
B_{n}=B_{n}(P)=\left|\mathbb{Z}_{n}^{N} \cap \partial P\right| \quad \text { and } \quad I_{n}=I_{n}(P)=\left|\mathbb{Z}_{n}^{N} \cap \operatorname{int} P\right| .
$$

Received 30th June, 1999

Research partially supported by KBN Grant 2 P03A 00810.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

Ehrhart [4] discovered the remarkable fact that the numbers $G_{n}(P)=I_{n}(P)+B_{n}(P)$ of a proper lattice polyhedron P in \mathbb{R}^{N} are given by the following polynomial

$$
\begin{equation*}
G_{n}(P)=V(P) n^{N}+a_{N-1}(P) n^{N-1}+\cdots+a_{1}(P) n+\chi(P) \tag{2}
\end{equation*}
$$

in which $V(P)$ is the volume of P, the coefficients $a_{N-1}(P), \ldots, a_{1}(P)$ are some rational numbers, and $\chi(X)$ here and later on denotes the Euler characteristic of the set X. For an explicit description of all a_{n} 's in the case of a lattice simplex we refer the reader to [1] and [2]. Also the numbers $I_{n}(P)$ and $D_{n}(P)=I_{n}(P)+B_{n}(P) / 2$ are some polynomials in n of degree N with the leading coefficient $V(P)$. These polynomials are now called Ehrhart polynomials.

Using the Ehrhart polynomial describing the numbers $D_{n}(P)$ Macdonald [12] obtained the following formula for the volume of a proper lattice polyhedron P in \mathbb{R}^{N}

$$
\begin{align*}
& (N-1) N!V(P)=\sum_{k=1}^{N-1}(-1)^{k-1}\binom{N-1}{k-1}\left(B_{N-k}+2 I_{N-k}\right) \tag{3}\\
& +(-1)^{N-1}[2 \chi(P)-\chi(\partial P)]
\end{align*}
$$

The case $N=3$ in formula (3) was earlier obtained by Reeve [14, 15].
Ehrhart polynomials of lattice polyhedra in \mathbb{R}^{N} satisfy the so-called reciprocity law. From among several equivalent formulations of it we present here the following

$$
I_{n}(P)=(-1)^{N} G_{-n}(P)
$$

in which $G_{-n}(P)=V(P)(-n)^{N}+a_{N-1}(-n)^{N-1}+\cdots+a_{1}(-n)+\chi(P)$ and the coefficients a_{N-1}, \ldots, a_{1} are the same as in formula (2). Let us notice that the law does not hold for all proper lattice polyhedra in \mathbb{R}^{N}.

Making use of the reciprocity law Ehrhart [3, 4] derived the following formula for the volume of "polyèdre entier" in even-dimensional spaces
(4) $\frac{N!}{2} V(P)=\sum_{j=0}^{(N / 2)-1}(-1)^{j}\binom{N}{j}\left(I_{(N / 2)-j}+\frac{1}{2} B_{(N / 2)-j}\right)+\frac{1}{2}(-1)^{N / 2}\binom{N}{N / 2} \chi(P)$.
(The reader is warned that in both papers the formula was misprinted.) This formula employing only lattices $\mathbb{Z}_{1}^{N}, \ldots, \mathbb{Z}_{N / 2}^{N}$ is compared by Ehrhart to Macdonald's formula (3) which uses lattices $\mathbb{Z}_{1}^{N}, \ldots, \mathbb{Z}_{N-1}^{N}$. However Ehrhart's formula cannot be applied to all proper lattice polyhedra. We shall illustrate this by an example below.

In [3] Ehrhart also gave the following special cases of formula (4) when $N=2$ and $N=4$. They are as follows:

$$
\begin{equation*}
A(P)=I_{1}+\frac{1}{2} B_{1}-\chi(P) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
12 V(P)=I_{2}+\frac{1}{2} B_{2}-4\left(I_{1}+\frac{1}{2} B_{1}\right)+3 \chi(P) . \tag{6}
\end{equation*}
$$

While formula (5) admits an extension whose range of validity covers all proper lattice polygons in \mathbb{R}^{2}, see $[15,16]$, the latter cannot be easily modified to be applicable to all proper lattice polyhedra in \mathbb{R}^{4}. In fact, we shall show that there is no linear formula for the volume of proper lattice polyhedra in \mathbb{R}^{4} in terms of $B_{2}, B_{1}, I_{2}, I_{1}, \chi(P)$ and $\chi(\partial P)$.

We need the following example.
Example. Take two unit lattice cubes C_{1} and C_{2} in \mathbb{R}^{4} and denote by P_{k} the union $C_{1} \cup C_{2}$ having k-dimensional, $0 \leqslant k \leqslant 2$, intersection $C_{1} \cap C_{2}$. One can check that $B_{2}\left(P_{k}\right)=2\left(3^{4}-1\right)-3^{k}, B_{1}\left(P_{k}\right)=2^{5}-2^{k}, I_{2}\left(P_{k}\right)=2, I_{1}\left(P_{k}\right)=0, \chi\left(P_{k}\right)=1, \chi\left(\partial P_{k}\right)=-1$ and $V\left(P_{k}\right)=2$.

If there existed a linear formula for the volume of proper lattice polyhedra in \mathbb{R}^{4} in terms of $B_{2}, B_{1}, I_{2}, I_{1}, \chi(P)$ and $\chi(\partial P)$ then it would be of the form

$$
V(P)=a B_{2}(P)+b I_{2}(P)+c B_{1}(P)+d I_{1}(P)+e \chi(P)+f \chi(\partial P)
$$

By substituting the numbers from Example 1 in the above we would obtain

$$
\begin{aligned}
& 2=159 a+2 b+31 c+e-f \\
& 2=157 a+2 b+30 c+e-f \\
& 2=151 a+2 b+28 c+e-f
\end{aligned}
$$

which, as is easy to check, is an inconsistent system.
An immediate consequence of the above considerations is the fact that formula (6) is not applicable for all proper lattice polyhedra in \mathbb{R}^{4}. This also implies that formula (4) cannot be used for all proper lattice polyhedra in \mathbb{R}^{N}. It can be shown, however, that formula (4) is applicable for all lattice polyhedra which are N-dimensional manifolds. Indeed, we always have

$$
G_{n}(P)=V(P) n^{N}+a_{N-1}(P) n^{N-1}+\cdots+a_{1}(P) n+\chi(P)
$$

and

$$
I_{n}(P)=V(P) n^{N}+c_{N-1}(P) n^{N-1}+\cdots+c_{1}(P) n+\chi(P)-\chi(\partial P) .
$$

In view of [13, Corollary 1.6 and Theorem 4.6] one can see that the reciprocity law is satisfied for such polyhedra. So we have $I_{n}(P)=(-1)^{N} G_{-n}(P)$. This implies that $a_{2 j-1}=-c_{2 j-1}$ for $j=1, \ldots, N / 2$. Consequently, it follows that the numbers $D_{n}(P)$ of a lattice polyhedron P that is an N-dimensional manifold in an even-dimensional space \mathbb{R}^{N} are given by a polynomial of the form

$$
D_{n}(P)=I_{n}(P)+\frac{1}{2} B_{n}(P)=V(P) n^{N}+b_{N-2} n^{N-2}+b_{N-4} n^{N-4}+\cdots+b_{2} n^{2}+\chi(P)
$$

By substituting the values $1,2, \ldots, N / 2$ for n in the above polynomial we obtain a system of $N / 2$ linear equations. Solving for $V(P)$ in that system results in formula (4).

Now we shall comment on the case when N is an odd number, $N=2 k-1$. Again from [13, Corollary 1.6 and Theorem 4.6] it follows that the reciprocity law is satisfied for any lattice polyhedron P in \mathbb{R}^{N} that is an N-dimensional manifold. Proceeding similarly as above we can show that in this case

$$
D_{n}(P)=I_{n}(P)+\frac{1}{2} B_{n}(P)=V(P) n^{N}+b_{N-2} n^{N-2}+b_{N-4} n^{N-4}+\cdots+b_{3} n^{3}+b_{1} n
$$

When we allow n to assume values $1,2, \ldots, k=(N+1) / 2$ in the above polynomial then it generates a system of k independent linear equations. Solving the system for $V(P)$ and evaluating the two resulting Vandermonde-type determinants, we obtain

$$
\begin{aligned}
& V(P)=\frac{\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & I_{1}+\frac{1}{2} B_{1} \\
2 & 2^{3} & \cdots & 2^{2 k-2} & I_{2}+\frac{1}{2} B_{2} \\
3 & 3^{3} & \cdots & 3^{2 k-2} & I_{3}+\frac{1}{2} B_{3} \\
\cdots \cdots & \cdots & \cdots & \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots & \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
k & k^{3} & \cdots & k^{2 k-2} & I_{k}+\frac{1}{2} B_{k}
\end{array}\right|}{\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
2 & 2^{3} & \cdots & 2^{2 k-2} & 2^{2 k-1} \\
3 & 3^{3} & \cdots & 3^{2 k-2} & 3^{2 k-1} \\
\cdots \cdots \cdots \cdots \cdots & \cdots \cdots \cdots \cdots \cdots \\
\cdots & \cdots & \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
k & k^{3} & \cdots & k^{2 k-2} & k^{2 k-1}
\end{array}\right|} \\
& =\frac{\left(\prod_{j=1}^{k}(2 j-1)!\right) \sum_{j=1}^{k}(-1)^{k+j} \frac{j}{(k-j)!(k+j)!}\left(2 I_{j}+B_{j}\right)}{\prod_{j=1}^{k}(2 j-1)!} \\
& =\frac{\sum_{j=1}^{k}(-1)^{k+j}\binom{2 k}{k-j} j\left(2 I_{j}+B_{j}\right)}{(2 k)!} .
\end{aligned}
$$

Returning now to $N=2 k-1$ we get the following formula for the volume of lattice
polyhedra that are N-dimensional manifolds in odd-dimensional space \mathbb{R}^{N};

$$
(N+1)!V(P)=\sum_{j=1}^{(N+1) / 2}(-1)^{(N+1) / 2-j}\binom{N+1}{(N+1) / 2-j} j\left(2 I_{j}+B_{j}\right)
$$

In the special cases of $N=3$ and $N=5$ the formula reads

$$
\begin{equation*}
12 V(P)=2 I_{2}+B_{2}-2\left(2 I_{1}+B_{1}\right) \tag{7}
\end{equation*}
$$

and

$$
240 V(P)=5\left(2 I_{1}+B_{1}\right)-4\left(2 I_{2}+B_{2}\right)+\left(2 I_{3}+B_{3}\right) .
$$

As we have already mentioned the case $N=3$ in Macdonald's formula (3) was earlier obtained by Reeve. Reeve's formula

$$
12 V(P)=2 I_{2}+B_{2}-2\left(2 I_{1}+B_{1}\right)+2 \chi(P)-\chi(\partial P)
$$

in the case of lattice polyhedra that are 3-dimensional manifolds coincides with our formula (7) since for such polyhedra we have $2 \chi(P)-\chi(\partial P)=0$, see [13, Corollary 1.6].

Summarising the observations made in this note we have the following theorem.
Theorem. If P is a lattice polyhedron in \mathbb{R}^{N} that is an N-dimensional manifold, then

$$
V(P)=\left\{\begin{array}{r}
\frac{1}{N!}\left[\sum_{j=1}^{N / 2}(-1)^{(N / 2)-j}\binom{N}{(N / 2)-j}\left(2 I_{j}+B_{j}\right)+(-1)^{N / 2}\binom{N}{N / 2} \chi(P)\right. \\
\text { if } N \text { is even }, \\
\frac{1}{(N+1)!} \sum_{j=1}^{(N+1) / 2}(-1)^{(N+1) / 2-j}\binom{N+1}{(N+1) / 2-j} j\left(2 I_{j}+B_{j}\right) \\
\text { if } N \text { is odd. }
\end{array}\right.
$$

For more lattice polyhedra volume formulae the reader is referred to $[\mathbf{7}, \mathbf{8}, \mathbf{9}, 10,11]$. More information concerning lattice polyhedra can be found in [5, 6].

References

[1] S.E. Cappell and J.L. Shaneson, 'Genera of algebraic varieties and counting of lattice points', Bull. Amer. Math. Soc. 30 (1994), 62-69.
[2] R. Diaz and S. Robins, 'The Ehrhart polynomial of a lattice n-simplex', Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 1-6.
[3] E. Ehrhart, 'Calcul de la mesure d'un polyèdre entier par un décompte de points', C.R. Acad. Sci. Paris 258 (1964), 5131-5133.
[4] E. Ehrhart, 'Sur un problème de géométrie diophantienne linéaire I, II', J. Reine Angew. Math. 226 (1967), 1-29; 227 (1967), 25-49.
[5] P. Gritzmann and J.M. Wills, Lattice points, (P.M. Gruber and J.M. Wills, Editor), Handbook of Convex Geometry (North Holland, Amsterdam, 1993).
[6] P.M. Gruber and C.G. Lekkerkerker, Geometry of Numbers (North-Holland, Amsterdam, 1987).
[7] K. Kołodziejczyk, 'A new formula for the volume of lattice polyhedra', Monatsh. Math. 122 (1996), 367-375.
[8] K. Kolodziejczyk, 'An 'odd' formula for the volume of three-dimensional lattice polyhedra', Geom. Dedicata 61 (1996), 271-278.
[9] K. Kołodziejczyk, 'The boundary characteristic and the volume of lattice polyhedra', Discrete Math. 190 (1998), 137-148.
[10] K. Kołodziejczyk, 'On odd points and the volume of lattice polyhedra', J. Geom. (to appear).
[11] K. Kołodziejczyk, 'Hadwiger-Wills type higher dimensional generalizations of Pick's theorem', Discrete Comput. Geom. (to appear).
[12] I.G. Macdonald, 'The volume of a lattice polyhedron', Proc. Cambridge Philos. Soc. 59 (1963), 719-726.
[13] I.G. Macdonald, 'Polynomials associated with finite cell-complexes', J. London Math. Soc. 4 (1971), 181-192.
[14] J.E. Reeve, 'Le volume des polyèdres entiers', C.R. Acad. Sci. Paris 244 (1957), 1990-1992.
[15] J.E. Reeve, 'On the volume of lattice polyhedra', Proc. London Math. Soc. 7 (1957), 378-395.
[16] P.R. Scott, 'The fascination of the elementary', Amer. Math. Monthly 94 (1987), 759-768.

Institute of Mathematics
Wrocław University of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław
Poland
e-mail: kolodz@im.pwr.wroc.pl

