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Abstract

A list of recognised social diversities is assembled, including those used in social action
programmes in the USA. Responses to diversity are discussed and diversity sensitivity
defined as the derivative of response with respect to a defining parameter of a diversity
distribution. Rewards (or penalties) for diversity are listed also; sensitivities to the responses
to the rewards for diversity are called diversity sensitivities of the second kind. The statistics
of bimodal and multimodal distributions are discussed, including the parametric estimation
of such distributions by mixtures of multivariate normal distributions. An example is
considered in detail.

1. Introduction

1.1. Diversity In recent years diversity has received attention in such human
social contexts such as social welfare, empowerment and affirmative action. From
an administrative viewpoint, quantitative aspects and legal complications inevitably
arise. Standard statistical approaches are compromised by the multimodal nature of
many types of diversity. However modern statistical estimation has something to
contribute when the various concepts involved are properly delineated and sufficiently
circumscribed. We may begin by defining diversity as manifest difference as opposed
to latent difference.

An overwhelming majority of studies address biological diversity, at the genus,
species, organism, organ or cell level; of 1058 diversity references in a recent Internet
search, 994 were strictly biological and 64 social or sociobiological. A list of 32 types
of social diversity was assembled by collating several references on human diversity.

'Mathematics Department, University of California, Santa Barbara, CA 93106-3080, USA; e-mail:
leipnik @math.ucsb.edu.

2School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia; e-mail:
charles.pearce @adelaide.edu.au.

© Australian Mathematical Society 2005, Serial-fee code 1446-181 1/05

271

https://doi.org/10.1017/51446181100010038 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100010038

278 Roy B. Leipnik and C. E. M. Pearce 2]

Eight or nine are employed explicitly in social programmes and others used tacitly.
The 32 diversities are: ability, age, class, clothing, conduct, disability, education,
ethnicity, family type, foods, health, hobbies, housing, ideology, income, intelligence,
language, “looks”, marital status, nationality, occupation, personality, politics, race,
religion, self esteem, sex/gender, sexual orientation, somatotype, sports, transport and
values.

An early reference to human diversity (of tastes) is from J. S. Mill (1859). “Looks”
have several components — hair colour, eye colour, nose shape, posture, efc. “Lan-
guage” includes accent. The term ‘“cultural” is applied to many types of diversity,
but there is significant disagreement as to which are cultural or acquired and which
primarily or partly genetic. The distinction is important legally and psychologically
but pragmatically unhelpful. Most types of diversity can be modified by individual,
family or social action. Some diversities are absent in some societies or communities.
Others occur primarily in clusters, such as when clothing indicates gender, religion,
age and occupation. Further diversities may be hybrid; thus ethnicity, for example,
may be Polish-Belgian. Compound diversities, such as Afro-American, are also often
encountered.

1.2. Hands We term the set of diversities exhibited by an individual a hand. Re-
sponses to a diversity-hand set A may be individualised or statistically predictable
within individual responders having in common a diversity-hand set B. This is com-
plicated by the fact that, within a particular diversity, the statistical distribution of any
element of that diversity is likely to be bimodal or multimodal rather than following a
Gaussian or other unimodal model. Bimodal distributions of response to prescription
medicine are well known and documented. For social diversities, data are partly
anecdotal, though bimodal or trimodal raw data are quite well documented in musical
and mathematical test scores. Such results are often attributed to significant mini-
diversities already within the test populations before the tests are taken and diversity
induced by the test experience neglected. Whatever the reason, multimodality occurs
sufficiently often and strongly to invalidate statistical reasoning based on unimodal
distributions, normal or otherwise. The central limit theorem, which supports nor-
mality in large samples, has conditions and limitations often violated under diversity
conditions. In any case, an estimation procedure that provides for multimodality
will relapse to unimodality when all but one of the estimated weights is numerically
negligible. The importance to policy making of a substantial bimodality and the capa-
bility of modern computing to handle the increased complexity of bimodal estimation
justify the moderate increase in conceptual difficulty. Certainly in factor analysis an
insistence on a single-factor model of intelligence on the grounds of simplicity and
efficiency would not be taken seriously now.
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1.3. Sensitivity One way of describing response is in terms of the intensity of
response to a particular level of stimulus. The cumulative probability distribution
function is less indicative than the probability density function. Thus we refer to a
function that characterises the state of a system as the sensitivity of that state. We
note that high negative and positive rates to a condition both indicate high sensitivity.
Insensitivity to a particular condition indicates a lack of change of response as the
condition changes.

Responses can be prioritised for a diversity pair, say ethnicity e and income i. Thus
we may, for example, have response r(e, i) = 0 for e < ¢y, regardless of i, while for
e > e, r{e, i) is weakly dependent on e but strongly on i. Many other peculiarities of
response to diversity A by B depend on the relative hands involved, with symmetry
or trade-offs between e and i absent as in the example above. Another phenomenon
is the venal response in which for any r, e, there exists an i, such that r(e;, i) > r|
whenever i > iy, that is, money talks.

We define diversity of the first type as sensitivity of a response by B to the diversity
revealed by A. A third observer C may respond to B’s sensitivity to A, if that is
also revealed. That response of C has also a diversity, which we term a second-order
sensitivity of the first type. Since C may quite easily share a good deal of the diversity
of A, the second-order sensitivity can easily amplify the first-order sensitivity. If
r(B|A) is the response of B to A and s(B|A) its sensitivity, then r(C|r(B|A)) is
a second-order response and s(C|s(B|A)) a second-order sensitivity. We have also
r(C|s(B]A)) and s(C|r(B|A)). Responses will in general depend on parameters and
derivatives may be with respect to any of these, so sensitivities will be vectors or
tensors if responses are scalars or vectors respectively.

1.4. Rewards A distinction of importance in the context of social action relates to
rewards or penalties for diversity. Some institutionally oriented (encouraged, tolerated
or mandated) rewards are bonus points towards admission, retention or promotion,
higher marks, quotas, timetables, accelerations, opportunities connected with present

.or future spouses or relatives, pay differentials, extra praise or less criticism, lower
expectations, access to networks, grants and loans. Some of these intended rewards
may be perceived as insulting. Penalties are the opposites of intended rewards, plus
overt insults, snubs, slander, intimidation, threats, dismissal and violence. Longer
lists of rewards can be found in various types of affirmative action plans; lists of
punishments are often not overtly promulgated.

The effective total reward is seldom a linear functional of the separate items and
similarly for penalties or a mixture of the two. Some rewards are “remedies”, intended
to correct previous penalties to individuals, their relatives or others sharing or consid-
ered to be sharing the same or some of the same diversities. History and perception
are therefore important. '
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Reward systems are often “logistic” in that reward increments are larger away
from the ends of the diversity scale. Thus with skin colour in the USA, responses
to different light colours are often similar as are those to different dark colours. The
sensitivity is probably greatest between light and medium brown. The tone of greatest
sensitivity will define a de facto colour line. This varies regionally, by period and with
the particular diversity which is responding. Similarly in political and legal questions
there is a tendency to find a “bright line” of distinction by exaggerating certain small
differences near the centre while playing down much larger differences near the
extremes. While nonlinearities of reward are perhaps less pronounced than those of
response, when these are compounded the results can be effectively discontinuous or
categorical and often disastrous.

1.5. Quantitative formulation We may treat a particular hand as a point « in
diversity space, yielding a reward p(a). There is an associated reward response
function rﬁ (a, p(a)) depending on the responder B, the diversity hand a and the kind
and amount of the reward p(a). Suppose the vector v of parameters characterises
a class of distributions and (o, v) a class of distributions of individuals over the
diversity . This leads to a density v/(a), obtained by picking from ¥ (e, v) by a
choice f:(f) a distribution closest in a suitable sense to an empirical distribution f (et).

The total linear response of B to the reward system p over the whole population is
then

PP = /rf(a, p () ¥ () det.

If A is a particular set of individuals eligible for the reward p, then
P = / ry(, p(@)y (@) de
A

is the total response of B to the reward system p as applied to A. If a is a particular
point in A, then the derivative of 77 with respect to A, evaluated at , is 2 (a, p(at)).
This definition takes account of the “spectre” test, taking account of the frequency of
similar diversities. This is a sensitivity of the second type, the sensitivity of the total
response of B to the reward obtained by the individual & in A on the reward system p.
Similarly if r8 () is the response of B to « in A, then the total response to A by B of
the first type is

Ap8 — /r”(a)\/}(a) da
A

and the sensitivity of that response to & is r®(a)y (). Likewise the parametric
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sensitivities are

S [ 9 [,e
av/;r ()Y (a, v) da and 8v,/Ar” (o, p(a))¥(a, v)dx

v=6(/) v=5(f)

The total sensitivity to individuals in a small group can be estimated by the re-
sponse of one of the individuals times the density, evaluated at that individual, of
the probability ¥ () = ¥ (e, H(f)). Choice of #(f) from least squares is relatively
easy but known to be of poor quality in multimodal, multivariate cases [3, page 35].
Choice by maximum likelihood usually requires iterative methods. This was used
in unimodal linear models by Koopmans, Rubin and Leipnik 8] and for multimodal
density estimation by Hasselblad [7] and Wolfe [14], based on the EM method. See
Dempster et al. [2]. These iterations may or may not converge to the global maximum
[6]. A Bayesian method intermediate in quality and accuracy is maximum relative
entropy. A non-iterative version of this, applied to an educational problem discussed
in Section 3, is outlined in Section 4.

2. Statistics of diversity

Three overlapping statistical literatures of interest here are physical statistics, psy-
chometrics or educational statistics, and general mathematical statistics. The contri-
butions of the first include three estimation methods: least squares (Gauss-Legendre),
maximum entropy (Gibbs) and minimum entropic distance (Boltzmann). These can
be used to choose distributional forms and parameters within a form.

The second includes three related techniques: multivariate normal distributions of
manifest variables, linear structures and the analysis of latent factors linearly under-
lying a larger set of measured variables. This factor analysis of Thurstone suggests
equations for factor loading and covariance, later derived by Lawley from maximum
likelihood (Fisher’s general estimation method), in the unimodal multivariate normal
case called homogeneous.

Muthén and his associates have extended in two stages conventional homogeneous
factor analysis to a limited collection of heterogeneous variables. In the first stage the
variables come from differently labelled distributions of Fisher’s first class, that is,
with identical covariance matrices. In the second the variables are generated by a set of
auxiliary random variables rather than fixed labels, but again the covariance matrices
are identical. This does not handle realistic heterogeneity, in which the covariances
are non-identical across the variables (Fisher’s second class).

In general statistics, the Fisher-Behrendt problem of choosing between two pro-
posed distributions or members of a parametric family is still controversial. The
original solution of Pearson was based on chi-squared tests for normal distributions.
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This was generalised by von Mises to omega-squared tests and converted by Smirnov
and Kolmogorov to a nonparametric form, further developed by Grenander and Geman
and Geman.

Fisher’s own solution is linear for Fisher’s first class and quadratic for his second.
Another nonparametric method of Fix and Hodges (4], Rosenblatt [11] and Parzen [9],
termed the kernel method, is discussed by P. Rao et al. [10]. When the empirical dis-
tribution is discrete, the kernel method as modified by Nadaraya performs a smoothing
before final analysis (see Hand {5]). Cox [1] and Silverman [12, 13} improved and
reoriented these theories, often using mixtures of normals in the univariate case. It
is clear from their results that combining multimodal and multivariate aspects, as in
diversity problems, leads to massive data storage and retrieval problems.

We have noted above the EM method. Just when this exhibits convergence and
when divergence is not well understood, but increase from an initial value has been
demonstrated. The Newton-Kantorovitch method applied to maximum likelihood
problems need not behave well from a general initial value, but converges quadratically
from appropriate initial values. The convergence rate of the EM method is not well
established from any initial value.

As noted, least-squares methods are poor for this class of problems, though far
simpler. Intermediate in quality and difficulty are the entropy methods, maximum
relative entropy and minimum entropy distance. These permit direct non-iterative
calculations provided certain logarithmic integrals are evaluated.

3. An education diversity problem

A salient diversity problem in the USA relates to employment and unemployment.
Closely related is training at various levels of sophistication, for which a useful
preliminary is secondary or tertiary education. Under current US plans, voluntary
national examinations are to be instituted at various stages, such as 4th, 6th, 8th, 10th
and 12th grades. The first stage has partially materialised as part of the “leave no
child behind” legislation. Presumably the ETS organisation, arguably one of the most
advanced psychometric firms in the USA, will be active here. One of its better-known
operations is the SAT tests, consisting of verbal and mathematical components and
given several times a year to secondary-school students nearing graduation.

This involves six diversities, four from the original list and two, the two SAT scores,
peculiar to the SAT. The former four are ethnicity and income as status diversities
and verbal and mathematical ability as ability variables. Class, gender and personality
could be helpful but are dropped. The score diversities are given quantitatively. Income
can be given also, subject to appreciable noise from family size, spending habits, ezc.
Ethnicity is difficult to score on a linear scale. Even colours are usually described by
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three numbers relating to hue, intensity and saturation. But suppose “colour ethnicity”
is made linear by a photographer’s gray scale. Since we allow six-dimensional
multimodality, the location of the mode centres does not imply simple ordering of
quality, although five of the six dimensions do have quality interpretations. We do
not assume any particular relation between these four performance and two status
diversities, though it is plausible that mathematical ability as estimated by teachers,
grades, erc. will be positively correlated with SAT mathematics scores and verbal
ability with SAT verbal scores. As for the other correlations, we need no assumptions.
Moreover we need not assume any particular number of distinct modes in this seven-
dimensional space of six diversities and one probability dimension. For definiteness,
assume four modes associated with four six-dimensional ellipsoids, each with a centre
and nonnegative weight. This results in a space with 3 + 4(6 + 6 - 7/2) = 111
parameters to determine the best approximate distribution. Assuming a conservative
50 data points per degree of freedom, we need only 5550 data points, which could
easily be generated by one year’s college hopefuls in a couple of congressional districts.
The complete distribution fitting is unmanageable, though.

With some loss of generality, remove verbal ability and score and assume a bimodal
distribution, but retain the two status variables. There are now 14+2(4+4-5/2) = 29
parameters and only 1450 data points are needed. To do the necessary Newton-
Kantorovitch calculations, many 29 x 29 matrices would be inverted, each fitting on a
PC. Of course this gives us only the 12/(e, i, a, s) density, where e, i are the individual
ethnicity and income numbers, a mathematical ability and s the score. We need also
an estimated response r(e, i, a, s) of some group or groups to the information that
an individual of diversity hand (e, i, @, s) exists or that an individual of pre-test hand
(e, i, a) has received a score s. This will produce a sensitivity of the first kind to that
post-test hand when multiplied by v. If a reward function p(e, i, a, s) is projected,
responses r,(e. i, a, s, p(e, i, a, s)) to that combination of hand and reward would be
required. Assuming ten levels of each diversity variable, 10, 000 reward values would
be inserted and, of 100 respondents, each would have to be asked 1, 000 quite similar
questions, making 100, 000 person-questions. Or 1450 people could be asked 70
questions each, scattered on a grid, once for each proposed reward system and once
to determine the basic first-type diversity sensitivity for this particular diversity, The
political feasibility of various proposed reward systems could then be assessed.

An entirely different calculation would be needed to estimate the long-term indi-
vidual advantage or social advantage in providing these rewards related to SAT scores
and the diversities. After receiving a reward an individual may be found in another in-
come level, social and occupational diversity, etc., depending on conduct, self-esteem
and the like. Anticipation of such changes would affect the responses to the projected
rewards.

The procedures outlined above seem cumbersome, especially in the light of current
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diversity approaches. However before discarding the present disorganised system of
diversity reward allocation as unsuitable, it is interesting to see whether and how more
rationality can be infused by straightforward statistical and survey methods based on
commonly accepted definitions of diversity and sensitivity.

Larger problems are tackled regularly in modern scientific and technological work.
If the field of diversity sensitivity is to become more credible, improvement in its
statistical methodology would be appropriate.

4. The four-diversities case

In the reduced example with four diversities and two modes, the assumed bimodal-
type normal distribution has the form

2
Y(x,v) = (2m)7 ) g;(det B;)"* exp(—z;B,z7),

j=

where Bj‘l = A; is a modal covariance matrix, g#; the mean of the j-th modal
distribution and z; = x — ;. If the scripts e, i, a, s refer to ethnicity, income,
(pre-test) ability and the test score, then

Rj = (ej,ij,a;,5;)
give the components of the modal means and

Ojee aj.zi aj.ea oj.es
Ojie Ojii Ojia Ojis
Aj =
Cjae Ojai Uj.aa Oj,as
Uj.se Uj.si Oj.sa Gjss
the covariances. For j = 1, 2 there are 28 parameters plus one free weight g,, since
g1 + g = 1, giving 29 parameters to be estimated. Let

@)

H=— ¥ (x, v)In(¥(x, v)/f(x)d¥x,
where [ “is a quadruple integral over all values x = (e, i,a,s) and f(x) is the

empirical distribution to be fitted. One quantity to be calculated is

4)

H, = Y(x,v)In f(x) d9x

2 )
=D _gi(det Bi)ln/ exp(—z;B,2]/2)d"x,
i=1
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which could be estimated from the presumed 29 x 50 data points using (say) a Monte
Carlo approach for selecting one percent of the 5'* parameter points obtained by
choosing five points for each of the 14 parameters entering each integral. The other
quantity,

@)
H =— Uix,v)Inyx, v)d¥x

2 @
== Zgj(det Bj)l/zf exp(—z;B,z] /) Iny d¥x,
j=1

can be calculated in closed form as a function of v. Then H = H, + H,.
What is required is a formula for calculating

2
Iny =In (Za, expuj)
j=1

as a function of u; and u,, where a; = g;(det B;)'/* and u; = —z;B,z]/2. The

quantities

ajexpu;  dlny

2 .
Y io Ak eXpi du;

-q; =

are desirable auxiliary variables. A Taylor series for Inyr is
0 © 0 0 (uj — uj)™
Iny(®) + Z(u, —u)q;@®) + Z P (u®) 1‘[ —

Jj=l1 j=I1

where m is summed over all pairs on nonnegative integers (m,, m;) withm, +m, =

|m] > 2 and
a m a mjy
Pn(y) = (a—yl) (3—)'2) Iny(y, v).

The perhaps surprising fact is that P, (y) is expressible as a homogeneous polyno-
mial of degree |m| in g, and g, with coefficients satisfying a simple one-step recursion
with variable coefficients. For any particular choice of u'®, determining H,(v) is
reduced to calculating “two-centred” integrals of the form

4)
/ exp(u;) (uy — ul®)™ (uy — ud)™ d¥x.
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These are of known type, being expressible by differentiation of

@
/ exp(aju; + ayuy)d®x

m; times with respect to @, and m, times with respect to a,. But a\u, + ayu, is
expressible as a single quadratic form in x, so the integral is known.

The expression for P,(y) does not seem to appear in the usual sources for double
series or in the works of Hand, Grenander, Nadaraya or Geman in which multimodal
theory is discussed extensively. We have

9 [aen ae"y — (ae”)?
Pz.o(y):'-—( ‘w )= ‘ 7 '
_ alazeyl+)'2

i
I S 9192 = Po(y)
and Py ;(y) = —q:q;. Likewise
Proyomy (¥) = (= D)™ Pray my 0(¥).

If P.o(y) = ¥, berqtq; ", then

Pooro(y) = D be, [kal 0192057 = (r = K)gtq142057*']
k=0

r+1

= Zbk.r+14f42'+l_k-
k=0

Hence the relevant recurrence is by , 4y = kb, — (r —k+1)by .., withbg; = by, =0

and b, = 1.
Thus
m+m3;
Poorm(3) = (=1 Y bemremgigs ™
k=0
and

S bimi(ar exp(u )k (@; exp(ul))mi=k

Pn(@®) = (=)™ .
W) = OV S 1) 2, exp(al®) (@ exp @)y

We may calculate H,(v) to any desired accuracy by taking |m| large enough,
while H,(v) can be approximated by Monte Carlo methods. Comparing the values
of H(v) = H,(v) + H>(v), a maximum (or competing maxima) may be estimated.
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Another approach in such an optimisation problem is the cooling or annealing method.
A third approach is to calculate the various integrals that arise in finding

_ 3H(v) _ 8H|(v) + 8H2(v)

h
k d Uy aUk avk

and solve for the vectors (f) that satisfy
h(@®@) =0 for k=1,2,...,29.

If this is done by Newton’s method, the quantities h; , = dh,/3v, must be determined
too.
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