ON \mathcal{M} -HARMONIC BLOCH FUNCTIONS AND THEIR CARLESON MEASURES[†]

by BOO RIM CHOE and YOUNG JOO LEE

(Received 20 November, 1996)

Abstract. On the setting of the unit ball of the complex *n*-space, some characterizations of \mathcal{M} -harmonic Bloch functions are obtained. As an application, Carleson measures are characterized by means of Berezin type integrals of \mathcal{M} -harmonic Bloch functions. As one may expect, these results carry over to \mathcal{M} -harmonic little Bloch functions and vanishing Carleson measures.

1. Introduction. Let B be the unit ball of the complex n-space C^n with boundary S. For $f \in C^1(B)$, let us define

$$Qf(z) = \sup_{\zeta \in S} \frac{|\langle \nabla f(z), \overline{\zeta} \rangle + \langle \nabla \overline{f}(z), \overline{\zeta} \rangle|}{\beta(z, \zeta)} \quad (z \in B),$$

where β is the Bergman metric on *B* and $\bigtriangledown f$ is the complex gradient of *f*. Here, the notation $\langle z, w \rangle$ denotes the usual Hermitian inner product for points $z, w \in C^n$. It is known [4] that *Q* is invariant under all automorphisms of *B* in the sense that $Q(f \circ \varphi) = Qf \circ \varphi$ for all $\varphi \in A$, the group of all automorphisms (i.e. biholomorphic self-maps) of *B*.

A function $u \in C^2(B)$ is called \mathcal{M} -harmonic on B if it is annihilated on B by the invariant Laplacian $\tilde{\Delta}$. See Section 2 for relevant definitions. The \mathcal{M} -harmonic Bloch space $M\mathcal{B}$ is the space of all \mathcal{M} -harmonic functions f on B for which

$$\|f\| = \sup_{z \in B} Q f(z) < \infty$$

and the *M*-harmonic little Bloch space MB_0 is the subspace of MB, consisting of functions f for which the additional boundary vanishing condition

$$\lim_{|z| \to 1} Q f(z) = 0$$

holds. By the invariance of Q under A we see that $|| f \circ \varphi || = || f ||$, for all $\varphi \in A$.

If f is holomorphic on B, it is known [10] that f is a Bloch function if and only if $(1 - |z|^2)| \nabla f(z)| = O(1)$ and f is a little Bloch function if and only if $(1 - |z|^2)| \nabla f(z)| = o(1)$. Many other conditions characterizing holomorphic (little) Bloch functions are well known. See, for example, [2], [3], [5], [9], [10], [11] and references therein. In the M-harmonic case, Hahn and Youssfi [4] first studied and characterized M-harmonic Bloch functions in terms of the Berezin transform, invariant Laplacian and BMO type integrals. Recently, Jevitć and Pavlović [6] have shown that many characterizations of holomorphic (little) Bloch functions also characterize M-harmonic ones by giving characterizations in terms of various derivatives.

[†]This research is in part supported by KOSEF(97-0701-01-01-3), BSRI(96-1407, 1426), and GARC(97).

Glasgow Math. J. 40 (1998) 273-289.

BOO RIM CHOE AND YOUNG JOO LEE

In the present paper, we add some other characterizations of MB and MB_0 . Our results imply that recent characterizations of Xiao and Zhong [12], [13] for holomorphic (little) Bloch functions (on the disc) continue to hold for \mathcal{M} -harmonic ones. To state our result, let V denote the normalized Lebesgue volume measure on B, φ_a be the standard automorphism of B such that $\varphi_a(0) = a$, and write d(z, w) for the Bergman distance between two points $z, w \in B$. For details, see Section 2.

THEOREM A. Let $1 \le p < \infty$. Then, for a function f M-harmonic on B, the following statements are equivalent.

(a)
$$f \in M\mathcal{B}$$
.
(b) $\sup_{\substack{z,w\in B\\ z\neq w}} \frac{|f(z) - f(w)|}{d(z,w)} < \infty$.

274

(c)
$$\sup_{a\in B}\int_{B}|f\circ\varphi_{a}-f(a)|^{p}dV<\infty.$$

(d)
$$\sup_{a \in B} \int_{B} (Qf(z))^{p} \left(\frac{1 - |a|^{2}}{|1 - \langle z, a \rangle|^{2}} \right)^{n+1} dV(z) < \infty.$$

(e) There is a constant
$$t > 0$$
 such that

$$\sup_{a\in B}\int_B \exp(t|f\circ\varphi_a-f(a)|)dV<\infty.$$

n+1

Note that the condition (d) of Theorem A can be rephrased as "the Berezin transform of the measure $(Qf)^{p}dV$ is bounded". As is well known (see, for example, [14, Theorem A]), the Berezin transform of a positive Borel measure μ on B is bounded if and only if μ is a Carleson measure. To be more precise, let $E_r(a) = \varphi_a(rB)$ denote the pseudohyperbolic ball with center $a \in B$ and radius $r \in (0, 1)$. Then, μ is called a *Carleson measure* if

$$\sup_{a\in B}\frac{\mu(E_r(a))}{V(E_r(a))}<\infty$$

for some r. As an application of Theorem A, we prove the following theorem which characterizes Carleson measures by means of their action on Berezin type integrals of \mathcal{M} -harmonic Bloch functions.

THEOREM B. Let $0 . Then, a positive Borel measure <math>\mu$ on B is a Carleson measure if and only if there is a constant C such that

$$\sup_{a\in B}\int_{B}|f(z)-f(a)|^{p}\left(\frac{1-|a|^{2}}{|1-\langle z,a\rangle|^{2}}\right)^{n+1}d\mu(z)\leq C\|f\|^{p},$$

for all $f \in MB$.

M-HARMONIC BLOCH FUNCTIONS

The equivalences of Theorem A carry over to M-harmonic little Bloch functions.

THEOREM C. Let $1 \le p < \infty$ and 0 < r < 1. Then, for a function f that is M-harmonic on B, the following statements are equivalent.

(a)
$$f \in M\mathcal{B}_0$$
.
(b) $\lim_{|z| \to 1} \sup_{z \to z} \frac{|f(z) - f(a)|}{d(z, a)} = 0$.

$$|a| \to 1 \quad \underset{z \neq a}{: \in E_r(a)} \qquad d(Z, a)$$

(c)
$$\lim_{|a|\to 1} \int_{B} |f \circ \varphi_a - f(a)|^p dV = 0.$$

(d)
$$\lim_{|a| \to 1} \int_{B} (Qf(z))^{p} \left(\frac{1 - |a|^{2}}{|1 - \langle z, a \rangle |^{2}} \right)^{n+1} dV(z) = 0.$$

(e) There is a constant t > 0 such that

$$\lim_{|a|\to 1} \int_B \exp(t|f \circ \varphi_a - f(a)|) dV = 1.$$

. .

Also, the equivalence of Theorem B carries over to vanishing Carleson measures μ on B that satisfy

$$\lim_{|a|\to 1}\frac{\mu(E_r(a))}{V(E_r(a))}=0,$$

for some r.

THEOREM D. Let $0 . Then, a positive Borel measure <math>\mu$ on B is a vanishing Carleson measure if and only if

$$\lim_{|a| \to 1} \sup_{\substack{f \in MB \\ \|f\|=1}} \int_{B} |f(z) - f(a)|^{p} \left(\frac{1 - |a|^{2}}{|1 - \langle z, a \rangle|^{2}}\right)^{n+1} d\mu(z) = 0.$$

In Section 2, we collect some notations and basic facts needed in the proofs. In Section 3, we prove Theorems A and C. In fact, Theorem A is restated and proved in the form of "quantity equivalence" with weights $(1 - |z|^2)^{\alpha}$. Also, the corresponding weighted version of Theorem C is proved. In Section 4, we first note the Carleson measure characterization of \mathcal{M} -harmonic (little) Bloch functions as a consequence of results obtained in the previous section. Then, as an application of results obtained in Section 3, we prove the weighted version of Theorem B in the form of "quantity equivalence". In the course of the proof, we notice that actions of Carleson measures on holomorphic or \mathcal{M} -harmonic Bloch functions make no difference in a certain sense (see Theorem 7). Also, we have the corresponding weighted version of Theorem D.

2. Preliminaries. For $z \in B$, the standard automorphism φ_z is given by

$$\varphi_z(w) = \frac{z - P_z w - \sqrt{1 - |z|^2} Q_z w}{1 - \langle w, z \rangle} \quad (w \in B),$$
(1)

where P_z denotes the orthogonal projection of C^n onto the subspace generated by z and $Q_z = I - P_z$. Then $\varphi_z \in \mathcal{A}, \varphi_z(0) = z$ and $\varphi_z \circ \varphi_z$ is the identity map on B. Furthermore, the real Jacobian $J_R \varphi_z$ of φ_z is given by

$$J_R \varphi_z(w) = \left(\frac{1 - |z|^2}{|1 - \langle w, z \rangle |^2}\right)^{n+1} \quad (w \in B)$$
(2)

and the identity

$$1 - \langle \varphi_z(a), \varphi_z(b) \rangle = \frac{(1 - |z|^2)(1 - \langle a, b \rangle)}{(1 - \langle a, z \rangle)(1 - \langle z, b \rangle)}$$
(3)

holds for every $a, b \in B$. See [7, Chapter 2] for details.

For $\alpha > -1$, define a measure dV_{α} on B by $dV_{\alpha}(z) = \lambda_{\alpha}(1 - |z|^2)^{\alpha} dV(z)$, where the constant λ_{α} is chosen so that $V_{\alpha}(B) = 1$. For $a \in B$ and $\alpha > -1$, we put

$$k_a^{\alpha}(z) = \left(\frac{\sqrt{1-|a|^2}}{1-\langle z, a \rangle}\right)^{n+1+\alpha} \quad (z \in B)$$

for notational simplicity. By (2) and (3), we have a useful change-of-variable formula:

$$\int_{B} h(z)dV_{\alpha}(z) = \int_{B} h(\varphi_{a}(z))|k_{a}^{\alpha}(z)|^{2}dV_{\alpha}(z) \quad (z \in B),$$
(4)

for all measurable h on B, whenever the integrals make sense.

For $u \in C^2(B)$, the invariant Laplacian Δu is defined by

$$(\tilde{\Delta}u)(z) = \Delta(u \circ \varphi_z)(0) \quad (z \in B),$$

where \triangle denotes the ordinary Laplacian. The operator $\tilde{\triangle}$ commutes with automorphisms in the sense that $\tilde{\triangle}(u \circ \varphi) = (\tilde{\Delta}u) \circ \varphi$, for all $\varphi \in \mathcal{A}$. Hence \mathcal{M} -harmonic functions are closed under composition with automorphisms. Moreover, by the invariant mean value property [7, Theorem 4.2.4] and a simple application of the integration in polar coordinates, we have the following mean value property for \mathcal{M} -harmonic functions f:

$$f(z) = \frac{1}{V_{\alpha}(rB)} \int_{rB} f \circ \varphi_z dV_{\alpha} \quad (z \in B, 0 < r < 1).$$
⁽⁵⁾

Given $z \in B$ and $\zeta \in C^n$, the Bergman metric $\beta(z, \zeta)$, modulo a constant factor, is given by

$$\beta(z,\zeta) = \left(\frac{(1-|z|^2)|\zeta|^2 + |< z, \zeta > |^2}{(1-|z|^2)^2}\right)^{1/2}$$

and the corresponding distance d(z, w), called the Bergman distance, has the explicit formula

$$d(z, w) = \frac{1}{2} \log \frac{1 + |\dot{\varphi}_z(w)|}{1 - |\varphi_z(w)|} \quad (z, w \in B).$$

In particular, for any $0 and <math>\alpha > -1$, the function $d^p(z, 0)$ is integrable with respect to the measure dV_{α} . We note that

$$\beta(z,\zeta) \le \frac{|\zeta|}{1-|z|^2} \quad (z \in B, \ \zeta \in C^n)$$
(6)

and the Bergman distance is invariant under A. See Section 2 of [8] for details.

3. Characterizations of MB and MB_0 . We begin with a simple lemma.

LEMMA 1. Let $f \in C^{1}(B)$. Then we have

$$|f(z) - f(0)| \leq \left(\sup_{|w| \leq |z|} Qf(w)\right) d(0, z),$$

for all $z \in B$.

Proof. We first note that by (6) we have

$$\begin{split} |f(z) - f(0)| &= \left| \int_{0}^{1} \{ < \nabla f(tz), \bar{z} > + < \nabla \bar{f}(tz), \bar{z} > \} dt \right| \\ &\leq \int_{0}^{1} \frac{| < \nabla f(tz), \bar{z}/|z| > + < \nabla \bar{f}(tz), \bar{z}/|z| > |}{\beta(tz, z/|z|)} |z| \beta(tz, z/|z|) dt \\ &\leq \int_{0}^{1} \frac{Qf(tz)|z|}{1 - |tz|^{2}} dt \\ &\leq \left(\sup_{|w| \le |z|} Qf(w) \right) \int_{0}^{1} \frac{|z|}{1 - |tz|^{2}} dt, \end{split}$$

for all $z \in B$. Since

$$\int_0^1 \frac{|z|}{1 - |tz|^2} dt = \frac{1}{2} \log \frac{1 + |z|}{1 - |z|} = d(0, z),$$

for all $z \in B$, we have the desired result. This completes the proof.

We are ready to characterize \mathcal{M} -harmonic Bloch functions. The equivalence of the quantities in (a) and (c) of the following theorem was proved in [4, Theorem 5.4] in the unweighted case of $\alpha = 0$.

THEOREM 2. Let $1 \le p < \infty$ and $\alpha > -1$. Then the following quantities are equivalent as f runs over all M-harmonic functions on B:

(a)
$$||f||,$$

(b) $||f||_{b} = \sup_{\substack{z,w\in B\\z\neq w}} \frac{|f(z) - f(w)|}{d(z,w)},$
(c) $||f||_{c,p} = \sup_{a\in B} \left(\int_{B} |f \circ \varphi_{a} - f(a)|^{p} dV_{\alpha} \right)^{1/p},$
(d) $||f||_{d,p} = \sup_{a\in B} \left(\int_{B} (Qf)^{p} |k_{a}^{\alpha}|^{2} dV_{\alpha} \right)^{1/p},$
(e) $||f||_{e} = \inf_{t>0} \sup_{a\in B} \log \left(\int_{B} \exp(t|f \circ \varphi_{a} - f(a)|) dV_{\alpha} \right)^{1/t}.$

In the rest of the paper, the same letter C will denote various positive constants which may change from one occurrence to the next. While constants C may depend on variables like n, p, r, α or some others, they will always be independent of functions, points or measures under consideration.

Proof. By Lemma 1,

$$|f(z) - f(0)| \le ||f|| d(0, z),$$

for all $z \in B$. Replacing f by $f \circ \varphi_w$ and then z by $\varphi_w(z)$, we get, by the invariance of || || and d under \mathcal{A} ,

$$|f(z) - f(w)| \le ||f \circ \varphi_w|| \, d(0, \varphi_w(z)) = ||f|| \, d(z, w),$$

for all $z, w \in B$, and so we have $||f||_b \le ||f||$.

Next, we show that $||f||_{c,p} \leq C ||f||_b$. By the invariance of d under A, we see that

$$|f \circ \varphi_a(z) - f(a)| \le ||f||_b d(z, 0),$$

for all $z, a \in B$. It follows that

$$\int_{B} |f \circ \varphi_{a}(z) - f(a)|^{p} dV_{\alpha} \le \|f\|_{b}^{p} \int_{B} d^{p}(z, 0) dV_{\alpha}(z) \le C \|f\|_{b}^{p},$$

for all $a \in B$ and hence $||f||_{c,p} \leq C ||f||_b$, as desired.

Next, we show $||f||_{d,p} \leq C ||f||_{c,p}$. Assume that $||f||_{c,p} < \infty$. Then, by (5), with $r \to 1$ and the change-of-variable formula (4), one can see that

$$f(z) = \int_{B} f \circ \varphi_{z} dV_{\alpha} = \int_{B} f(w) \left(\frac{1 - |z|^{2}}{|1 - \langle z, w \rangle|^{2}} \right)^{n + 1 + \alpha} dV_{\alpha}(w) \quad (z \in B)$$

Differentiation under the integral sign yields

$$|\langle \nabla f(0), \bar{\zeta} \rangle| \leq C \int_{B} |f| dV_{a}$$

and

$$|\langle \nabla \bar{f}(0), \bar{\zeta} \rangle| \leq C \int_{B} |f| dV_{\alpha},$$

for all $\zeta \in S$. It follows from the definition of Q and Jensen's inequality that

$$Qf(0) \leq C \int_{B} |f| dV_{\alpha} \leq C \left(\int_{B} |f|^{p} dV_{\alpha} \right)^{1/p}.$$

Apply the above inequalities to $f \circ \varphi_z - f(z)$ to obtain

$$Qf(z) \le C \left(\int_{B} |f \circ \varphi_{z} - f(z)|^{p} dV_{\alpha} \right)^{1/p},$$
(7)

for all $z \in B$. Note that k_a^{α} has norm 1 in $L^2(dV_{\alpha})$, for all $a \in B$, by (4). It follows from (7) that

$$\begin{split} \int_{B} (Qf)^{p} |k_{a}^{\alpha}|^{2} dV_{\alpha} &\leq C \int_{B} \int_{B} |f \circ \varphi_{z} - f(z)|^{p} |k_{a}^{\alpha}(z)|^{2} dV_{\alpha} dV_{\alpha}(z) \\ &\leq C \left(\sup_{z \in B} \int_{B} |f \circ \varphi_{z} - f(z)|^{p} dV_{\alpha} \right) \int_{B} |k_{a}^{\alpha}|^{2} dV_{\alpha} \\ &= C \sup_{z \in B} \int_{B} |f \circ \varphi_{z} - f(z)|^{p} dV_{\alpha}, \end{split}$$

for all $a \in B$, and so we have $||f||_{d,p} \leq C ||f||_{c,p}$. Next, we show $||f|| \leq C ||f||_{d,p}$. Fix $r \in (0,1)$. By (5), we have, for each $t \in (-1, 1)$ and $\zeta \in S$,

$$f(t\zeta) = \frac{1}{V_{\alpha}(rB)} \int_{rB} f \circ \varphi_{t\zeta} \, dV_{\alpha}.$$

Fixing ζ , w and denoting the *j*-th component of $\varphi_{t\zeta}(w)$ by $\varphi_j(t)$, one can see that

$$\varphi'_j(0) = \zeta_j - \langle w, \zeta \rangle w_j \text{ and } \overline{\varphi}'_j(0) = \overline{\zeta_j - \langle w, \zeta \rangle w_j},$$

for each j. Thus,

$$\frac{d}{dt}f\circ\varphi_{t\zeta}(w)|_{t=0}=<\nabla f(w),\,\overline{\zeta-< w,\,\zeta>w}>+\overline{<\nabla f(w),\,\overline{\zeta-< w,\,\zeta>w}>},$$

for each $w \in B$ and $\zeta \in S$. It follows that

$$< \nabla f(0), \, \overline{\zeta} > + \overline{\langle \nabla \overline{f}(0), \overline{\zeta} \rangle}$$

$$= \frac{d}{dt} f(t\zeta)|_{t=0}$$

$$= \frac{1}{V_{\alpha}(rB)} \int_{rB} \frac{d}{dt} f \circ \varphi_{t\zeta}(w)|_{t=0} \, dV_{\alpha}(w)$$

$$= \frac{1}{V_{\alpha}(rB)} \int_{rB} \langle \nabla f(w), \overline{\zeta - \langle w, \overline{\zeta} \rangle w} \rangle + \overline{\langle \nabla \overline{f}(w), \overline{\zeta \langle w, \overline{\zeta} \rangle w} \rangle} dV_{\alpha}(w).$$

Hence by (6), one obtains

$$Qf(0) \leq C \int_{rB} \frac{Qf(w)}{1 - |w|^2} dV_{\alpha}(w) \leq C \int_{B} Qf dV_{\alpha}.$$

Now replace f by $f \circ \varphi_a$. Then use Jensen's inequality and the change-of-variable formula (4) to see that

$$Qf(a) \le C \left(\int_{B} (Qf(\varphi_{a}))^{p} dV_{\alpha} \right)^{1/p} = C \left(\int_{B} (Qf)^{p} |k_{a}^{\alpha}|^{2} dV_{\alpha} \right)^{1/p},$$
(8)

for all $a \in B$, so that we get $||f|| \le C ||f||_{d,p}$.

Consequently, ||f||, $||f||_b$, $||f||_{c,p}$ and $||f||_{d,p}$ are all equivalent for each p with $1 \le p < \infty$. Since ||f|| is independent of p and equivalent to $||f||_{c,p}$, for each p in $[1,\infty)$, it is equivalent, in particular, to $||f||_{c,1}$. Thus, in order to finish the proof, it is sufficient to prove the inequalities $||f||_{c,1} \le ||f||_e \le C||f||$.

By Lemma 1, we get as before

$$|f \circ \varphi_a(z) - f(a)| \le ||f|| d(z, 0) = \frac{||f||}{2} \log \frac{1 + |z|}{1 - |z|},$$
(9)

for all $z, a \in B$. Assume $0 < ||f|| < \infty$. Then, by taking $t = (\alpha + 1)/||f||$, one can see from (9) that

$$\|f\|_{e} \leq \frac{\|f\|}{\alpha+1} \sup_{a \in B} \left(\log \int_{B} \exp(\frac{\alpha+1}{\|f\|} |f \circ \varphi_{a} - f(a)|) dV_{\alpha} \right)$$
$$\leq \frac{\|f\|}{\alpha+1} \log \int_{B} \left(\frac{1+|z|}{1-|z|}\right)^{\frac{\alpha+1}{2}} dV_{\alpha}(z).$$

Since the last integral above is finite, we have $||f||_e \le C||f||$.

Finally, the inequality $||f||_{c,1} \le ||f||_e$ is an easy consequence of Jensen's inequality. The proof is complete.

https://doi.org/10.1017/S0017089500032602 Published online by Cambridge University Press

As a result corresponding to Theorem 2, we characterize the *M*-harmonic little Bloch space. In the following theorem, the equivalences of (a), (b) and (e) were proved for holomorphic functions on the disk in [13, Theorem 2.1] and the equivalence of (a) and (c) is given in [4, Theorem 5.6] in the unweighted case of $\alpha = 0$.

THEOREM 3. Let $1 \le p < \infty, \alpha > -1$ and 0 < r < 1. Then the following statements are equivalent for a function f that is \mathcal{M} -harmonic on B.

(a) $f \in MB_0$.

(b)
$$\lim_{|a|\to 1} \sup_{\substack{z \in E_r(a) \\ z \neq a}} \frac{|f(z) - f(a)|}{d(z, a)} = 0.$$

- (c) $\lim_{|a| \to 1} \int_{B} |f \circ \varphi_{a} f(a)|^{p} dV_{\alpha} = 0.$ (d) $\lim_{|a| \to 1} \int_{B} (Qf)^{p} |k_{a}^{\alpha}|^{2} dV_{\alpha} = 0.$
- (e) There exists a constant t > 0 such that

$$\lim_{|a|\to 1} \int_B \exp(t|f \circ \varphi_a - f(a)|) \, dV_\alpha = 1.$$

Before proceeding to the proof, we note that

$$1 - |w|^2 \approx 1 - |a|^2 \quad (w \in E_r(a)), \tag{10}$$

for each fixed $r \in (0, 1)$. This follows from (3). Here and elsewhere, the notation $A(w) \approx B(a)$ means that two quantities have ratio bounded and bounded away from 0 by constants independent of the points w, a under consideration.

Proof. We first prove the equivalence of (a) and (b). We shall assume (a) holds and prove (b). By Lemma 1, we have

$$|f(z) - f(0)| \leq \left(\sup_{|w| < r} Qf(w)\right) d(0, z),$$

for |z| < r. Replacing f by $f \circ \varphi_a$ and, using the invariance of Q under A, one obtains

$$|f \circ \varphi_a(z) - f(a)| \leq \left(\sup_{|w| < r} Qf(\varphi_a(w)) \right) d(0, z),$$

for |z| < r. It follows from the invariance of d under A that

$$\sup_{\substack{z \in E_r(a) \\ z \neq a}} \frac{|f(z) - f(a)|}{d(z, a)} = \sup_{\substack{0 < |z| < r}} \frac{|f \circ \varphi_a(z) - f(a)|}{d(\varphi_a(z), a)}$$
$$= \sup_{\substack{0 < |z| < r}} \frac{|f \circ \varphi_a(z) - f(a)|}{d(z, 0)}$$
$$\leq \sup_{|w| < r} Qf(\varphi_a(w))$$
$$= \sup_{w \in E_r(a)} Qf(w),$$

for all $a \in B$. Now, letting $|a| \rightarrow 1$, we obtain (b) by (10).

Assume (b) holds. Using (5), one can easily see as before that

$$Qf(0) \le C \int_{rB} |f| dV.$$

Replace f by $f \circ \varphi_a - f(a)$ and then use the change-of-variable formula (4) to see that

$$\begin{split} Qf(a) &\leq C \int_{rB} |f \circ \varphi_a - f(a)| dV \\ &= C \int_{E_r(a)} |f(z) - f(a)| \frac{(1 - |a|^2)^{n+1}}{|1 - \langle z, a \rangle|^{2n+2}} dV(z) \\ &\leq C \bigg(\sup \frac{|f(z) - f(a)|}{d(z, a)} \bigg) \int_{E_r(a)} d(z, a) \frac{(1 - |a|^2)^{n+1}}{|1 - \langle z, a \rangle|^{2n+2}} dV(z) \\ &= C \bigg(\sup \frac{|f(z) - f(a)|}{d(z, a)} \bigg) \int_{rB} d(z, 0) dV(z) \\ &\leq C \bigg(\sup \frac{|f(z) - f(a)|}{d(z, a)} \bigg), \end{split}$$

for each $a \in B$, where sup is taken over all $z \in E_r(a)$ with $z \neq a$. Letting $|a| \rightarrow 1$, we have proved (a).

We assume (a) holds and prove (c). Let $a \in B$. Then, by (9) and the invariance of d under A, one obtains

$$\begin{split} &\int_{B} |f \circ \varphi_{a} - f(a)|^{p} dV_{\alpha} \\ &= \int_{rB} |f \circ \varphi_{a} - f(a)|^{p} dV_{\alpha} + \int_{B \setminus rB} |f \circ \varphi_{a} - f(a)|^{p} dV_{\alpha} \\ &\leq \left(\sup_{0 < |z| < r} \frac{|f \circ \varphi_{a}(z) - f(a)|}{d(z, 0)} \right)^{p} \int_{rB} d^{p}(z, 0) dV_{\alpha}(z) + \|f\|^{p} \int_{B \setminus rB} d^{p}(z, 0) dV_{\alpha}(z) \\ &\leq C \left(\sup_{z \in \mathcal{E}_{r}(a)} \frac{|f(z) - f(a)|}{d(z, a)} \right)^{p} + \|f\|^{p} \int_{B \setminus rB} d^{p}(z, 0) dV_{\alpha}(z). \end{split}$$

Having seen that (a) and (b) are equivalent, one can see that the first term of the expression above tends to 0 as $|a| \rightarrow 1$, for each r. Consequently, first taking the limit as $|a| \rightarrow 1$ and then as $r \rightarrow 1$, we obtain (c).

Assume (c) and show (d). Note that $f \in MB$ by Theorem 2. By (10), we have

$$\lim_{|a|\to 1} \sup_{z\in E_i(a)} \int_B |f \circ \varphi_z - f(z)|^p dV_\alpha = 0, \tag{11}$$

for each $t \in (0, 1)$. Now, by the change-of-variable formula (4) and (7), we have

$$\begin{split} \int_{B} (Qf)^{p} |k_{a}^{\alpha}|^{2} dV_{\alpha} &= \int_{tB} (Qf)^{p} (\varphi_{a}) dV_{\alpha} + \int_{B \setminus tB} (Qf)^{p} (\varphi_{a}) dV_{\alpha} \\ &\leq \sup_{z \in E_{t}(a)} (Qf)^{p} (z) + \|f\|^{p} V_{\alpha} (B \setminus tB) \\ &\leq C \left(\sup_{z \in E_{t}(a)} \int_{B} |f \circ \varphi_{z} - f(z)|^{p} dV_{\alpha} \right) + \|f\|^{p} V_{\alpha} (B \setminus tB). \end{split}$$

Consequently, first taking the limit as $|a| \rightarrow 1$ and then as $t \rightarrow 1$, we obtain (d) by (11).

The implication (d) \Rightarrow (a) is a consequence of (8).

Consequently, (a), (b), (c) and (d) are all equivalent. Since (a) is independent of p and equivalent to (c), for each p in $[1,\infty)$, it is equivalent to (c) when p = 1. Thus, in order to finish the proof, it is sufficient to show, (a) \Rightarrow (c) \Rightarrow (c) when p = 1.

We assume (a) holds and prove (e). By Lemma 1 with $f \circ \varphi_a$ in place of f, we have

$$|f \circ \varphi_a(z) - f(a)| \le \left(\sup_{w \in E_{lz}(a)} Qf(w)\right) d(0, z) \quad (z \in B).$$
(12)

Since $f \in M\mathcal{B}_0$ by assumption, it follows from (10) that $|f \circ \varphi_a(z) - f(a)| \to 0$ as $|a| \to 1$, for each fixed $z \in B$. Choose t > 0 such that $t ||f|| < 2(\alpha + 1)$. Then, by (12), one can see that

$$\exp(t|f\circ\varphi_a(z)-f(a)|) \leq \left(\frac{1+|z|}{1-|z|}\right)^{\frac{d|f|}{2}},$$

for all $z, a \in B$. Since the right side of the above expression is integrable with respect to the measure dV_{α} , (e) is a consequence of the Lebesgue dominated convergence theorem.

Finally, the implication (e) \Rightarrow (c) with p = 1 easily follows from Jensen's inequality. The proof is complete.

4. Carleson measures. Fix $\alpha > -1, r \in (0, 1)$ and let μ be a positive Borel measure on B. We say that μ is an α -weighted Carleson measure if

$$\sup_{a\in B}\frac{\mu(E_r(a))}{V_{\alpha}(E_r(a))}<\infty.$$

If, in addition, μ satisfies the condition

$$\lim_{|a|\to 1} \frac{\mu(E_r(a))}{V_\alpha(E_r(a))} = 0,$$

we say that μ is an α -weighted vanishing Carleson measure. It turns out that the notion of (vanishing) Carleson measures is independent of the choice of r. In fact, it is known (see for example, [14, Theorems A and B]) that μ is an α -weighted Carleson measure if an only if its α -weighted Berezin transform is bounded; that is

$$\sup_{a\in B}\int_B |k_a^{\alpha}|^2 d\mu < \infty$$

Similarly, μ is an α -weighted vanishing Carleson measure if and only if

$$\lim_{|a| \to 1} \int_{B} |k_{a}^{\alpha}|^{2} d\mu = 0.$$
 (13)

Hence the following corollary is an immediate consequence of Theorems 2 and 3.

- COROLLARY 4. Let $1 \le p < \infty$, $\alpha > -1$, and assume that f is \mathcal{M} -harmonic on \mathcal{B} . (a) $f \in \mathcal{MB}$ if and only if $(Qf)^p dV_{\alpha}$ is an α -weighted Carleson measure. (b) $f \in \mathcal{MB}_0$ if and only if $(Qf)^p dV_{\alpha}$ is an α -weighted vanishing Carleson measure.
- (b) $f \in MD_0$ if and only if (Q)). av_{α} is an a-weighted vanishing Carleson measure.

It is also well known that, given $0 , <math>\mu$ is an α -weighted Carleson measure if and only if

$$\int_{B} |f|^{p} d\mu \leq C \int_{B} |f|^{p} dV_{\alpha},$$

for all holomorphic functions f in $L^p(dV_\alpha)$. In [12], Xiao observed that α -weighted Carleson measures on the disc can be characterized by a similar integral condition, where L^p -integrals are replaced by Berezin type integrals of holomorphic Bloch functions. Here, we prove in Theorem 7 below that α -weighted Carleson measures are also characterized by the same Berezin type integral condition for \mathcal{M} -harmonic Bloch functions. We first need a submean value type inequality for \mathcal{M} -harmonic functions.

PROPOSITION 5. Let 0 , <math>0 < t < s < 1 and $\alpha > -1$. Then, there exists a constant C such that

$$\sup_{z\in E_t(a)}|f(z)|^p\leq \frac{C}{V_{\alpha}(E_s(a))}\int_{E_s(a)}|f|^pdV_{\alpha},$$

for all $a \in B$ and f an M-harmonic function on B.

Before proceeding to the proof, we first note that, for a given r, we have

$$V_{\alpha}(E_r(a)) \approx (1 - |a|^2)^{n+1+\alpha} \quad (a \in B).$$
 (14)

Proof. Fix a point $a \in B$ and an \mathcal{M} -harmonic f. Let $z \in E_t(a)$ and r = s - t. Note that $E_r(z) \subset E_s(a)$ and hence $1 - |w|^2 \approx 1 - |a|^2$, for all $w \in E_r(z)$, by (10). By Proposition 10.1 of [8] and (14), we have

$$|f(z)|^{p} \leq C \int_{E_{r}(z)} \frac{|f(w)|^{p}}{(1-|w|^{2})^{n+1+\alpha}} dV_{\alpha}(w)$$

$$\leq \frac{C}{(1-|a|^{2})^{n+1+\alpha}} \int_{E_{s}(a)} |f|^{p} dV_{\alpha}$$

$$\leq \frac{C}{V_{\alpha}(E_{s}(a))} \int_{E_{s}(a)} |f|^{p} dV_{\alpha},$$

which completes the proof.

Before turning to Theorem 7, we need a simple lemma.

LEMMA 6. For every a, b and w in B, we have

$$\frac{1 - |\varphi_a(b)|^2}{1 - \langle \varphi_a(w), \varphi_a(b) \rangle} = 1 - \langle \varphi_b(w), \varphi_b(a) \rangle.$$

Proof. A direct calculation by (3) completes the proof. In the following the notation \mathcal{B} denotes the holomorphic Bloch space.

THEOREM 7. Let 0 , <math>0 < r < 1 and $\alpha > -1$. Then the following quantities are equivalent as μ runs over all positive Borel measures on B.

(a)
$$\|\mu\|_{a,p} = \sup_{a \in B} \sup_{f \in MB} \int_{B} |f - f(a)|^{p} |k_{a}^{\alpha}|^{2} d\mu.$$

(b) $\|\mu\|_{b,p} = \sup_{a \in B} \sup_{f \in B \ \|f\|=1} \int_{B} |f - f(a)|^{p} |k_{a}^{\alpha}|^{2} d\mu.$
(c) $\|\mu\|_{c,r} = \sup_{a \in B} \frac{\mu(E_{r}(a))}{V_{\alpha}(E_{r}(a))}.$

Proof. The inequality $\|\mu\|_{b,p} \leq \|\mu\|_{a,p}$ is clear because $\mathcal{B} \subset M\mathcal{B}$.

Next, we show that $\|\mu\|_{c,r} \leq C \|\mu\|_{b,p}$. Let t = (1 + r)/2. Corresponding to each $a = |a|\zeta$ in $B, \zeta \in S$, let $b = -t\zeta$ and put

$$f_a(z) = \frac{1}{1 - \langle z, a_0 \rangle}, a_0 = \varphi_a(b) \quad (z \in B).$$

Note that $a_0 \neq 0$. Since f_a is holomorphic, we have from [10] that

$$||f_a|| \approx \sup_{z \in B} (1 - |z|^2) |\nabla f_a(z)|$$

and therefore one can see from (3) that

$$\|f_a\| \approx \sup_{z \in B} \frac{|a_0|(1-|z|^2)}{|1-\langle z, a_0 \rangle|^2} = \sup_{z \in B} \frac{|a_0|(1-|\varphi_{a_0}(z)|^2)}{|1-|a_0|^2} = \frac{|a_0|}{(1-|a_0|^2)}$$

Also, by (3), one can easily verify that

$$1 - |a_0|^2 \approx 1 - |a|^2 \approx |1 - \langle z, a_0 \rangle | \quad (z \in E_r(a)).$$

Thus, it follows from (14) that

$$\|\mu\|_{b,p} \ge \frac{1}{\|f_a\|^p} \int_{E_r(a)} |f_a(z) - f_a(a_0)|^p |k_{a_0}^{\alpha}(z)|^2 d\mu(z)$$

$$\ge \frac{C}{V_{\alpha}(E_r(a))} \int_{E_r(a)} \left(\frac{1}{|a_0|} \left|1 - \frac{1 - |a_0|^2}{1 - \langle z, a_0 \rangle}\right|\right)^p d\mu(z).$$
(15)

On the other hand, using the explicit formula (1) of the standard automorphism and simple manipulations, one can easily see that

$$\varphi_b(a) = -\left(\frac{t+|a|}{1+t|a|}\right)\zeta$$

and hence that

$$\frac{1}{|\varphi_b(a)|}| < \varphi_b(w), \varphi_b(a) > |=| < \varphi_b(w), \zeta > |= \left|\frac{t+\langle w, \zeta \rangle}{1+t\langle w, \zeta \rangle}\right|,$$

for all $w \in B$. Note from (3) that $|\varphi_z(w)| = |\varphi_w(z)|$, for all $z, w \in B$. Hence, it follows from Lemma 6 that

$$\begin{split} \inf_{z \in E_r(a)} \frac{1}{|a_0|} \left| 1 - \frac{1 - |a_0|^2}{1 - \langle z, a_0 \rangle} \right| &= \inf_{|w| < r} \frac{1}{|\varphi_a(b)|} \left| 1 - \frac{1 - |\varphi_a(b)|^2}{1 - \langle \varphi_a(w), \varphi_a(b) \rangle} \right| \\ &= \inf_{|w| < r} \frac{1}{|\varphi_b(a)|} \left| \langle \varphi_b(w), \varphi_b(a) \rangle \right| \\ &= \inf_{|w| < r} \left| \frac{t + \langle w, \zeta \rangle}{1 + t < w, \zeta \rangle} \right| \\ &\geq \frac{1 - r}{4}. \end{split}$$

Combining the above with (15), we have

$$\sup_{a\in B}\frac{\mu(E_r(a))}{V_{\alpha}(E_r(a))}\leq C\|\mu\|_{b,p},$$

as desired.

Finally, we show that $\|\mu\|_{a,p} \leq C \|\mu\|_{c,r}$. Using the same method of Axler [1, Lemma 3.5], we can choose a sequence $\{w_i\}$ of points in *B* and a positive integer *M* such that $\bigcup_{i=1}^{\infty} E_r(w_i) = B$ and each $z \in B$ is in at most *M* of the sets $E_{(1+r)/2}(w_i)$. Let $a \in B$ and $f \in MB$ with $\|f\| = 1$. Note that

$$1 - |\varphi_a(z)|^2 \approx 1 - |\varphi_a(w)|^2$$
, $1 - |z|^2 \approx 1 - |w|^2$,

for $z \in E_l(w)$ and $a \in B$ by (10). It follows from (3) that, for each fixed $l \in (0,1)$, $|k_a^{\alpha}(z)| \approx |k_a^{\alpha}(w)|$, for $z \in E_l(w)$ and $a \in B$. Thus we obtain from Proposition 5, with t = r and s = (1 + r)/2, that

$$\begin{split} \int_{B} |f - f(a)|^{p} |k_{a}^{\alpha}|^{2} d\mu &\leq \sum_{i=1}^{\infty} \int_{E_{r}(w_{i})} |f - f(a)|^{p} |k_{a}^{\alpha}|^{2} d\mu \\ &\leq C \sum_{i=1}^{\infty} \left(\sup_{z \in E_{r}(w_{i})} |f(z) - f(a)|^{p} \right) |k_{a}^{\alpha}(w_{i})|^{2} \mu(E_{r}(w_{i})) \\ &\leq C \sum_{i=1}^{\infty} \frac{\mu(E_{r}(w_{i}))|k_{a}^{\alpha}(w_{i})|^{2}}{V_{\alpha}(E_{s}(w_{i}))} \int_{E_{s}(w_{i})} |f - f(a)|^{p} dV_{\alpha} \\ &\leq C \sum_{i=1}^{\infty} \frac{\mu(E_{r}(w_{i}))}{V_{\alpha}(E_{r}(w_{i}))} \int_{E_{s}(w_{i})} |f - f(a)|^{p} |k_{a}^{\alpha}|^{2} dV_{\alpha} \\ &\leq C \|\mu\|_{c,r} \sum_{i=1}^{\infty} \int_{E_{s}(w_{i})} |f - f(a)|^{p} |k_{a}^{\alpha}|^{2} dV_{\alpha} \\ &\leq CM \|\mu\|_{c,r} \int_{B} |f \circ \varphi_{a} - f(a)|^{p} dV_{\alpha}. \end{split}$$

Thus, for $1 \le p < \infty$, the desired inequality follows from Theorem 2. For 0 , an application of Jensen's inequality shows that the last integral of the expression above is less than or equal to

$$\sup_{a\in B} \left(\int_{B} |f \circ \varphi_{a} - f(a)| dV_{\alpha} \right)^{p} \approx \|f\|^{p} = 1,$$

by Theorem 2 again. The proof is complete.

Also, a slight modification of the above proof gives a corresponding result for α -weighted vanishing Carleson measures as follows.

THEOREM 8. Let $0 and <math>\alpha > -1$. Then the following statements are equivalent for a positive Borel measure μ on B.

- (a) $\lim_{|a|\to 1} \sup_{f\in B \atop \|f\|=1} \int_{B} |f-f(a)|^{p} |k_{a}^{\alpha}|^{2} d\mu = 0.$ (b) $\lim_{|a|\to 1} \sup_{f\in B \atop \|f\|=1} \int_{B} |f-f(a)|^{p} |k_{a}^{\alpha}|^{2} d\mu = 0.$
- (c) μ is an α -weighted vanishing Carleson measure.

Proof. A trivial modification of the proof of Theorem 7 yields the implications (a) \Rightarrow (b) \Rightarrow (c). Now, we assume (c) holds and prove (a). Let $\{w_i\}$ be the sequence chosen in the proof of Theorem 7. Note that $|w_i| \rightarrow 1$ as $i \rightarrow \infty$. Since $\mu(E_r(a))/V_{\alpha}(E_r(a))$ tends to 0 as $|a| \rightarrow 1$, by assumption, for any $\epsilon > 0$ there is a positive integer N such that

$$\frac{\mu(E_r(w_i))}{V_{\alpha}(E_r(w_i))} < \epsilon \quad (i > N).$$
(16)

Let $a \in B$ and $f \in MB$, ||f|| = 1. By an argument similar to the proof of Theorem 7, one can see by Hölder's inequality that

$$\begin{split} \sum_{i=1}^{N} \int_{E_{r}(w_{i})} |f - f(a)|^{p} |k_{a}^{\alpha}|^{2} d\mu \\ &\leq \sum_{i=1}^{N} \left(\int_{E_{r}(w_{i})} |k_{a}^{\alpha}|^{2} d\mu \right)^{1/2} \left(\int_{E_{r}(w_{i})} |f - f(a)|^{2p} |k_{a}^{\alpha}|^{2} d\mu \right)^{1/2} \\ &\leq C \left(\int_{B} |k_{a}^{\alpha}|^{2} d\mu \right)^{1/2} \left(\int_{B} |f \circ \varphi_{a} - f(a)|^{2p} dV_{\alpha} \right)^{1/2} \sum_{i=1}^{N} \left(\frac{\mu(E_{r}(w_{i}))}{V_{\alpha}(E_{r}(w_{i}))} \right)^{1/2} \\ &\leq C \left(\int_{B} |k_{a}^{\alpha}|^{2} d\mu \right)^{1/2} \sum_{i=1}^{N} \left(\frac{\mu(E_{r}(w_{i}))}{V_{\alpha}(E_{r}(w_{i}))} \right)^{1/2} \end{split}$$

and from (16), if we set 2s = 1 + r, then

$$\sum_{i=N+1}^{\infty} \int_{E_r(w_i)} |f - f(a)|^p |k_a^{\alpha}|^2 d\mu$$

$$\leq C \sum_{i=N+1}^{\infty} \frac{\mu(E_r(w_i))}{V_{\alpha}(E_r(w_i))} \int_{E_r(w_i)} |f - f(a)|^p |k_a^{\alpha}|^2 dV_{\alpha}$$

$$\leq CM\epsilon \int_B |f \circ \varphi_a - f(a)|^p dV_{\alpha}$$

$$\leq CM\epsilon.$$

Consequently,

$$\int_{B} |f - f(a)|^{p} |k_{a}^{\alpha}|^{2} d\mu \leq C \bigg(\int_{B} |k_{a}^{\alpha}|^{2} d\mu \bigg)^{1/2} \sum_{i=1}^{N} \bigg(\frac{\mu(E_{r}(w_{i}))}{V_{\alpha}(E_{r}(w_{i}))} \bigg)^{1/2} + CM\epsilon,$$

for each $a \in B$. Now, since $\epsilon > 0$ is arbitrary, letting $|a| \to 1$, we get (a) by (13). The proof is complete

M-HARMONIC BLOCH FUNCTIONS

REFERENCES

1. S. Axler, Bergman spaces and their operators in Surveys of some recent results in operator theory, Pitman Research Notes in Math. 1 (1988), 1-50.

2. S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J, 53 (1986), 315-332.

3. B. R. Choe, Projections, the weighted Bergman spaces, and the Bloch space, Proc. Amer. Math. Soc. 108 (1990), 127-136.

4. K. T. Hahn and E. H. Youssfi, \mathcal{M} -Harmonic Besov *p*-spaces and Hankel operators in the Bergman space on the unit ball in C^n , Manuscripta Math. 71 (1991), 67–81.

5. K. T. Hahn and E. H. Youssfi, Möbius invariant Besov *p*-spaces and Hankel operators in the Bergman space on the unit ball in Cⁿ, Complex Variables 17 (1991), 89–104.

6. M. Jevitć and M. Pavlović, On M-harmonic Bloch space, Proc. Amer. Math. Soc. 123 (1995), 1385-1392.

7. W. Rudin, Function theory in the unit ball of C^n (Springer-Verlag, 1980).

8. M. Stoll, Invariant potential theory in the unit ball of C^n (Cambridge University Press, 1994).

9. K. Stroethoff, Besov-type characterizations for the Bloch space, Bull. Aust. Math. Soc. 39 (1989), 405-420.

10. R. M. Timoney, Bloch functions in several complex variables I, Bull. London Math. Soc. 12 (1980), 241-264.

11. R. M. Timoney, Bloch functions in several complex variables II, J. Reine Angew. Math. 319 (1980), 1-22.

12. J. Xiao, Carleson measure, atomic decomposition and free interpolation from Bloch space, Ann. Acad. Sci. Ser. A. I. Math. 19 (1994), 35-46.

13. J. Xiao and L. Zhong, On little Bloch space, its Carleson measure, atomic decomposition and free interpolation, *Complex Variables* 27 (1995), 175–184,

14. K. Zhu, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), 329-357.

Boe Rim Choe	Young Joo Lee
DEPARTMENT OF MATHEMATICS	DEPARTMENT OF MATHEMATICS
Korea University	Mokpo National University
SEOUL 136-701	Chonnam 534-729
Korea	Korea
E-mail address: choebr@semi.korea.ac.kr	E-mail address: yjlee@chungkye.mokpo.ac.kr