improve your science
with the AXRD Benchtop Powder Diffractometer

FIND OUT WHY SO MANY SCIENTISTS ARE CHOOSING PROTO.
www.protoxrd.com/powder
Guidance software... makes powder diffraction easy

Automatic alignment, CBO, and SmartLab's Guidance software engine combine to create an extremely flexible, intelligence-based data collection platform. SmartLab gathers information about your sample, suggests measurement configurations, helps you set the diffractometer, and executes measurements, all with the help of user-friendly dialog screens. CBO technology allows simple selection of focusing and parallel beam geometries on demand for the widest possible range of applications.

Supported powder diffraction applications include:

- Phase identification
- Quantitative analysis
- Percent crystallinity
- Crystallite size/lattice strain analysis
- Precise lattice parameter determination
- Rietveld refinement

Cross Beam Optical (CBO) technology
Change and adjust optics easily, whether you are using focusing optics in the direct beam path, or a multilayer mirror optic for high-brilliance, monochromated parallel beams.

High resolution parallel beam optics
By combining the parallel beam from a multilayer mirror with a long slit PSA (parallel slit analyzer), you can obtain exceptionally accurate, high-resolution data with high repeatability without the influence of sample shape or measurement environment. The effectiveness of this configuration is particularly notable for in-situ analysis, powder structure determination, and the analysis of clay minerals and organic materials.
EDITORIAL

Tom Blanton

The Denver X-ray Conference – celebrating 65 years of bringing together the high-energy scattering community

TECHNICAL ARTICLES

Mark A. Rodriguez, Eric N. Coker, James J. M. Griego, Curtis D. Mowry, Adam S. Pimentel and Travis M. Anderson

Monitoring of CoS₂ reactions using high-temperature XRD coupled with gas chromatography (GC)

James A. Kaduk, Kai Zhong, Amy M. Gindhart and Thomas N. Blanton

Crystal structure of rivastigmine hydrogen tartrate Form I (Exelon®, C₁₄H₂₃N₂O₂(C₄H₅O₆)

Baozhuo Zhang and Marcus L. Young

High-energy synchrotron X-ray diffraction measurements of simple bending of pseudoelastic NiTi shape memory alloy wires

Zhixun Wang, Hangkong Li, Gemei Cai and Zhanpeng Jin

Synthesis, crystal structure, and thermal stability of new borates Na₃REB₂O₆ (RE = Pr, Sm, Eu)

James A. Kaduk, Kai Zhong, Amy M. Gindhart and Thomas N. Blanton

Crystal structure of mupirocin form I, C₂₆H₄₄O₉

Peter Metz, Robert Koch, Bernadette Cladek, Katharine Page, Joerg Neuefeind and Scott Misture

X-ray and neutron total scattering analysis of Hₓ·(Bi₀.₂Ca₀.₅₅Sr₀.₂₅)(Ag₀.₂₅Na₀.₇₅)Nb₃O₁₀·xH₂O perovskite nanosheet booklets with stacking disorder

James A. Kaduk, Kai Zhong, Amy M. Gindhart and Thomas N. Blanton

Crystal structure of paliperidone, C₂₃H₂₇FN₄O₃

James A. Kaduk, Kai Zhong, Amy M. Gindhart and Thomas N. Blanton

Crystal structure of choline fenofibrate (Trilipix®, (C₅H₁₄NO)(C₁₇H₁₄ClO₄)

NEW DIFFRACTION DATA

Jose H. Quintana Mendoza, J. A. Henao, Aurora L. Carreño Otero and Vladimir V. Kouznetsov

Synthesis and X-ray diffraction data of 2-morpholino-2-(3,4,5-trimethoxyphenyl) acetonitrile, (C₁₅H₂₀N₂O₄)

Liu Qi Guo, Shou Jun Zheng, Xiao Li Ma and Hui Li

X-ray powder diffraction data for trelagliptin succinate, C₁₈H₂₀FN₅O₂·C₇H₆O₄

https://doi.org/10.1017/S0885715616000245 Published online by Cambridge University Press
DATA REPORT

Qing Wang, Dan Guo, Bin Tang and Hui Li
X-ray powder diffraction data for 5-chloro-N-(4-(5,6-dihydro-3-(4-morpholinyl)-2-oxo-1(2H)-pyridinyl)phenyl)-pentanamide, C_{20}H_{26}ClN_{3}O_{3} 159

INTERNATIONAL REPORT

Winnie Wong-Ng
The 2015 Materials Science & Technology (MS&T15) Conference & Exhibition 162

CALENDARS

Gang Wang
Calendar of Short Courses & Workshops 164

Gang Wang
Calendar of Forthcoming Meetings 165
On the Cover: From Figures 4, 5 and 8 in Technical Article
Powder Diffraction is a quarterly journal published by the JCPDS-International Centre for Diffraction Data through Cambridge University Press.

Editor-in-Chief
Camden Hubbard
Applied Diffraction Services
110 Crestview Lane
Oak Ridge, Tennessee 37830, U.S.A.
camden.hubbard@me.com

Managing Editor
Nicole M. Ernst Boris
International Centre for Diffraction Data
12 Campus Boulevard
Newtown Square, Pennsylvania 19073-3273, U.S.A.
boris@icdd.com

Editor for New Diffraction Data
Soonya Kabekkodu
International Centre for Diffraction Data
12 Campus Boulevard
Newtown Square, Pennsylvania 19073-3273, U.S.A.
kabekkodu@icdd.com

Editors
Xiaolong Chen
Institute of Physics
Chinese Academy of Sciences
No. 8 Nansanjie, Zhongguancun, Haidian District,
Beijing 100190,
China
xichen@iphy.ac.cn

José Miguel Delgado
Universidad de Los Andes
Facultad de Ciencias
Departamento de Química
Lab. de Cristalografia
Merida 5101
Venezuela
miguel@ula.ve

Norberto Masciocchi
Università dell’Insubria
Dipartimento di Scienze e Alta Tecnologia
via Valleggio 11
Como 22100
Italy
norberto.masciocchi@uninsubria.it

Editors for Crystallography Education
James Kaduk
Poly Crystallography Inc.
423 East Chicago Avenue
Naperville, Illinois 60540-5407, U.S.A.
Kaduk@polycrystallography.com

Brian H. Toby
Argonne National Laboratory
Advanced Photon Source
9700 S. Cass Ave., Bldg. 401/B4192
Argonne, Illinois 60439-4856, U.S.A.
brian.toby@anl.gov

International Reports Editor
Winnie Wong-Ng
Materials Measurement Science Division
National Institute of Standards and Technology
100 Bureau Drive, Mail Stop 8520
Gaithersburg, MD 20899-8520, U.S.A.
winnie.wong-ng@nist.gov

Calendar of Meetings and Workshops Editor
Gang Wang
Institute of Physics
Chinese Academy of Sciences
No. 8 Nansanjie, Zhongguancun, Haidian District,
Beijing 100190,
China
gangwang@iphy.ac.cn

ICDD databases are the only crystallographic databases in the world with quality marks and quality review processes that are ISO certified.

- Standardized data
- More coverage
- All data sets are evaluated for quality
- Reviewed, edited, and corrected prior to publication
- Targeted for material identification and characterization

Featuring 365,877 entries including 251,640 entries with atomic coordinates

www.icdd.com
LETT OUR TEAM OF EXPERTS HELP YOU TAKE YOUR SKILLS TO THE NEXT LEVEL!

Rietveld Refinement & Indexing Workshop
Basic Workshop: 26 – 28 September 2016
*Advanced Workshop: 28 – 30 September 2016

Powder Pattern Indexing and Rietveld structural refinement techniques are complementary and are often used to completely describe the structure of a material. Successful indexing of a powder pattern is considered strong evidence for phase purity. Indexing is considered a prelude to determining the crystal structure, and permits phase identification by lattice matching techniques. This workshop introduces the theory and formalisms of various indexing methods and structural refinement techniques. One unique aspect of this workshop is the extensive use of computer laboratory problem solving and exercises that teach method development in a hands-on environment.

Take the three-day basic workshop, the three-day advanced workshop or both together for a full week of hands-on training.

Practical X-ray Fluorescence:
Spring 2017

From theory to hands-on exercises, this course offers techniques and skills to improve lab performance. Discover the latest in cutting-edge instruments such as TXRF, hand-held devices, energy dispersive and wavelength dispersive spectrometers through live demonstrations.

The XRF course covers the basics of X-ray spectra; instrumentation design; methods of qualitative and quantitative analysis; specimen preparation and applications for both wavelength and energy dispersive spectrometry. Emphasizing quantitative methods; use of automated X-ray spectrometers; review of mathematical matrix correction procedures and new developments in XRF.

Fundamentals of X-ray Powder Diffraction:
Spring 2017

For the novice with some XRD knowledge or for the experienced with an interest in the theory behind XRD, this clinic offers a strong base for increased lab performance.

The clinic covers instrumentation, specimen preparation, data acquisition and qualitative phase analysis. Hands-on use of personal computers for demonstration of the latest software; data mining with the PDF. The powder diffractometer: optical arrangement, factors affecting instrumental profile width, choice and function of divergence slit, calibration and alignment, detectors, X-ray optics.

*Advanced Methods in X-ray Powder Diffraction:
Spring 2017

For the experienced XRD scientist, this session offers enhanced analysis skills through intense problem solving, as well as an introduction to the Rietveld Method. Emphasizing computer-based methods of data collection and interpretation, both for qualitative and quantitative phase analysis.

The advanced clinic covers factors affecting d-spacings of crystals: unit cell, crystal structure, and solid solutions, as well as factors affecting diffraction-line intensities: relative and absolute intensities; structure-sensitive properties (atomic scattering and structure factors), polarization effects, and multiplicity; specimen-sensitive effects (orientation, particle size), measurement-sensitive effects (use of peak heights and peak areas), and choice of scanning conditions.

* See the ICDD web site for prerequisites for advanced courses.

Register Today at WWW.ICDD.COM/EDUCATION

LOCATION
ICDD Headquarters, 12 Campus Boulevard
Newtown Square, Pennsylvania 19073-3273 U.S.A.

FOR MORE INFORMATION CONTACT
Eileen Jennings, Education Coordinator
Tel: 610.325.9814 Fax: 610.325.9823
Email: clinics@icdd.com
©2016a JCPDS–International Centre for Diffraction Data

https://doi.org/10.1017/S0885715616000245 Published online by Cambridge University Press