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Linear analysis characterizes pressure gradient
history effects in turbulent boundary layers
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Adverse pressure gradient (APG) turbulent boundary layers (TBL) require an
understanding of the details of the pressure gradient, or history effect, to characterize
the associated variation of spatiotemporal turbulent statistics. The streamwise-varying
mean pressure gradient is reflected in the streamwise developing mean flow field and
thus resolvent analysis, which captures the amplification of the Navier–Stokes equations
linearized about the turbulent mean, can be used to understand linear amplification in
APG TBLs. In particular, by using a biglobal approach in which the amplification is
characterized by a temporal frequency and spanwise wavenumber, the streamwise and
wall-normal inhomogeneities of the APG TBL can be resolved and related to the APG
history. The linear response is able to identify multiscale phenomena, identifying a
near-wall peak with λ+z ≈ 100 for zero pressure gradient TBLs and mild to moderate APG
TBLs as well as large-scale modes whose amplification increases with APG strength and
Reynolds number. It is shown that the monotonic growth in the turbulent statistics with
increasing APG is reflected in the linear growth in the associated resolvent amplification.
Collapse in the Reynolds stresses is obtained through an augmented hybrid velocity scale,
which replaces the local APG strength measure in the hybrid velocity scale presented
in Romero et al. (Intl J. Heat Fluid Flow, vol. 93, 2022, 108885) with a velocity that
encapsulates the pressure gradient history. While this resolvent approach is applicable
to any APG TBL, it is shown from a scaling analysis of the linearized Navier–Stokes
equations that the linear growth observed in the resolvent amplification with the history
effect is limited to near-equilibrium APG TBLs.

Key words: boundary layer structure, turbulent boundary layers, turbulence theory

† Email address for correspondence: gomezsr@stanford.edu

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1002 A20-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
38

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:gomezsr@stanford.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.1138&domain=pdf
https://doi.org/10.1017/jfm.2024.1138


S.R. Gomez and B.J. McKeon

1. Introduction

Adverse pressure gradients (APGs) arise in many industrial applications, such as the flow
over an airplane wing or within a diffuser. To isolate the effect of the APG from the surface
curvature, many studies focus on the flat plate turbulent boundary layers (TBL) with an
applied APG. In an experiment, the APG can be created by a converging/diverging ceiling
(Volino 2020), an obstacle in the free stream (Vishwanathan et al. 2021) or wall-normal
transpiration (Clauser 1954; Marusic & Perry 1995) to decelerate the free stream velocity
while in simulations, the free stream velocity is prescribed through a boundary condition
(Kitsios et al. 2016; Bobke et al. 2017; Lee 2017). Whereas the statistics of the canonical
zero pressure gradient (ZPG) TBL are parameterized solely by its local Reynolds number,
Re, the APG TBL statistics are parameterized by the local Re, a measure of the local
pressure gradient strength, and a measure of the upstream pressure gradient conditions or
history effect (Schlatter & Örlü 2010; Monty, Harun & Marusic 2011; Bobke et al. 2017;
Vinuesa et al. 2017). A characterization of the history effect on the turbulent statistics
remains difficult because measurements and analysis of the upstream, streamwise variation
of the flow field is required.

The friction Reynolds number, Reτ , the local ratio of the outer boundary layer thickness,
δ99, to the viscous length scale, �ν , is often used as the Reynolds number to parameterize
wall-bounded turbulent flows, like a channel or a TBL. There have been various scaling
relationships presented to collapse different regions of the mean turbulent flow for different
Reτ including the near-wall, log-region and wake regions (Coles 1956; Pope 2000; Wei
et al. 2005; Marusic et al. 2013). While both the outer-scaled wake structures and
intermediate large-scale structures in the log region, such as the attached eddies or very
large-scale motions, become increasingly energized with Reτ , the effect is most evident in
the latter as a secondary peak in the log region emerges at sufficiently high Reτ (Smits,
McKeon & Marusic 2011; Lee & Moser 2015; Deshpande et al. 2023). This intensifies the
Reynolds stresses in viscous units throughout the boundary layer, primarily in the outer
region of the flow, for both ZPG and APG TBLs (Aubertine & Eaton 2005; Hutchins et al.
2009).

One measure of the APG strength in attached APG TBLs is the Clauser parameter
(Clauser 1954), β = (δ∗/τW)(dP/dx), where δ∗ is the displacement thickness, τW is the
wall-shear stress, P is the free stream pressure and x is the streamwise coordinate. This
study will focus on mild to moderate APG with β ≤ 5 such that the flow remains attached.
An increase in β affects the APG TBL by increasing the wake in the mean velocity profile
(Aubertine & Eaton 2005; Monty et al. 2011), energizing the large-scale structures that
scale with δ99 in the wake region (Harun et al. 2013; Lee 2017; Sanmiguel Vila et al.
2020; Pozuelo et al. 2022) and a subsequent intensification of the Reynolds stresses in
viscous units in both the inner and outer regions of the flow (Sanmiguel Vila et al.
2020). The energization of large-scales in the outer region creates secondary peaks in
the turbulent fluctuations, even at low Reτ (Bobke et al. 2017; Lee 2017), though these
energized motions are primarily the outer-scaled structures in the wake rather than log
region structures as evidenced in high Reτ studies (Sanmiguel Vila et al. 2020; Deshpande
et al. 2023). The differences in the APG TBL structure have inspired a variety of scaling
relationships that collapse the turbulent statistics (Gungor et al. 2016; Sekimoto et al.
2019; Romero et al. 2022; Wei & Knopp 2023). While there are differences between
APG and ZPG TBLs, primarily in the outer region of the TBL, the near-wall structure
remains mostly unchanged (Harun et al. 2013; Bobke et al. 2017; Pozuelo et al. 2022). The
premultiplied streamwise kinetic energy spectra in experiments and simulations identify
a self-similar near-wall peak at y = 15�ν , λx = 1000�ν and λz = 100�ν for canonical
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wall-bounded turbulent flows (Hoyas & Jiménez 2006; Marusic, Mathis & Hutchins 2010;
Smits et al. 2011; Eitel-Amor, Örlü & Schlatter 2014; Lee & Moser 2015; Baidya et al.
2017) that are reflected in APG TBLs with similar length scales (Harun et al. 2013; Bobke
et al. 2017; Lee 2017; Pozuelo et al. 2022; Deshpande et al. 2023).

Due to the history effect, which we will explore here in terms of the upstream variations
in β(x), the local parameters Reτ and β are not able to fully parameterize the local
turbulent statistics since the boundary layer adjusts from the upstream conditions over a
finite distance. In order to characterize the history effect and its influence on the turbulent
statistics, the analysis needs to account for the upstream variation in the flow. As the history
effect influences the mean velocity field, it also affects quantities of engineering interest
like the skin-friction. Vinuesa et al. (2017) proposed an empirical predictive skin-friction
curve for APG TBLs based on ZPG TBL data by accounting for the history effect through
an upstream average of β. Here, an upstream average of β will also be used as a measure
for the history effect to quantify the accumulated β in the APG TBL at a given streamwise
location. It has been shown that for two APG TBLs with locally matched Reτ and β, the
APG TBL with the larger accumulated β exhibits intensified streamwise fluctuations in the
outer region and a stronger wake (Bobke et al. 2017; Tanarro, Vinuesa & Schlatter 2020).

Through the resolvent analysis framework of McKeon & Sharma (2010), the Fourier
transformed velocity fluctuations are shown to be equal to the resolvent operator acting
on the nonlinear terms in the Navier–Stokes equations (NSE). The resolvent operator
is the inverse of the linearized NSE (LNSE) and captures the scale-dependent linear
amplification from the mean flow field. In resolvent analysis, the resolvent operator is
decomposed into an orthonormal forcing basis, φi, an orthonormal response basis, ψ i, and
linear gains σi. Due to the non-normality of the LNSE, the leading modes take advantage
of the increased pseudoresonant amplification such that the leading forcing and response
modes exploit sources of non-normal amplification in the TBL (Trefethen 1999; Schmid
& Henningson 2002; Symon et al. 2018). For wall-bounded turbulent flows, the main
sources of non-normality come from the componentwise non-normality from the mean
shear responsible for the lift-up mechanism and Orr-like tilting (Jovanović & Bamieh
2005; Hwang & Cossu 2010). Linear analyses that take advantage of these non-normal
mechanisms have been shown to identify two distinct spectral peaks when the LNSE
is augmented with an eddy viscosity (Del Alamo & Jimenez 2006; Cossu, Pujals &
Depardon 2009). For streamwise developing flow fields, the convective non-normality is
also present. It has been shown that modes that take advantage of the lift-up mechanism
from the componentwise non-normality lead to low-rank behaviour in the resolvent
operator. For these modes, ψ1 agrees well with the data-driven modes (Abreu et al. 2020,
2021) and the σi identify length scales akin to the near-wall cycle (Moarref et al. 2013). The
convective non-normality manifests itself as upstream forcing that leads to downstream
responses (Chomaz 2005; Sipp & Marquet 2013; Schmidt et al. 2018; Symon et al. 2018;
Pickering et al. 2021). The convective and componentwise non-normalities are present in
the biglobal resolvent approach, which has been applied to, for example, ZPG boundary
layers (Sipp & Marquet 2013; Abreu et al. 2021), supersonic boundary layers (Kamal et al.
2020) and spatially developing jets (Jeun, Nichols & Jovanović 2016; Schmidt et al. 2018).
The linear biglobal studies of Ran et al. (2019) on stochastic receptivity in a laminar
boundary layer and Davis, Uzun & Alvi (2019) on streamwise energy growth in a ZPG
TBL also take advantage of the non-normal mechanisms discussed herein.

While the resolvent framework gives accurate predictions for systems with uncorrelated
white-noise forcing, turbulent flows have correlated and structured nonlinear forcing
that can limit comparisons between the resolvent modes and turbulent statistics (Towne,
Schmidt & Colonius 2018; Morra et al. 2021). This study focuses solely on the linear
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amplification mechanisms in APG TBLs that amplify the nonlinear terms in the NSE
while drawing similarities to the turbulent statistics. Here, biglobal resolvent analysis is
used to include the non-parallel effects of the APG TBL encoded within the mean flow
field. This includes the history effect, which will be shown to affect the linear amplification
and can be characterized through a scaling analysis of the LNSE.

This paper is organized as follows. Section 2 will describe the resolvent analysis
framework, details about the discretization and a description of the datasets used in this
study. Section 3 focuses on the local β and Reτ effects on the optimal response, σ1ψ1,
on both the small and large scales in low-moderate Reτ TBLs. Section 4 demonstrates
that the resolvent amplification, σi, of large-scale structures grows monotonically with a
measure of the history effect. This linear monotonic growth with the history effect is then
used to augment the hybrid velocity scale which improves the collapse of the Reynolds
stresses (Sekimoto et al. 2019; Romero et al. 2022). An explanation for the linear growth is
provided in § 5 through a simplified Orr–Sommerfeld-Squire (OSS) operator. A discussion
of results is provided in § 6. Conclusions are presented in § 7.

2. Methodology

In this section, the biglobal resolvent approach is discussed for an incompressible TBL.
This includes a description of the LNSE, the resolvent analysis framework, details of the
numerical analysis and a description of the mean flow fields used herein.

2.1. Linearized Navier–Stokes equations
A statistically stationary incompressible TBL develops over a flat plate with a specified
free stream velocity, U∞(x). The streamwise, wall-normal and spanwise coordinates
are x, y and z with y = 0 denoting the location of the wall and z assumed to be
statistically homogeneous. The streamwise, wall-normal and spanwise velocities are u,
v and w and the pressure divided by density is p. The domain is taken as a subset
of the flat plate such that x ∈ [xi, xo], where the leading edge and virtual origin of
the TBL are both outside of the domain and y ∈ [0, ymax], where ymax is in the free
stream. Within the domain, reference locations, xr, are used to define the length and
velocity scales that non-dimensionalize the equations. Variables without superscripts
are non-dimensionalized with the reference free stream velocity, Ur = U∞(xr), and the
reference length scale, δ99,r = δ99(xr), where δ99 denotes the boundary layer thickness.
Variables with + superscripts are non-dimensionalized with the reference friction velocity
uτ,r = uτ (xr) and reference viscous length scale �ν = ν/uτ,r, where uτ = √

τW/ρ. These
reference length and velocity scales are then used to define the local outer Reynolds
number, Re = Urδ99,r/ν and local friction Reynolds number, Reτ = uτ,rδ99,r/ν.

The instantaneous flow field, q̆(x, t) = [ŭ, p̆]T , can be written as the sum of a
known mean flow field, Q̄(x, y) = [Ū(x, y), P̄(x, y)]T , and a fluctuation, q(x, t) =
[u(x, t), p(x, t)]T . For the boundary layer, Ū = Ū(x, y)ex + V̄(x, y)ey. Due to the spanwise
homogeneity and statistical stationarity of the flow, the NSE may be Fourier transformed
in z and t. The Fourier transformed variables are denoted by ·̂, such that

ĝ(x, y; kz, ω) =
∫

t

∫
z

g(x, y, z, t) ei(ωt−kzz) dz dt, (2.1)

where kz = 2π/λz and ω = 2π/λt are the spanwise wavenumber and temporal frequency.
λz and λt then denote the spanwise and temporal wavelengths. The equations governing
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the Fourier modes with (ω, kz) /=(0, 0) are then[ −iω + Ū · ∇ + ∇Ū − Re−1∇2 + εs ∇
∇· 0

]
q̂ =

[ −∇ · ûu
0

]
, (2.2)

where ∇ = [∂x, ∂y, ikz], ∇2 = ∂xx + ∂yy − k2
z and εs is the sponge used for artificial

boundary conditions. Following McKeon & Sharma (2010), the nonlinear terms in (2.2)
are treated as a nonlinear forcing with spanwise wavenumber kz and temporal frequency ω,
f̂ = [ f̂ u, 0]T . To focus on what insight can be obtained from the linear resolvent operator,
the forcing is assumed to be uncorrelated from the turbulent fluctuations. While eddy
viscosity can be used to incorporate turbulent interactions into the LNSE (Del Alamo
& Jimenez 2006; Cossu et al. 2009; Hwang & Cossu 2010), their specific forms are
data-driven or ad hoc and can obfuscate the true linear amplification in the NSE and
the interpretability of the nonlinearities (Morra et al. 2021; Pickering et al. 2021). In this
approach, f̂ can be interpreted as an externally applied body force.

No-slip and no-penetration boundary conditions are applied such that û(x, y = 0) =
0 is enforced. In the free stream, Neumann boundary conditions are applied such that
∂yû(x, y = ymax) = 0. Since the streamwise domain is a subset of the flat plate with x ∈
[xi, xo], artificial boundary conditions are applied in the streamwise direction such that q̂
remains compact within the domain. This is enforced through the sponge, εs(x), in (2.2),
which is 0 for 90 % of the domain and ramps up quadratically from 0 to ε0 at the endpoints
of the domain. The explicit form of εs(x) is

εs(x) =
⎧⎨⎩ε0

(|x − xc − L/2| − 0.45Lx)
2

0.0025L2 if |x − xc − L/2| ≥ 0.45L,

0 otherwise,
(2.3)

where L = xo − xi and xc is the centre of the domain. εs causes q̂ to decay to 0 in
the vicinity of the boundaries. Similar strategies have been applied for linear analyses
of incompressible flows in Ran et al. (2019) and Abreu et al. (2021). The inlet and
outlet of the domains are then treated with Dirichlet boundary conditions such that
q̂(x = xi, y) = q̂(x = xo, y) = 0 to enforce the compact nature of the resolvent modes. The
effect of the sponge is qualitatively similar to fringe zones that are commonly used in
TBL simulations to dampen the outflow and allow for the treatment of periodic boundary
conditions (Chevalier et al. 2007). In the calculations presented herein, εs = 30. Varying
this value was found to have a negligible effect on the linear amplification, provided that
εs was large enough to dampen q̂ at the boundaries.

2.2. Resolvent analysis
Equation (2.2) can be written compactly as

(−iωB+L)q̂ = Bf̂ , (2.4)

where B projects away the p component as Bq̂ = [û, 0]T . The kinetic energy of the
disturbances, integrated over the domain, is a norm induced by the inner product,

〈a, b〉 = 1
L

∫ xo

xi

∫ ymax

0
a∗Bb dy dx. (2.5)

By using this inner product, the adjoint of (2.2) can also be written compactly as

(iωB+L†)q̃ = Bf̃ , (2.6)
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(b)(a)

x

Wf WrH
y

Figure 1. Schematic depicting in white the integration domains for ‖ · ‖f (a) and ‖ · ‖r (b). The striped regions
at the edges of the domain depict the sponge layers and the black solid curve depicts a representative boundary
layer edge.

where the daggers denote adjoint operators and tildes denote adjoint variables. An explicit
form of the adjoint operator can be found in Gomez (2024). It is assumed that ω is not
an eigenvalue of L so that the resolvent, H = (−iωB+L)−1B, and adjoint resolvent,
H† = (iωB+L†)−1B, exist.

In resolvent analysis, one is interested in finding the forcing inputs of H that lead to
the largest amplification. Here, the forcing inputs and response outputs ofH are measured
with the induced norms ‖ · ‖f and ‖ · ‖r from the inner products 〈a, b〉f = 〈a,Wf b〉 and
〈a, b〉r = 〈a,Wrb〉, respectively. Here, Wr and Wf are positive definite operators that
dictate the components and spatial domains of q̂ and f̂ that are used to measure the
response and the forcing. The exact form ofWr andWf will be specified for the studies
considered. An example of the regions included in the norms ‖ · ‖f and ‖ · ‖r are depicted
in figure 1.

The linear amplification, σ , ofH is here defined as the Rayleigh quotient,

σ 2 = ‖H f̂ ‖r

‖ f̂ ‖f
= 〈H f̂ ,WrH f̂ 〉

〈 f̂ ,Wf f̂ 〉 = 〈 f̂ ,H†WrH f̂ 〉
〈 f̂ ,Wf f̂ 〉 . (2.7)

To find the largest amplification, one seeks the forcing, φ, that produces the largest σ such
that

φ = argmax
‖ f̂ ‖f =1

σ. (2.8)

It can be shown that (2.8) can be solved via the eigenvalue problem,

HWrH†φj = σ 2
j Wfφj. (2.9)

Since HWrH† andWf are positive definite operators, the eigenvalues, σ 2
j , are positive

and the eigenvectors, φj, are orthonormal with respect to the inner product 〈·, ·〉f such that
〈φj,φk〉f = δjk, where δjk is the Kronecker delta. The σj are ordered such that σ1 ≥ σ2 ≥
· · · ≥ 0. φj are here identified as the forcing modes with corresponding linear gain, σj.
The response modes, ψ j, are defined as ψ j = σ−1

j Hφj. It can be shown that the response
modes are orthonormal with respect to the inner product 〈·, ·〉r such that 〈ψ j,ψk〉r = δjk.

In this study, two sets of norms are considered. The first set is tailored to study
the effect of local Reτ and β on the linear amplification in § 3. This requires that the
response modes are supported at xr1 where β(xr1) and Reτ (xr1) are defined. If there
is no spatial masking applied to the inner product such that 〈·, ·〉r = 〈·, ·〉f = 〈·, ·〉,
then the response and forcing modes can be supported anywhere along the streamwise
domain. In order to capture the modes at xr1 , spatial masking is applied to the response
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modes so that

〈a, b〉r = 1
L+

∫ x+
r1

+L+
d /2

x+
r1−L+

d /2

∫ ymax

0
a∗Bb dy dx+, (2.10)

where L+
d = 2150, while 〈·, ·〉f = 〈·, ·〉. The forcing modes can extend across the entire

domain allowing forcing from upstream the spatial mask to influence the linear response
within the spatial mask. This helps capture non-local amplification mechanisms like those
from the convective non-normality. Here Ld is held constant in viscous units since the
small-scale modes are expected to scale in inner units. For a mode to be optimal under
the new inner products via the definition in (2.7), the optimal response modes must be
supported in the streamwise region within L+

d /2 of xr1 . The effect of L+
d has been shown in

the appendix of Gomez (2024), where it is shown that increasing L+
d reduces the response

of the near-wall small-scale modes at xr1 . The second set of inner products is used to
study the history effects in § 4. In order to only consider the effect of the pressure gradient
upstream of xr2 , the inner products 〈·, ·〉r and 〈·, ·〉f are masked such that

〈a, b〉r = 〈a, b〉f = 1
Lx

∫ xr2

xi

∫ ymax

0
a∗Bb dy dx, (2.11)

where xi is 12 δ99(xr2) upstream of xr2 . This makes the resolvent modes optimal in the
sense of (2.8) if they are supported upstream of xr2 and also prevents the amplification
mechanisms present downstream of xr2 from contributing to the linear amplification.

It is important to note that ψ j, φj and σj are dependent on the (λz, λt) pair, Ū , and choice
of norms. Here ψ j can be used to reconstruct the flow field as q̂ = ∑

j ξjσjψ j, where ξj are
coefficients that are found through fitting to data or appealing to the full NSE. The studies
herein will primarily consider the optimal response, σ1ψ1, as a rank-one approximation
for the Fourier modes without any nonlinear closure. By taking an integral over ω, one can
also define the premultiplied amplification,

Ê( y+; k+
z ) = k+

z

∫ ω+
max

ω+
min

|σ+
1 (k

+
z , ω

+)ψ+
u,1(x

+
r1
, y+; k+

z , ω
+)|2 dω+. (2.12)

Here Ê can be thought of as the premultiplied streamwise kinetic energy spectrum for
a velocity signal under the rank-one representation, û = σ1ψu,1. Here, Ê( y+; k+

z ) is a
measure of the linear amplification across all scales.

2.3. Numerical discretization
The domain is discretized with Nx equispaced points in the streamwise direction and
Ny points in the wall-normal direction. The wall-normal grid points are stretched such
that half the points are below ymin. Each wall-normal grid point, yk, is mapped from an
equispaced grid point, y′

k using yk = ay′
k/(b − y′

k) where a = ymaxymin/( ymax − 2ymin)
and b = 1 + a/ymax. This is similar to the grids used in the supersonic linear analyses
of Kamal et al. (2020) and Malik (1990), except here, the grid stretching is used to
increase the resolution in the near-wall region of the TBLs studied. Both streamwise
and wall-normal directions use a fourth-order summation by parts scheme for the
differentiation operators (Mattsson & Nordström 2004). Once discretized, the operators
B, L, L†,H andH† become the 4NxNy × 4NxNy matrices B, L, L†, H and H†.
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In order to perform the integration in (2.5), the streamwise and wall-normal integration
is performed with a trapezoidal scheme. The positive definite matrix, W T , performs the
integration in (2.5) such that

〈a, b〉 ≈ a∗W Tb. (2.13)

In a similar fashion, the operatorsWr andWf are discretized with the diagonal matrices
Mr and M f . The diagonal entries of Mr and M f are 0 for the entries omitted and 1 for the
entries included in the inner products. As a result, the inner products for the discretized
space are defined as

〈a, b〉r = a∗MrW Tb = a∗W rb, (2.14)

and
〈a, b〉f = a∗M f W Tb = a∗W f b. (2.15)

In the discretized space, the eigenvalue problem in (2.9) becomes

HW rH†φj = σ 2
j W fφj, (2.16)

while ψ j = σ−1
j Hφj. Equation (2.16) is solved using the Arnoldi algorithm (Saad 2011).

The matrices B, L, L†, W r and W f are sparse, while the resolvent matrices, H and H†,
are dense matrices that are costly to compute. The Arnoldi approach requires repeated
calculations of v = Hb, or equivalently solving (−iωB + L)v = Bb, and similarly for the
adjoint. Following the approach described in Sipp & Marquet (2013) and Schmidt et al.
(2018), LU decompositions of (−iωB + L) and (iωB + L†) are computed once. The LU
factors can then efficiently solve (−iωB + L)v = Bb through Gaussian elimination. Thus,
the overall cost of the Arnoldi algorithm is the cost of the LU decompositions (Jeun
et al. 2016). The LU decomposition and Gaussian elimination is computed using the Intel
oneAPI Math Kernel Library PARDISO (Schenk & Gärtner 2004), which is optimized
for the sparse form of the matrices and uses parallelized subroutines. See the appendix of
Gomez (2024) for an algorithm explaining this strategy in more detail.

2.4. Description of datasets
This study focuses on mild to moderate APG TBL where β ∈ [0, 5]. Since the large-scale
modes require large streamwise domains to both be resolved and achieve significant
amplification, only studies with large, well-resolved streamwise domains, relative to
δ99(xr), are considered. The mean flow fields of interest are the large eddy simulation
flat plate TBL data of Bobke et al. (2017), Pozuelo et al. (2022) and Eitel-Amor et al.
(2014) which each have domains upstream of xr2 larger than 20δ99(xr2). The datasets all
use a constant free stream velocity, U∞(x), followed by an APG imposed by the boundary
condition U∞(x) = (x − x0)

m, where x0 and m are specified to create varying degrees of
APG strengths. Under this regime, the APG TBLs are in the ‘near-equilibrium’ regime
(Mellor & Gibson 1966; Townsend 1976; Bobke et al. 2017).

A brief description of the parameters of interest in the datasets are described in table 1.
In this study, the Clauser parameter is defined as

β(x) = δ∗(x)
u2
τ (x)

dP
dx
(x, y = δ99(x)), (2.17)

as in Bobke et al. (2017) and Pozuelo et al. (2022). Pozuelo et al. (2022) notes that the
free stream boundary conditions in the simulations cause Ū to decrease in the wall-normal
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Dataset m x0/δ
∗
0 Reτ range β(xr1 ) β(xr2 ) 〈β∞〉 Colour

S0 0 0 (190, 2569) 0 0 0 —
b1 −0.14 110 (190, 862) 1.00 0.78 0.90 —
m13 −0.13 60 (190, 896) — 0.91 1.04 —
b14 −0.16 60 (190, 2256) — 1.65 1.48 —
b2 −0.18 110 (190, 910) 2.10 1.56 1.95 —
m16 −0.16 60 (190, 934) — 1.66 2.19 —
m18 −0.18 60 (192, 973) 4.37 2.09 3.48 —

Table 1. Parameters describing the datasets, along with quantities of interest. The parameters m and x0 set the
PG in each simulation. Note that the Reτ range is listed for the entire dataset, although only subsets of the
domains are considered in this study. The streamwise locations xr1 and xr2 are chosen such that Reτ (xr1 ) = 550
and Reτ (xr2 ) = 777. Here 〈β∞〉 is computed following (2.19). The ZPG dataset, S0, is from Eitel-Amor et al.
(2014) and the APG dataset, b14, is from Pozuelo et al. (2022) while the rest are from Bobke et al. (2017).

location from its peak at the boundary layer edge such that dP/dx at y = δ99 is different
from the imposed pressure gradient (PG) through the free stream boundary condition. Due
to this, the parameter

β∞(x) = δ∗(x)
u2
τ (x)

dP
dx
(x, ymax) = δ∗(x)

u2
τ (x)

dP∞
dx

(x), (2.18)

will also be used to account for the effect of the free stream boundary condition. Here, β∞
is used to parameterize the effect of history by accounting for the streamwise variation of
the imposed APG boundary condition. In this study, the history effect is quantified by

〈β∞〉 = 1
xr2 − xi,2

∫ xr2

xi,2

β∞(x) dx

= 1
xr2 − xi,2

∫ xr2

xi,2

∫ ∞

0

1
uτ 2(x)

(1 − Ū(x, y))
dP∞
dx

(x) dy dx, (2.19)

where xi,2 is an upstream location. Here, xi,2 = xr2 − 12δ99(xr2) corresponds to the inlet
location of the domains used to study the history effect in § 4. Here 〈β∞〉 is similar to the
streamwise average that Vinuesa et al. (2017) considered, though they averaged β over the
momentum thickness-based Reynolds number. The domains used in Vinuesa et al. (2017)
for the averaging were O(10δ99) large, which is consistent with the averaging domain used
here. Furthermore, (2.19) offers a measure of the APG history in a manner analogous to
the streamwise averaging induced by the inner product in (2.11).

Figure 2(a) shows the variation of β with Reτ for the datasets used, along with the
values at the reference locations used in this study. Figure 2(b–d) show Ū+, uu+ and V̄+
at fixed xr2 . Consistent with the observations from previous studies described above, these
mean flow fields demonstrate monotonic growth in the wake velocity and decreasing Ū+
in the log-layer region with increasing β. Monotonic growth in the secondary peak of uu+
is observed with 〈β∞〉, with the near-wall peak of uu+ also affected. The non-monotonic
behaviour in V̄+ with 〈β〉∞ highlight the non-equilibrium nature of the datasets, with
different levels of deceleration in the flow at xr2
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Figure 2. (a) Here β plotted against Reτ for the APG datasets described in table 1. The solid lines indicate the
domain used to study the history effect. The values evaluated at xr2 and xr1 are plotted with circles and squares,
respectively. The thicker lines denote the subdomains used in § 4 to study the history effect. Plots of Ū+ (b),
uu+ (c) and V̄+ (d) against y+ at xr2 . The viscous units are also computed at xr2 .

Case Database Reτ (xr1 ) Nx Ny ymax ymin

1 S0 537 900 251 5 0.24
2 b1 537 900 251 5 0.24
3 b2 537 900 251 5 0.24
4 m18 505 750 251 5 0.23
5 S0 1500 1100 251 3 0.14
6 S0 1800 1200 251 3 0.13
7 b14 1500 1100 251 3 0.14

Table 2. Local Reτ and grid information for the different studies in § 3.

3. Effect of local parameters on linear amplification

In this section, the local effects of β(xr) and Reτ (xr) on the linear amplification are
examined. Here, the reference viscous and outer length and velocity scales are defined
at xr1 . Table 2 describes quantities of interest used for the seven case studies in this section.
In order to support the large-scale modes, the domains are set with Lx = 43.44, which
corresponds to the entire domain of the b2 dataset, except for case 4 whose entire domain
is Lx = 36.6 long. To resolve small-scale structures near the wall, ymin = 0.24

√
537/Reτ

in cases 5–7 so that ymin is proportional to the start of the log-layer (Wei et al. 2005). Since
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δ99 does not grow as rapidly for larger Reτ TBL, cases 5–7 reduce the ymax to 3 to further
increase the resolution within the boundary layer while maintaining ymax > δ99(x).

3.1. Effect of masking on the response and forcing modes
Here, the goal is to study the linear response of large- and small-scale modes subject
to different local parameters. This requires that the response modes are supported at
xr1 where β(xr1) and Reτ (xr1) are defined. Without a spatial mask, the response and
forcing modes can be supported anywhere along the streamwise domain. It was shown
that the small-scale modes, characterized by O(λ+z ) ≤ O(100), were amplified via the
componentwise non-normality from the mean shear near the wall while the large-scale
modes, characterized by O(λz) ≥ O(1), extended into the outer region of the flow and
were amplified via the convective non-normality (Gomez 2024). As a result, the unmasked
small-scales are expected to be concentrated in the upstream region where they experience
the largest mean shear within the domain. The unmasked large-scale modes can extend
across the entire domain, with the largest forcing amplitude concentrated upstream and
the largest response amplitude concentrated downstream (Sipp & Marquet 2013; Symon
et al. 2018).

As an example for how the leading resolvent modes behave without masking, ψ1 and
φ1 are computed for a representative small-scale mode with (λ+z , λ

+
t ) = (50, 50) and a

representative large-scale mode with (λz, λt) = (1, 1.4) using case 3. In figure 3(a,b),
φv,1 and σ1ψu,1 are plotted for the representative small-scale and in figure 3(c,d) for the
representative large-scale. As alluded to earlier, without masking, the small-scale modes
are concentrated upstream of xr1 while the large-scale mode is supported at xr1 . For these
unmasked modes, the amplitude of ψ1( y, xr1) is negligible for the small-scale mode and
serves as a poor measure of the linear response at xr1 .

In figure 3(e, f ), the modes from figure 3(a,b) are recomputed using the spatial masking
described in (2.10). Both the representative small-scale φv,1 and ψu,1 are supported at xr1
with the spatial mask. Due to the larger Reτ at xr1 compared with the inlet location and
fixed λz and λt across the domain in the calculation, the modes plotted in figure 3(e, f )
have significantly smaller wall-normal extents and streamwise wavelengths than those in
figure 3(a,b). This is because the small-scale modes are amplified by the large mean shear
concentrated in the viscous subregion, whose wall-normal extent scales with �ν . As Reτ
increases downstream, �ν decreases and constrains the length scales of the modes. Now
the representative large-scale modes from figure 3(c,d) are recomputed using the same
spatial masking and plotted in figure 3(g,h). Since 〈·, ·〉f is left unchanged, the modes can
still be amplified via the convective non-normality. As a result, the large-scale forcing
can still be supported upstream of xr1 while its response is supported downstream of xr1 .
However, because of the spatial masking, the optimal forcing is primarily concentrated
upstream of xr1 since any forcing downstream of xr1 + Ld/2 would lead to a response
outside of the spatial mask without contributing to σ1. This also highlights the non-local
nature in the amplification of large-scale structures and their susceptibility to upstream
history effects that is explored in more detail in § 4.

For the rest of this section, the spatial masking described in (2.10) is applied to identify
optimal small and large-scale responses at xr1 .

3.2. Effect of β on linear amplification at low Reτ
To investigate the effect of local β(xr1), cases 1–4 are examined since they have a similar
Reτ (xr1) and different values of β(xr1). Furthermore, the slow variation in β(x) near xr1
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Figure 3. Real parts of φv,1 (a,c,e,g) and σ1ψu,1 (b,d, f,h) for the representative small-scale (a,b,e, f ) and
large-scale (c,d,g,h) modes using case 3. The modes in (a–d) are computed without masking in the inner
product while the modes in (e–h) are computed using masking from (2.10) in the inner product for the response
modes. The edges of the spatial mask are plotted with the black solid vertical lines. The dotted line is the
reference location, xr1 . The curved solid line denotes the local boundary layer thickness.

minimizes the influence of dβ/dx or history on the linear amplification between cases 1–4.
Here, the effect of β(xr1) on the resolvent amplification is compared for a wide range of
scales.

First, the streamwise component of the linear response of the ZPG TBL of case 1 and
the APG TBL of case 3 are compared for a large-scale mode (λ+t = 200, λz = 1) and
small-scale mode (λ+t = 50, λ+z = 50) in figure 4. Plotted in figure 4(a–c), the effect of
the APG on the large-scale response at xr1 is an increase in the magnitude and peak
amplitude location farther from the wall than the ZPG counterparts. Since these large-scale
modes have support, i.e. non-negligible amplitude, in the outer region of the TBL, it is
expected that they are most susceptible to the APG effects. On the other hand, the near-wall
small-scale modes plotted in figure 4(d–f ) are only slightly affected by the change in
the mean flow field. This is because for this mild APG, the near-wall is still dominated
by viscous effects and the APG hardly affects the inner scaling of Ū+. These near-wall
resolvent modes have been shown to be self-similar in the region where the mean flow
field demonstrates self-similarity (Moarref et al. 2013; Gomez 2024).

While it is illustrative to compare the effect of β on individual modes, we now consider
the effect of increasing β over a range of scales. The leading masked response modes are
computed over a range of 31 logarithmically spaced k+

z between 2π/9.5 and 2π/11 000
and 33 logarithmically spaced ω+ between 2π/1.25 and 2π/20 000. This range of k+

z and
ω+ is wide enough to capture the small-scale and large-scale modes and encompasses
the characteristic length and time scales of the expected energy-containing structures in
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Figure 4. Real parts of σ+
1 ψ

+
u,1 (a,b,d,e) for large-scale (a,b) and small-scale (d,e) modes using case 1 (a,d)

and case 3 (b,e). The black lines are the same as those plotted in figure 3. Line plots of |σ+
1 ψ

+
u,1( y+, xr1 )| for

the large-scale (c) and small-scale ( f ) modes. Black and blue denote modes computed using cases 1 and 3,
respectively.

the actual TBLs. The premultiplied amplification spectra, Ê( y+, k+
z ), (see (2.12)) are then

computed for each β.
In figure 5, Ê+ is computed for cases 1–4. For the ZPG in case 1, Ê+ identifies only a

near-wall peak with a local maximum near y+ = 20 and λ+z = 77. The lack of a secondary
peak in the premultiplied amplification at this low Reτ is similar to what is observed in the
true premultiplied kinetic energy spectra for low Reτ ZPG TBL and channels, which are
dominated by the near-wall cycle. For the APG TBLs in cases 2-4, a near-wall peak is also
observed. For case 2, this local maximum occurs at the same location as case 1, while for
cases 3 and 4, the local maxima is at y+ = 20 and λ+z = 60.

Here Ê+ predicts higher wall-normal locations and smaller wavelengths for the
near-wall peak than observed in the turbulent data of ZPG and mild to moderate
APG TBLs. Besides the assumption of uncorrelated (uncoloured) forcing, one reason
for this discrepancy is that in cases 1–4, δ99 varies substantially while λz remains
fixed across the domain. As an example, in case 3, the λ+z = 100 mode has a
λz = 0.19δ99(xr1) = 1.20δ99(xi). That is, near the inlet, the λ+z = 100 mode is larger than
the δ99 at the inlet. This in turn causes the λ+z = 100 mode at xr1 to behave like a large-scale
mode and experiences amplification via the convective non-normality, rather than the
componentwise non-normality characteristic of the small-scale modes. As a result, the
λ+z modes are absent from the near-wall peak for these low Reτ TBLs. The changing
nature of the mode behaviour with streamwise distance is a challenge unique to the TBL
relative to the canonical internal flows. It was shown in Gomez (2024) that by also applying
masking to the forcing such that 〈·, ·〉f = 〈·, ·〉r, a local maximum could be found in Ê+
with λ+z ≈ 100 for both ZPG and APG TBLs.
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Figure 5. Here Ê+( y+; k+
z ) is plotted against y+ and λ+z for case 1 (a), case 2 (b), case 3 (c) and case 4 (d);

the value of β(xr1 ) increases monotonically from (a) to (d). The black contour lines in each subplot are spaced
as 95 %, 82 %, 50 %, 10 %, 1 % and 0.1% of the maximum value of Ê+( y+; λ+z ).

Despite the simplified forcing assumption, Ê+ also demonstrates a secondary peak for
large-scale modes farther from the wall for the APG TBLs in cases 2–4. The secondary
peak in Ê+ is amplified monotonically with increasing β. Similarly, a monotonic increase
in the secondary peak of the spanwise kinetic energy spectra was observed in the DNS data
of Lee (2017) at similar Reτ to the mean data used here. For larger Reτ , the streamwise
energy spectra in the experiment also demonstrate large-scale secondary peaks that are
energized with increasing β (Sanmiguel Vila et al. 2020). Despite the similar trends seen
with β, there is again a discrepancy in the location of the secondary peaks in Ê+ and
those of similar low Reτ spanwise energy spectra (Bobke et al. 2017; Lee 2017). The
secondary peaks in figure 5(b–d) occur at λ+z ≈ 0.5Reτ whereas the turbulent data reports
λ+z ≈ 0.8Reτ − 0.9Reτ . The discrepancy is likely attributable to the lack of nonlinear
closure, but may again be in part related to the change in δ99 across the domain, as a mode
of the order of δ99(xr1) at xr1 would be around 6δ99(xi) for case 3. Since the large-scale
modes are forced from the upstream location, the smaller upstream boundary layer can
affect the behaviour of the amplification at xr1 by geometrically constraining the modes
that can be amplified downstream. Nonetheless, the masked biglobal resolvent approach is
able to capture the presence of both a small-scale, near-wall peak and a large-scale peak
that is amplified monotonically with increasing β.

3.3. Effect of Reτ on linear amplification
Linear amplification is now considered using the ZPG TBL dataset of Eitel-Amor et al.
(2014) for the low Reτ case 1 and larger Reτ case 6. The large Reτ APG TBL dataset of
Pozuelo et al. (2022) (case 7) is also used to study the β effects in the linear amplification
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Figure 6. Here Ê+( y+; k+
z ) is plotted against y+ and λ+z for case 1 (a) and case 6 (b). Here Ū+(xr1 , y+) (c) and

contour lines of Ê+( y+; k+
z ) (d) for cases 1 and 6 plotted in dotted and solid lines, respectively. The contours

in (a), (b) and (d) denote 95 %, 82 %, 50 %, 10 %, 1 % and 0.1% of the maximum value of Ê+
uu( y+; λ+z ).

at higher Reτ by comparing with case 5 at the matched Reτ = 1500. The sweeps are
computed using the same kz and ω range as the previous results while the wall-normal
stretching has been adjusted to resolve the smaller inner region in the larger Reτ datasets
by shrinking ymin.

Figure 6(a,b) show the variation of Ê+ for cases 1 and 6. Along with the near-wall peaks,
Ê+ also demonstrate increased amplification for the large-scale modes with increasing
Reτ with case 6 showing evidence of a secondary peak. This secondary peak occurs at
a wall-normal location slightly closer to the wall than the secondary peaks of the APG
results in figure 5, potentially pointing to a difference between log and APG-amplified
wake structures. However, the Reτ is too small to adequately distinguish between the two.
Figure 6(d) provides direct comparison of isocontours of Ê+ for cases 1 and 6. These plots
demonstrate that Ê+ is self-similar in the near-wall region due to the inner-scaled mask
in 〈·, ·〉r and self-similar mean flows, plotted in figure 6(c) for reference. The near-wall
self-similarity of the resolvent amplification in individual modes had been studied for
channel flows in Moarref et al. (2013) and spatially developing TBLs in Gomez (2024)
where the response and forcing modes are spatially constrained via small, inner-scaled,
streamwise domains. Figure 6(d) demonstrates that the self-similarity in the resolvent
modes persists in Ê+ even when the forcing modes are not spatially constrained with a
spatial mask or limited domain length. As the large-scale outer-scaled resolvent modes
become more amplified farther from the wall, the near-wall self-similarity of Ê+ breaks
because the inner-scaled self-similarity of Ū no longer holds.

Now, the effect of β is considered for the large Reτ APG TBL from case 7. These
results are directly compared with those of case 5 which is at the same Reτ , with their
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Figure 7. Here Ū+(xr1 , y+) (a) and contour lines of Ê+( y+; k+
z ) (b) for cases 5 and 7 plotted in black and

orange lines, respectively. The contours in (b) denote 95 %, 82 %, 50 %, 10 %, 1 % and 0.1 of the maximum
value of Ê+

uu( y+; λ+z ).

mean velocity profiles compared in figure 7(a). At this larger Reτ and mild β, the inner
region of the mean flow is hardly affected by the APG. As a result, Ê+ exhibits near-wall
self-similarity in figure 7(b), like case 6. For Ê+, the self-similarity breaks at larger λ+z ,
indicating that these large-scale modes are more sensitive to the changes in the mean flow
field than the near-wall small-scale modes. Just as was seen in figure 5, the large-scale
modes are more amplified for the APG TBL than the ZPG TBL in the higher Reτ case,
similar to the energization of the outer-scaled spectral peak in the APG TBL observed in
Pozuelo et al. (2022).

The masked biglobal resolvent analysis approach is able to capture Reτ trends seen in
the spanwise energy spectra. A self-similar near-wall peak and increased amplification in
the large-scale structures with Reτ are observed. At matched Reτ , the linear amplification
increases with β. For sufficiently large Reτ , a secondary peak is also observed. Although
this analysis is is restricted to a rank-one approximation, it nonetheless suggests that
changes in the linear amplification from a change in the mean flow field due to Reτ and
β can explain features seen in experimental and simulation data without any nonlinear
closure in the form of a scale-dependent coefficient. It can thus be surmised that these
are phenomena associated with the dominant behaviour of the linear resolvent whose
predictions can be improved by more sophisticated modelling of the details of the
nonlinear forcing.

4. History effect on the linear amplification of large-scale modes

It was noted in several studies, and plotted in figure 2(c), that an increase in the measure
of the accumulated upstream pressure gradient strength results in an increase in the
streamwise turbulent fluctuations (Bobke et al. 2017; Tanarro et al. 2020; Pozuelo et al.
2022). In this section, the effect of the upstream pressure gradient, or history effect, on the
linear amplification is studied by using the biglobal resolvent analysis. Although the PG
does not enter the LNSE, the history effect is manifested in the LNSE through the pressure
gradient’s effect on Ū . The calculations in this section will use the datasets from table 1
with the numerical details described in table 3. From figure 2(a), it can be seen that all
the datasets begin with different values of β(xi) while at xr2 all the domains have matched
Reτ (xr2) and some have similar β(xr2), like m16, b2 and b14. The rich β values allow
for the study of history effects and allows for the comparison of cases where the local β
and Reτ are matched. Including the m18 dataset also allows for a study over a relatively
large range of accumulated APG strength with β∞ ∈ [0.9, 3.5] and the ZPG dataset with
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Nx Lx (xi − xr2 )/Lx Ny ymax ymin

450 15.89 0.765 251 5 0.226

Table 3. Numerical details for the calculations used in § 4. The domains are streamwise sections of the
datasets described in table 1 such that x − xr2 ∈ [−0.815, 0.185]Lx where Reτ (xr2 ) = 777. Values here
non-dimensionalized with δ99(xr2 ).
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Figure 8. Response modes and resolvent amplification for a large-scale mode with λz = 2, λt = 4.48.
|σ+

1 ψ
+
u,1(xr2 , y+)| (a) and |ψu,1(xr2 , y+)| = √

Reτ (xr2 )|ψ+
u,1(xr2 , y+)| (b). The colours are colour coded

according to table 1 and the arrow in (a) denotes increasing 〈β∞〉. σj = σ+
j Re/Re2

τ for the same large-scale
mode, with the arrow denoting the direction of increasing j (c). j = 1, 2, 3, 4 and 5 correspond to the circle,
star, square, triangle and ×. The lines are lines of best fit, fitted for 〈β∞〉 > 0.

〈β∞〉 = 0. Here, the modes are computed using the masking described in (2.11) and the
parameters described in table 3. Additionally, Lx = 15.89 to avoid the low Reτ region in
the database where β ramps up quickly as seen in figure 2(a), particularly for the m18
dataset. Because the APG effects are present mostly in the outer region of the TBL, this
section will focus on the history effect on the large-scale modes, like those plotted in
figure 4(a–c), since they extend into the outer region of the flow.

In § 5, quantities are normalized with the length and velocity scales at xr2 and
the inner products in (2.11) are used. Biglobal resolvent analysis is computed for
a representative large-scale, λz = 2, λt = 4.48. Figure 8(a) demonstrates a monotonic
increase in |σ+

1 ψ
+
u,1(xr2, y+)| with 〈β∞〉, similar to the monotonic growth in uu+ with

〈β∞〉 in figure 2(c). Here, cases b14 and m16 are specifically highlighted since their
β(xr2) ≈ 1.65 and Reτ (xr2) = 777 while 〈β∞〉 differ by approximately 48 %. The variation
in their linear responses, |σ+

1 ψ
+
u,1(xr2, y+)|, evidences non-negligible sensitivity to the

upstream flow conditions. This is unsurprising given the convective non-normality that
amplifies these large-scale modes through upstream forcing present in this biglobal
approach. It is also worth noting that the ZPG mean flow field produces a mode that peaks
closer to the wall than the modes computed with the APG TBL mean flow fields. This may
point to an amplification mechanism for the log-layer structures in the ZPG TBL while the
APG TBL amplifies modes in the wake. However, studies with sufficiently high Reτ with
adequate scale separation would be needed to adequately disambiguate between the log
and wake region structures. Nonetheless, the differences in the ZPG and APG response
modes are likely due to the significantly different Ū in the ZPG TBL that produces a wake
that does not follow the outer scaling for APG TBL studied in Wei & Knopp (2023) as
well as the negligible wall-normal convection from V̄ in the ZPG TBL.
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Figure 9. Plots of σ1 (a), σ2 (b), σ3 (c) and σ4 (d) against 〈β∞〉 computed with the λz and λt from the legend
in (a). The solid lines denote the lines of best fit, fitted for 〈β∞〉 > 0.

To show that the increase in |σ+
1 ψ

+
u,1| is due to the change in σ , figure 8(b) plots |ψu,1|,

demonstrating that for the APG TBL modes, the mode shape amplitude is approximately
〈β∞〉 independent. The modes with increased 〈β∞〉 are farther from the wall due to
the increased wall-normal advection throughout the domain. Figure 8(c) plots σj for
j = 1, 2, 3, 4, 5. Here σj grows approximately linearly with 〈β〉 for 〈β∞〉 > 0, as evidenced
by the lines of best fit. The σj for 〈β∞〉 = 0 do not fall on the line, likely because of the
difference in the outer region of Ū that also causes ψu,1 to peak closer to the wall. The
effects of the wall-normal advection and non-parallel shear terms absent in the ZPG TBL
will be expanded upon later in § 5.

In figure 9, σj for j = 1, 2, 3, 4 is plotted against 〈β∞〉 for a variety of λz and λt,
characteristic of large-scale structures. Just like in figure 8(b), the σj grows approximately
linearly with 〈β∞〉 such that for 〈β∞〉 > 0,

σj(λz, λt) ≈ mj,0(λz, λt)[1 + mj,1(λt, λz)〈β∞〉], (4.1)

where mj,0 and mj,1 are λz and λt dependent positive constants for each gain, σj. Once
again, the σj computed with the ZPG TBL Ū do not fall on this linear fit. Equation
(4.1) encapsulates the influence of the history effect on the linear amplification through
a streamwise averaged measure of β. As mentioned before, similar streamwise averaged
measures of β have been proposed before to account for the history effect in turbulent
statistics (Vinuesa et al. 2017) and the effect of an increased accumulated pressure gradient
has been shown to intensify the streamwise fluctuations (Tanarro et al. 2020). Here, the
history effect is shown to produce a monotonic increase in the linear amplification.

Now we study if the monotonic growth in uu+ with 〈β∞〉 is reflected in the linear
growth of σ1 with 〈β∞〉. The hybrid velocity scale, uh, studied in Romero et al. (2022) and
Sekimoto et al. (2019) showed that by rescaling the Reynolds stresses with u2

h, the APG
induced outer peaks are mitigated. Here uh augments uτ with a wall-normally varying
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pressure velocity, u2
p( y) = ydp/dx = βu2

τ y/δ∗, as

u2
h( y) = u2

τ + u2
p( y) = u2

τ

(
1 + y

δ∗
β
)
. (4.2)

Notably, u2
h/u

2
τ demonstrates linear growth with β, if the effect of β on δ∗ is neglected.

However, uh is not explicitly parameterized by any terms related to the history effect as it
constructed from local mean flow quantities. Through the observation of linear growth of
σ1 with 〈β∞〉, an augmented hybrid velocity scale is proposed as

u2
hyb( y) = u2

τ + 〈β∞〉
β

u2
p( y) = u2

τ

(
1 + y

δ∗
〈β∞〉

)
, (4.3)

which simply replaces β in (4.2) with 〈β∞〉. This form of uhyb is inspired through two
assumptions in mild to moderate APG TBLs. The first is that the characteristic velocity
scale close to the wall is uτ , regardless of β or 〈β∞〉. The second is that u2

hyb has an explicit
linear dependence on 〈β∞〉 like σj in (4.1) because of the increased linear amplification of
large-scale turbulent structures present in the outer region of the TBL. The velocity scale
accounts for history effects by increasing the role of up if 〈β∞〉 > β and decreasing its
influence otherwise.

In figure 10(b), uu is normalized with u2
h as in Romero et al. (2022) and Sekimoto et al.

(2019) demonstrating that it can remove the secondary peaks in uu. However, because uh
is a local measure, it cannot account for the monotonic growth in uu+ with 〈β∞〉. This
is reflected with the b14 (orange) falling below the curves of b2 (blue) and m16 (purple)
in the outer region despite their similar values of β(xr2). Furthermore, m18 (green) falls
above the other curves because of its larger upstream β values. Figure 10(c) demonstrates
improved collapse across the entire boundary layer compared with uu/u2

h by accounting
for history effects. In a similar sense, figure 10(d–i) demonstrate that while rescaling uv
and vv with u2

h mitigates the 〈β∞〉 intensified outer region turbulent fluctuations, using
u2

hyb improves the collapse of the Reynolds stresses by accounting for the larger β∞ effects
upstream. This serves to show that a linear dependence in 〈β∞〉 is reflected in the APG
turbulent statistics of Bobke et al. (2017) and Pozuelo et al. (2022), not just the linear
amplification of their mean flow fields. Furthermore, it suggests that a characterization of
the turbulent statistics requires knowledge of the pressure gradient history.

Extending this velocity scale to other datasets requires a measurement of β(x) over
a long upstream region of the flow to compute the streamwise averages, which is often
not reported. For the calculation of 〈β∞〉 used in uhyb, this study averaged β∞ over
a streamwise domain of 12δ99 upstream of xr2 , which coincides with the domain of
integration used in the inner product in (2.11) that quantifies the linear amplification.
Since, uhyb is based on an analogy with (4.1), which is obtained by the linear amplification
in ‘near-equilibrium’ APG TBLs (Bobke et al. 2017), we caution that the scaling of the
Reynolds stresses is not a general result for APG TBLs. As explained in more detail
in the following section, the linear scaling on σj is not guaranteed to hold for general
non-equilibrium APG TBLs.

5. Explanation of the linear 〈β∞〉 dependence on the amplification

Here, it will be shown that the linear relationship between σj and 〈β∞〉 can be predicted
from the LNSE. In order to do so, several simplifying assumptions are made. First, it is
assumed that the modes computed using the APG TBLs are independent of the mean flow
field based on the observation from figure 8(b). Because of this, only the APG TBL modes
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Figure 10. Plots of uu (a–c), −uv (d–f ) and vv (g–i) at xr2 . (a,d,g) are normalized with u2
τ , (b,e,h) are

normalized with u2
h and (c, f,i) are normalized with uhyb. The line colours are labelled in table 1. Note that (a)

is replotted from figure 2(c). The arrow denotes increasing 〈β∞〉.

will be considered since the ZPG TBL modes have significantly different behaviour since
the outer region of the ZPG TBL has a different structure from the APG TBL (Wei &
Knopp 2023). Second, the dominant terms in the LNSE are determined by comparing
the advection (Ū∂x, V̄∂y) and mean shear (Ūy, Ūx, V̄x) terms. Specifically, the terms are
compared in the outer region by using the norm

‖ f ‖2
o = 1

Lx

∫ xr2

xi

∫ ymax

yo

| f |2 dy dx, (5.1)

where y+
o = 40 since the modes of interest are large-scale modes supported in the outer

region of the flow as plotted in figure 8(a). This also enables the assumption that
‖∂xψi,j‖o ∼ O(δ−1

99 ‖ψi,j‖o), ‖∂yψi,j‖o ∼ O(δ−1
99 ‖ψi,j‖o) and kz ∼ O(δ−1

99 ) since the length
scales of the large-scale modes scale with the outer length scale. Note that due to the
non-dimensionalization with the outer units, δ99 ∼ O(1). As a result, the measure of the
advection terms is approximated as ‖Ū∂x‖ ∼ O(‖Ū‖o) and ‖V̄∂y‖ ∼ O(‖V̄‖o).

In figure 11, the shear and advection terms are compared using the norm in (5.1). Due
to the increasing APG, the non-parallel terms increase in magnitude with 〈β∞〉. Here
‖Ū‖o increases monotonically with 〈β∞〉 because the norm is a measure of Ū upstream
of xr2 . Due to the streamwise deceleration in APG flows, the stronger APG have larger
upstream Ū relative to xr2 . Because of the increased boundary layer growth in APG flows,
δ99 is significantly smaller upstream relative to δ99(xr2). These two effects create stronger
upstream Ūy with increasing 〈β∞〉. For the datasets studied here, ‖Ūy‖o grows linearly
with 〈β∞〉, as shown in figure 11(d). As one may expect from the typical boundary layer
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Figure 11. Plots of ‖Ū‖o (a), ‖Ū‖o (b), ‖V̄x‖o (c), ‖Ūy‖o (d) and ‖Ūx‖o (e) against 〈β∞〉 as black filled circles.
Finally, ( f ) plots σ̃1, the leading singular values from the large-scale modes plotted in figure 8 recomputed with
the non-parallel terms Ūx, V̄x and V̄ artificially set to 0 in the biglobal resolvent operator (black circles). For
reference, the singular values from the full system, σ1 are plotted in open blue circles. In each plot, the red lines
denote lines of best fit for 〈β∞〉 > 0. The lines in ( f ) denotes the lines of best fit for 〈β∞〉 > 0 for σ1 (black)
and σ̃1 (red).

assumptions (Pope 2000), the streamwise advection is an order of magnitude larger than
the wall-normal advection while Ūy is at least an order of magnitude larger than Ūx and
V̄x for the APG TBL datasets used herein.

To see if the non-parallel terms V̄ , Ūx and V̄x are responsible for the linear growth of
σj with 〈β∞〉, the non-parallel terms are artificially set to 0 in the LNSE. Although the
streamwise derivatives are not explicitly included in the LNSE, Ū and Ūy are allowed to
vary in x for this analysis. In figure 11( f ), this assumption is tested for the same modes
plotted in figure 8(a) by computing σ̃1, the leading singular values of the biglobal resolvent
operator with the non-parallel terms set to 0. By neglecting the non-parallel terms, the
linear growth with 〈β∞〉 is still observed in σ̃1. The non-parallel terms are a non-negligible
source of amplification for the linear operator as the difference between σ1 and σ̃1 increases
with 〈β∞〉. However, their omission in the analysis can still be used to explain the growth
with 〈β∞〉. As a consequence, an additional assumption is that the non-parallel terms can
be neglected in the explanation of the linear growth of σ1 with 〈β∞〉.

In this section, the linear growth of σ1 with 〈β∞〉 is first investigated using the
assumption that the non-parallel terms can be neglected. Then the effects of the
non-parallel terms on the linear amplification will be discussed. Finally, the section
concludes with implications of this analysis for more general APG TBLs.

5.1. Neglecting the non-parallel terms to explain the linear growth
By neglecting V̄ , V̄x and Ūx, the LNSE in (2.2) can be approximated using the simplified
forced biglobal OSS system,

v̂ = L−1
OS f̂v, (5.2)

ω̂2 = L−1
SQ( f̂ω + ikzŪyL−1

OS f̂v), (5.3)
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Figure 12. Plots of each of the terms in ‖ψ1‖2
r for the representative mode from figure 8.

where LSQ =−iω + Ū∂x − Re−1∇2,LOS = (−iω + Ū∂x − (1/Re)∇2)− 2∇−2∂y(Ūy∂x),
f̂ω = ikzf̂x − ∂xf̂z and ω̂2 = ikzû − ∂xŵ. See the Appendix for more details. The resolvent
gains of this system will then be denoted as σ̃j. The forced biglobal OSS system has been
studied by Ran et al. (2019) to identify the stochastic receptivity of a laminar boundary
layer using the LNSE. In that case, terms involving Ūxx and V̄x were neglected, consistent
with the Blasius similarity solution. Equations (5.2) and (5.3) make a stronger assumption
by neglecting the non-parallel shear terms and wall-normal advection all together.

The next approximation comes from the observation that the most linearly amplified
modes have small wall-normal components relative to the spanwise and streamwise
components. This is plotted in figure 12 where ‖ψv,1‖r contributes less than 5 % of
‖ψ1‖r. As a result, the contribution from (5.2) is negligible in the numerator of (2.7)
and ‖ψ1‖2

r ≈ ‖ψu,1‖2
r + ‖ψw,1‖2

r = ‖(∂xx − k2
z )ψω,1‖2

r , where ψω,1 = ikzψu,1 − ∂xψw,1
(see the Appendix). Because it was assumed that kz and the streamwise derivatives are
O(1), it can be further assumed that ‖ψ1‖2

r ∼ ‖ψω,1‖2
r . By using the approximations that

ψv,1 is negligible and that only outer region forcing is optimal, the linear amplification can
be approximated as

σ̃1 ≈ max
‖ f̂ ‖o=1

‖ω̂2‖o. (5.4)

Through application of operator norm inequalities and the triangle inequality using ‖ω̂2‖o
and (5.3), the approximation σ̃1 is bounded above as

σ̃1 ≤ ‖L−1
SQ‖o(‖ f̂ω‖o + kz‖Ūy‖o‖L−1

OS f̂v‖o). (5.5)

Equation (5.5) gives an upper bound to the approximation of σ̃1 based on linear growth
with Ūy. Similarly, if the forcing is constrained to only wall-normal forcing, it must be the
case that

max
‖ f̂ ‖o=1, f̂u= f̂w=0

‖ω̂2‖o ≤ σ̃1. (5.6)

In other words, the largest possible gain that stems from solely wall-normal forcing is less
than the optimal gain. Equation (5.6) can be written explicitly by setting f̂ω = 0 in (5.3) to
establish the lower bound as

kz‖L−1
SQ‖o‖Ūy‖o‖L−1

OS f̂v‖o ≤ σ̃1. (5.7)

Together, (5.5) and (5.7) suggest that σ̃1 is bounded below by a quantity that scales with
‖Ūy‖o and bounded above by a quantity that grows linearly with ‖Ūy‖o.
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lines of best fit for each of the σj,v→(u,w). Note that the lighter colours denote increasing j.

It must be noted that the Ūy dependence in both (5.6) and (5.7) also depends on the
amplification from L−1

OS and L−1
SQ , measured in the outer region of the flow. To show that

the amplification from L−1
SQ will not produce a significant additional Ū dependence on

the upper and lower bounds, its resolvent gains, σj,SQ, are plotted in figure 13(a) for the
representative mode from figure 8. Recall that σ1,SQ = ‖L−1

SQ‖ ≈ ‖L−1
SQ‖o. Here σj,SQ has

a slight 〈β∞〉 dependence for the optimal modes, where σ1,SQ grows by 18 % between
〈β∞〉 = 0 to 〈β∞〉 = 3.47. For reference, σ1 grows by 187 % over the same 〈β∞〉 range.
For the higher-order modes, the σj,SQ variation with 〈β∞〉 is negligible compared with the
variation in σ5. Furthermore, L−1

SQ is not low-rank as the first five σj,SQ are all within the

same order of magnitude. This means that it is more than likely that ( f̂ω + ikzŪyL−1
OS f̂v)

in (5.3) is composed of higher-order forcing modes of L−1
SQ that have weak Ū dependence.

As a result, it can be concluded that the upper bound in (5.5) is weakly dependent on the
Ū-dependence on ‖L−1

SQ‖o.
To estimate the amplification from L−1

OS , componentwise masking is applied to consider
the amplification from f̂v to v̂ so as to only consider the L−1

OS f̂v term in (5.2). These
resolvent gains are denoted as σj,OS and are plotted in figure 13(b). Here σj,OS demonstrates
a slight decrease with 〈β∞〉 with a decrease of approximately 20 % between the 〈β∞〉
range. The σj,OS also demonstrate a weak Ū dependence on its leading gains. Although the
amplification has contributions from L−1

SQ and L−1
OS , it is expected that the Ū-dependence

on the amplification only enters the Ūy term.
To show that the Ū dependence on L−1

SQ and L−1
OS does not affect the lower bound,

figure 13(c) plots σ1,v→(u,w), the resolvent gains when componentwise masking is applied
to consider only forcing from f̂v to a response with û and ŵ. This mimics the conditions in
(5.7) which captures only amplification from the lift-up mechanism. Here, it is found that
despite the 〈β∞〉 variation in the amplification of L−1

SQ and L−1
OS , the growth in σ1,v→(u,w)

is linear with ‖Ūy‖o. Fitting a line to σ1,v→(u,w) as

σj,v→(u,w) = Tj‖Ūy‖o, (5.8)
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Figure 14. The same as figure 9, except that the σj are plotted against ‖Ūy‖o and the lines of best fit are fitted
using ‖Ūy‖o for the data with 〈β∞〉.

where Tj is a constant for each j in figure 13(c), shows that the approximations made
in this section can explain the amplification from the lift-up mechanism. Furthermore, it
demonstrates that any Ū dependence on L−1

OS and L−1
SQ does not affect the linear growth

with ‖Ūy‖o. The differences in the mode shapes are not accounted for in (5.8), which may
explain why the lines of best fit do not cross σ1,v→(u,w) for the ZPG TBL.

The linear fit in (5.8) holds when f̂ω = 0 such that the assumption in (5.7) holds. For a
more general case, a new linear fit is proposed based on the upper bound in (5.5) such that

σj(λz, λt) = aj,0(λz, λt)+ aj,1(λz, λt)‖Ūy‖o, (5.9)

where aj,i(λz, λt) are scale-dependent constants for each j. The coefficients aj,0 and aj,1

are analogous to ‖L−1
SQ‖o‖ f̂ω‖o and kz‖L−1

SQ‖o‖L−1
OS f̂v‖o, respectively. These linear fits

are shown in figure 14 for the same σj(λz, λt) plotted in figure 9 demonstrating that there
is indeed linear growth in σj with ‖Ūy‖o for the APG TBLs as suggested by the upper
bound. Furthermore, figure 12(c) shows that the APG TBL datasets used here have mean
flow fields such that

‖Ūy‖o = d0 + d1〈β∞〉, (5.10)

where d0 and d1 were constants. Taking both (5.9) and (5.10) recovers the linear form in
σj with 〈β∞〉 from (4.1). Hence, it can be concluded that the linear growth of σj in ‖Ūy‖o
for the large-scale structures can be predicted from the LNSE if the large-scale modes are
supported in the outer region of the flow. Equation (5.9) stems from the dominant terms
of the LNSE while the linear fit in (4.1) requires that (5.10) holds, which is not guaranteed
for general APG TBLs. Although the linear fit for the APG TBL modes was motivated
by neglecting the non-parallel terms by considering σ̃1; σ1 is significantly larger than σ̃1.
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Figure 15. Comparison of σ̃j,SQ (blue) and σj,SQ (red) (a). Here σj,(v→u,w) is computed for the full LNSE
(blue) and σ̃j,(v→u,w) by neglecting Ūx, V̄x, and V̄ (red) (b). The lines of best fit are fitted using (5.8). Plots
of σ1 (using full LNSE), σ̃1 (neglecting V̄ , V̄x, and Ūx) and σ̄1 (neglecting V̄ and V̄x) in black, red and blue,
respectively. The lines of best fit are fitted for 〈β∞〉 > 0. j = 1, 2, 3, 4 and 5 correspond to the circle, star,
square, triangle and ×. These are all computed for the representative large-scale mode from figure 8.

This indicates that the non-parallel terms are non-negligible. Next, the influence of the
non-parallel terms on the amplification will be examined.

5.2. Influence of the non-parallel terms on the linear amplification
Although artificially neglecting the non-parallel terms in the LNSE can still explain the
linear growth with 〈β∞〉, figure 11( f ) demonstrates that the non-parallel terms are a
non-negligible source of amplification. Here, the effect of the non-parallel terms will
be examined to discuss their role in the linear amplification. Equations (5.2) and (5.3)
are now reconsidered, except that the LSQ operators are augmented to incorporate the
Ūx terms as L̃SQ = LSQ + Ūx while the LOS operators are left unchanged because their
amplification was shown to be approximately independent of 〈β∞〉 when using the full
LNSE in figure 13(b). Incorporating Ūx also introduces off-diagonal terms in the full
OSS, though they are negligible relative to the mean shear, kz‖Ūy‖o. Since only LSQ has
changed, an upper and lower bound for σ1 can be constructed by following the steps in
§ 5.1 as

kz‖L̃−1
SQŪyL−1

OS f̂v‖o ≤ σ1 ≤ ‖L̃−1
SQ‖o(‖ f̂ω‖o + kz‖Ūy‖o‖L−1

OS f̂v‖o). (5.11)

The effect of Ūx is to augment the amplification of L̃SQ. This can be seen by computing
the resolvent amplification of L̃SQ, σ̃1,SQ and comparing with the σj,SQ of LSQ in
figure 15(a). It can be seen that σ̃j,SQ > σj,SQ for j = 1, 2, 3, 4, 5, indicating that the
inclusion of Ūx increases the amplification by 10 %. This increase in amplification then
manifests itself as an increase in the amplification via the lift-up effect. To show this,
σj,(v→u,w) is compared with σ̃j,(v→u,w), the resolvent amplification from f̂v to (û, ŵ) for
the LNSE neglecting Ūx, V̄x and V̄ , in figure 15(b), demonstrating that σj,(v→u,w) >

σ̃j,(v→u,w). From the lines of best fit, the rate of growth with ‖Ūy‖o is larger for the full
LNSE (σj,(v→u,w)) than by neglecting the non-parallel terms (σ̃j,(v→u,w)). From the lower
bound in (5.11), the increased rate of growth stems from the increase in amplification of
L̃−1

SQ since it was argued that L−1
OS was hardly affected by the change in base flow. This

increased rate of growth with ‖Ūy‖o then manifests itself as a larger aj,1 from (5.9). This
can be seen in figure 15(c) where σ̄1 is computed for the LNSE where only V̄ and V̄y are
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Figure 16. Plots of |ψ1,u| at xr2 for the representative large-scale mode. The dotted lines are computed with
V̄ and V̄x set to 0 while the solid lines are computed with the full LNSE. Panels (a) and (b) are separated for
visibility. The lines are colour coded according to table 1.

neglected. By including Ūx, σ̄1 > σ̃1. Since L−1
SQ also amplifies f̂ω, the magnitude of aj,0

is also increased when Ūx is included.
The inclusion of the V̄ terms provide wall-normal advection that is neither present in the

ZPG TBL, nor in LNSE with artificially neglected V̄ . This can be seen in figure 16(a,b),
where |ψ1,u| is compared using the full LNSE and the LNSE with V̄ and V̄x artificially
set to 0. It can be seen that the modes computed with the full LNSE reach their peak
amplitude farther from the wall than the artificial modes. As the APG strength increases,
the disparity between the two sets of modes increases, as can be seen by comparing the
m13 and b1n modes. As expected, the ZPG modes are almost indistinguishable. Because
the modes computed with stronger APG are farther from the wall, they experience a
stronger streamwise varying Ū. As a result, the modes computed with the full LNSE
experience a stronger convective non-normality and thus increased amplification from the
L−1

SQ term. As a result, for σ1, both aj,1 and |aj,0| are the largest in figure 15(c), indicating
a further increase in amplification when none of the non-parallel terms are neglected.

6. Discussion

Biglobal resolvent analysis in a long streamwise domain permits the study of pressure
gradient history and the effects of streamwise growth (non-parallel effects) in the APG
TBL on linear amplification. Because this analysis derives from the LNSE, it is possible
to analytically track how these effects manifest themselves in the linear amplification.
Through a scale-based analysis, the linear growth in σj with 〈β∞〉 follows from the
behaviour of the mean flow fields in the near-equilibrium APG TBLs through (5.10) and
the role of the componentwise amplification in the upper and lower bounds in (5.5) and
(5.7).

Even by including the non-parallel terms, the resolvent amplification was still shown to
grow linearly with ‖Ūy‖o, for the APG TBLs rather than the ZPG TBL. This was likely
due to the differences in the outer region of the mean flow fields (Wei & Knopp 2023),
which in turn changed where the modes are localized in the ZPG case. For the APG TBLs,
the mean flow fields did not significantly affect the resolvent mode shape.

Extending the linear growth of σj to 〈β∞〉 in (4.1) requires that both (4.1) and (5.9)
hold. It is expected that (4.1) is more sensitive to the choice of Ū than (5.9) because
the former requires that both (5.10) and (5.9) hold. The datasets studied herein were
‘near-equilibrium’ TBL (Bobke et al. 2017) at relatively similar Reτ and similar free
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stream boundary conditions such that U∞ ∼ (x − xd)
m with mild to moderate β. Due to

the similarity in the APG TBLs, (4.1) held well for the APG TBL datasets. However, it is
expected that for datasets with strong APG, the non-parallel terms may be non-negligible
and create sources of amplification that can cause the linear fit with ‖Ūy‖o to fail.
Furthermore, it is expected that APG TBL with non-equilibrium conditions, like strongly
varying β(x) or flow separation, could make (4.1) not hold since Ū would experience
significant non-parallel terms which could cause (5.9) to fail.

While the explanations in § 5 were used to explain why σ1 grows monotonically with
〈β∞〉, they can also be used to explain the secondary peaks of Ê+ that become more
amplified with increasing β(xr1) present in figure 5. Since the datasets used in figure 5
were characterized by regions with nearly constant values of β(x), this discussion will
approximate 〈β∞〉 as β(xr1). The integrand of Ê+, |σ+

1 ψ
+
u,1|2, scales differently for

the near-wall small-scale modes and the outer-region large-scale modes. First, due to
the choice of normalization, σ+

j = Re2
τ (xr1)Re−1(xr1)σj and ψ+

u,j = √
Reτψu,j. For the

small-scale modes, it can be shown that if Ū+ is self-similar where ψ1 is supported,
then σ+

1 and ψ+
u,1 are also self-similar (Moarref et al. 2013; Gomez 2024). In the case

of a mild APG TBL at low Reτ , the log-layer is affected by the APG, which affects the
self-similarity of the near-wall modes, especially the higher-order modes (Gomez 2024).
However, for the leading modes, these near-wall APG effects were small enough that the
near-wall linear amplification of the APG TBL could still resemble that of the ZPG TBL.
As a result, the integrand in Ê+, |σ+

1 ψ
+
1,u|2, is only slightly affected by β. While this study

focused on mild to moderate APGs, strong APGs that can cause separation are expected
to significantly affect the near-wall amplification.

For the large-scale modes, the small variation in ‖ψu,1‖r with 〈β∞〉 in figure 12(a)
allows the approximation that the amplitude of the large-scale modes, |ψu,1|, is
independent of 〈β∞〉. Although figure 8 showed that the increased V̄ in stronger APG TBL
advected the ψu,1 farther from the wall, this effect will be neglected for this discussion
since it is only focused on the magnitude of the modes rather than their shape. As a result,
the amplitudes of the large-scale modes, |ψ+

u,1|, are approximated to be independent of
〈β∞〉 in the calculation of E+. Following (4.1),

σ+
j (λz, λt) = Re2

τ (xr1)

Re(xr1)
σj(λz, λt) ≈ Re2

τ (xr1)

Re(xr1)
mj,0(λz, λt)[1 + mj,1(λt, λz)〈β∞〉]. (6.1)

Although Re(xr1) increases with 〈β∞〉, it is negligible compared with the 1 +
mj,1(λt, λz)〈β∞〉 term such that σ+

j increases with 〈β∞〉. Thus, the increased amplification

of large-scale modes in Ê+ can be explained solely by the increase in σ1 with 〈β∞〉 for the
large-scale modes.

The biglobal resolvent approach is able to qualitatively capture various effects seen
in APG TBL. For example, the large-scale energization with increasing β is reflected
in the increased large-scale amplification with increasing β along with the near-wall
self-similarity of the small-scale structures. Of particular interest is how the history effect
is shown to affect both the large-scale linear amplification and the outer region Reynolds
stresses (Bobke et al. 2017; Tanarro et al. 2020). One way in which the monotonic growth
with 〈β∞〉 enters the outer region turbulent fluctuations is through the linear growth in σj
with 〈β∞〉. This means that the linear amplification of large-scale nonlinear interactions by
the APG mean flow fields increases with 〈β∞〉, which may be reflected in the large-scale
turbulent fluctuations. The collapse of the Reynolds stresses with u2

hyb, which is linear in
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〈β∞〉, may point to a connection between the linear amplification studied herein and the
true nonlinear nature of the APG TBLs.

7. Conclusion

A biglobal resolvent approach was used to study spatially developing TBL flows over flat
plates and identify the relative influences of non-parallel componentwise non-normalities
from V̄x, convective non-normalities, wall-normal advection and the pressure gradient
history effect on linear amplification in near-equilibrium mild to moderate APG TBL
(Bobke et al. 2017; Pozuelo et al. 2022) and high Reτ ZPG TBL (Eitel-Amor et al. 2014).
The effects of Reτ , β and 〈β∞〉 on the analysis were investigated.

Applying a spatial mask to measure the response amplification in the vicinity of xr
allowed both small-scale and large-scale modes to have a non-zero response at xr. This
allowed for the study of local β effects at fixed Reτ and local Reτ effects on the linear
amplification. Furthermore, the premultiplied amplification, Ê( y, kz), is used as a rank-one
approximation of the premultiplied energy spectra for a velocity fluctuation defined as û =
σ1ψu,1. Although it does not have any nonlinear closure, Ê was shown to reflect certain
characteristics seen in the premultiplied energy spectra in simulations. One feature is the
presence of a near-wall peak using both the ZPG and APG TBL base flows. The inner
peak was shown to be self-similar for Ū with near-wall self-similarity such as the ZPG
TBL datasets and the high Reτ APG TBL of Pozuelo et al. (2022). A secondary outer
peak for large λz is also present for the linear amplification of the low Reτ APG TBLs of
Bobke et al. (2017) and is notably absent in the low Reτ ZPG TBL. For this secondary
peak, Ê+ was shown to increase with β(xr1). Similarly, for the ZPG TBL, Ê+ was shown
to increase with Reτ for the large λz away from the wall and demonstrate evidence of a
secondary peak for the largest Reτ interrogated.

By applying a spatial mask to consider only the region upstream of xr2 in the
inner products, the biglobal resolvent analysis was used to investigate how the linear
amplification varies due to the upstream history. This history is measured through 〈β∞〉,
the upstream average of β∞ over the same computational domain. It was found that
the σj increased linearly with 〈β∞〉. By drawing similarities to the linear variation in
β in the hybrid velocity scale of Romero et al. (2022) and Sekimoto et al. (2019), an
augmented hybrid velocity scale, uhyb was posed that incorporates a measure of the history
effect through a linear dependence with 〈β∞〉. Rescaling the Reynolds stresses with u2

hyb
mitigated the APG-related outer peaks and improved the collapse of the Reynolds stresses
compared with uh. This linked the monotonic growth in the secondary outer peaks of uu+
with 〈β∞〉 with the linear growth of σj with 〈β∞〉.

Finally, an explanation based on the lift-up mechanism is offered to explain the increase
in σ1. It was shown that neglecting the Ūx, V̄x and V̄ terms in the LNSE still allowed
for linear growth with 〈β∞〉, albeit with reduced amplification than the full system. As a
result, a simplified two-dimensional OSS system was constructed. By using the triangle
inequality, it was shown that for this simplified system, σ1 was bounded below and above
by terms that grew linearly with ‖Ūy‖o, a measure of the mean shear in the outer region
of the flow. Thus, the equations suggest the σ1 grows linearly with ‖Ūy‖o. Furthermore,
it was shown that for these datasets, ‖Ūy‖o also grows linearly with 〈β∞〉. As a result, σ1
was shown to grow linearly with 〈β∞〉 for the APG TBL flows from an analysis of the
LNSE and a property of the datasets used herein. It was also shown that the non-parallel
terms add additional amplification by increasing the role of the convective non-normality.
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The inclusion of the non-parallel shear terms only affected the linear fit with ‖Ūy‖o by
increasing the magnitude of the linear fit’s coefficients.

The key result of the study is that several features associated with APG TBLs can
be identified through study of the linear operator by consideration of the optimal
amplification, i.e. using a rank-one approximations. Changes in free stream Ū and
streamwise pressure gradient P̄ are encoded in the mean fields and thus change the
amplification associated with the resolvent operator. It is encouraging for modellers
that these effects can be identified without detailed knowledge of the nonlinear forcing,
which would require a large amount of data to cover the range of APGs investigated
here. However, any resolvent reconstruction will require nonlinear closure through
scale-dependent coefficients and higher-order modes, as is well known for the ZPG and
other flow cases.

Most of this study focused on APG TBL in regimes that can be described as
near-equilibrium and at lower Reτ , in accordance with the data available in the literature.
Extending these results to high Reτ APG TBL would require an APG TBL database over
a large streamwise domain. Future studies will be used to investigate APG TBL where the
β variation is more severe or where separation is approached.
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Appendix. Simplified biglobal Orr–Sommerfeld operator

For brevity, the sponge layer terms are ignored with their effect only used to enforce
compactness in the forcing and response modes. It is noted that the optimal forcing modes
are solenoidal vectors (Rosenberg 2018) such that

∇2p̂ = −2
∂Ūi

∂xj

∂ ûj

∂xi
. (A1)

The wall-parallel velocities can be written in terms of ω̂2 and v̂ as

û = (∂xx − k2
z )

−1
(

ikzω̂2 − ∂v̂

∂x
y
)
, (A2)

ŵ = (∂xx − k2
z )

−1
(

−∂ω̂2

∂x
− ikz

∂v̂

∂y

)
. (A3)

Assuming compact support in ω̂2 and v̂, in turn making (∂xx − k2
z )

−1 self-adjoint, the
kinetic energy is then

‖û‖2 = 1
Lx

∫ ∫ (
(∂xx − k2

z )
−1

[
ω̂∗

2ω̂2 + ∂v̂

∂y

∗
∂v̂

∂y

]
+ v̂∗v̂

)
dx dy. (A4)
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An equation for v̂ can be written by substituting (A1) for p̂ in the wall-normal component
of the LNSE as(
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∂Ū
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û
)

− 2∇−2 ∂

∂y

(
∂V̄
∂x
∂ û
∂y

)
= f̂v. (A5)

The terms proportional to V̄x are not expanded since they will be neglected later. Similarly,
by taking the wall-normal component of the curl of the LNSE, an equation for ω̂2 can be
written as follows:(

−iω + Ū · ∇ + ∂Ū
∂x

− 1
Re

∇2
)
ω̂2 + ∂V̄

∂x
(∂xx − k2

z )
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2v̂

∂y2

)
= f̂2. (A6)

By using the observation that |V̄x| � |Ūx|, (A5) and (A6) can be written as

AOSv̂ + Psω̂2 = f̂v, (A7)

Msv̂ +ASQω̂2 = f̂2. (A8)

This linear system can be solved for explicitly as

v̂ = [A−1
OS −A−1

OSPs(M−1
s ASQ −A−1

OSPs)
−1A−1

OS] f̂v

+A−1
OSPs(M−1

s A−A−1
OSPs)

−1M−1
s f̂2

ω̂2 = (M−1
s ASQ −A−1

OSPs)
−1(A−1

OS f̂v −M−1
s f̂2)

⎫⎪⎪⎬⎪⎪⎭ . (A9)

Together, (A9) forms the OSS system, with V̄x neglected. Due to the Ps term, there
is an off-diagonal entry that introduces componentwise non-normality into the OSS
system by allowing forcing from f̂2 to v̂ caused by Ūx. However, for the APG TBL
studied in this section, the presence of Ps does not cause ‖ψ1,v‖ to increase as the
APG strength increases. This is likely because the off-diagonal component related to
the mean shear scales with Ūy while the other off-diagonal term scales with Ūx. Due to
this, the A−1

OSPs(M−1
s A−A−1

OSPs)
−1M−1

s term will be neglected. Next, it is noted that
M−1

s ASQ ∼ O(δ99)whileA−1
OSPs ∼ O(δ99U∞∂U∞/∂x). As a result, theA−1

OSPs term can
be neglected such that the following simplified OSS can be established:

v̂ = A−1
OS f̂v

ω̂2 = A−1
SQ(MsA−1

OS f̂v − f̂2)

}
. (A10)
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Finally, by neglecting the Ūx and V̄ terms, the simplified OSS system in (5.2) and (5.7)
can be recovered. For clarity,

AOSv̂ =
(

−iω + Ū · ∇ − ∂Ū
∂x

− 1
Re

∇2
)
v̂ − 2∇−2 ∂

∂y

(
∂Ū
∂y
∂v̂
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− ∂Ū
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)
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z )
−1 ∂
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(
∂Ū
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∂3v̂

∂x2∂y

)
, (A11)

L̃OSv̂ = AOSv̂ − V̄
∂v̂

∂y
(A12)

and

LOSv̂ =
(

−iω + Ū∂x − 1
Re

∇2
)
v̂ − 2∇−2 ∂

∂y

(
∂Ū
∂y
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)
. (A13)
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