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Abstract

The Fritz John necessary conditions for optimality of a differentiable
nonlinear programming problem have been shown, given additional convex-
ity hypotheses, to be also sufficient (by Gulati, Craven, and others). This
sufficiency theorem is now extended to minimization (suitably defined) of a
function taking values in a partially ordered space, and to (convex) objective
and constraint functions which are not always differentiable. The results are
expressed in terms of subgradients.

1. Introduction

For a constrained minimization problem with differentiable objective
and constraint functions, Lagrangean conditions of Fritz John type (see, e.g.,
[7], [6]) are well known to be necessary for a minimum to be attained, without
assuming any constraint qualification, as would be required for Kuhn-Tucker
conditions. Under some additional convexity hypotheses, the Fritz John
necessary conditions have been shown [1, 2, 10, 11, 5] also to be sufficient fora
minimum.

These results are now extended in two directions. First, the objective
function now maps into a partially ordered space, instead of the real line R,
and minimum is defined, in terms of a convex cone, as in Craven [4]. This
definition of minimum has also been discussed, more recently, by Borwein
[3], who called it weak minimum. Second, the hypothesis that the functions
are (linearly Gateaux) differentiable is given up. Given the convexity hypoth-
eses, which are required in any case for a sufficient Fritz John theorem, Fritz
John necessary conditions have been obtained [9], for functions not always
differentiable, in terms of directional derivatives, and subdifferential (the
latter as in [12]). These generalized Fritz John conditions, with suitable
convexity, are now shown, in Section 3, to be also sufficient for a minimum.
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In Section 4, this sufficiency theorem is applied to a minimization
problem which involves square roots of quadratic forms (or equivalently
seminorms), in both objective function and constraints. Earlier papers (e.g.
[8]) have included the square root function (which is not differentiable
everywhere) in the objective function only. The present results are given for
real spaces only; extensions to complex spaces would be readily possible.

The subdifferential of the square root of a quadratic form is expressed
(Section 4, Lemma) in terms of an auxiliary variable tv, and additional
constraints. This accords with the analogous expressions obtained by other
methods in [8], for complex spaces, and suggests how the latter could be
extended.

If a minimization algorithm, seeking to compute a "Kuhn-Tucker point"
where the Kuhn-Tucker conditions are fulfilled, arrives instead at a point
where only the Fritz John conditions are fulfilled, this can still characterize the
desired minimum, provided that some appropriate convexity hypotheses are
also satisfied.

2. Preliminaries

Let X, W, and Y be real normed spaces (whether finite or infinite
dimensional); let Xo be an open subset of X; let P C W and S C Y be closed
convex cones, such that P has nonempty interior int P. The minimization
problem:

(MP): Minimize f(x) such that - g ( x ) E S ,
xGXo

where / : Xo—> W and g: Xo—* Y, attains a (local) minimum at x = a E Xo if
f(x)- f(a) £ - i n t P for all x in a neighbourhood of a satisfying - g(x)E S.

The functions g: Xo—» Y is S-convex if

Ag(x)+ (1 - A)g(x')- g(\x + (1 - A)x') £ S

whenever x,Jt'EX0 and O < A < 1 ; g is strictly S-convex iff g is (intS)-
convex; the latter requires that int S^ 0 . A function h: Xo—»R is then convex
if it is R+-convex, where R+ = [0, °°). The convex function h has a subgradient
u at a E Xo if

for all x E Xo; the subdifferential dh(a) denotes the set of all subgradients u
of h at a. The directional derivative of h at a in the direction x E X is
h'(a, x), defined as

\im\-'[h(a + \x)-
A iO
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Rockafellar [12], Section 23, shows that, if h is convex, then \~'[h(a +
Ax)— h(a)] is a nondecreasing function of A >0 , which therefore converges,
as A 4 0, to a (possibly infinite) limit h'(a,x), which satisfies (VA >0)
h '(a, Ax) = All '(a, x). For X - R", Rockafellar shows that h '(a, •) is a proper
closed convex function, defined for all x E X; dh(a) is a (weak *) closed
convex subset of the dual space X', given by the intersection

p| {vEX':h'(a,x)*vx};
xex

dh(a) is a norm-bounded subset of X'; and

h'(a,x)= sup vx (1)
• Elk{a)

When Xo is an open subset df an infinite-dimensional normed space X,
assume also that h'(a, • ) is bounded above on some neighbourhood; then
h'(a, • ) is continuous, by Rockafellar [13], Theorem 8; then (1) follows from
[13], Theorem 11.

If h: Xn—*R is strictly R+-convex, and a E Xo, x G Xo, a / x , then

(\/kGdh(a)) h(x)-h(a)>k(x-a).

For the definition of strict R+-convexity gives, for A > 0, that

since the function of A is nondecreasing

^k(x-a) for each k G dh(a), by (1).

Given a convex cone S CY, its dual cone is

S* = {y'G Y":y'(S)CR+}.

Note that if i n t S ^ 0 , then 0 ^ s ' £ S ' and s GintS imply that s*s>0.
Under some additional hypotheses, not assumed here, necessary condi-

tions (of Fritz John type) for the minimization problem (MP) to attain a
minimum at x = a £ Xo are

(F):

p*i<EP* 0 = 1,2, • • ) ; k,<=d(.p*°f)(a);
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where 2 denotes finite sums, and at least one of the p*, or at least one of the
s*, does not vanish.

The necessary condition (F) is proved in [9] under hypotheses weaker
than convexity, and with a corresponding generalization of subdifferential. If,
in particular, the functions / and g have linear Gateaux derivatives f\a) and
g'(a), then df(a) = {f\a)} and dg(a) = {g'(a)}, and (F) reduces to the Fritz
John necessary condition

p*°f'(a)+s*°g'(a) = 0; s*°g(a) = 0;

s*£S* ; p*EP*; (s*,p*)/(0,0).

Under suitable hypotheses, (F) will now be shown to be also a sufficient
condition for a minimum of (MP).

3. Sufficient Fritz John theorem

THEOREM. Let X, W, and Y be normed spaces; let P CW, S CY, Q CY
be closed convex cones, with int P and int Q nonempty; let Xo be an open subset
of X; let the functions f: Xn—> W and g: Xo—» Y be resp. P-convex and strictly
Q-convex. At a G Xo, let g'(a, •) be continuous, and let the generalized Fritz
John conditions (F) hold, and satisfy also s* G Q * for each i. Then the problem
(MP) attains a minimum at x = a.

REMARKS. If int S^ 0 , then it suffices to take Q = S. But int S may well
be empty, for example if (MP) includes equality constraints. In this case, a
convex cone Q is required, satisfying Q D S and int 0 ^ 0 . Since then
O*CS*, the requirement j * E O* is more stringent than s*GS*. If it
happens that SCintQ, then g will be strictly Q-convex if it is S-convex.

PROOF. If x = a is not a minimum for (MP), then there exists x0E. Xo

w i t h X o / a , - g ( x o ) E S , a n d f ( x 0 ) - f ( a ) G - i n t P . S e t z = x 0 - a . N o w p * ° f
is a convex function, since / is P-convex and p*GP*; if somep* 7^ 0,then
k, Gd(p*°f)(a) with 0? p*eP*; hence

k,z^p*°f(xo)-p*°f(a)<0

since 0 / p * G P * and f(xo)-f(a)G - int P. If some s*/0, then q, G
d(s*°g)(a) with 0 / s * E Q* by hypothesis; since g is strictly Q-convex,

-q,z - s*i°g(a) = {s*°[g(x0)- g(a)]-q,z} + s*°(- g(xo))

E(intR+) + R+ = intR+,

noting that the function s*°g( • ) is strictly R+-convex. This, with the equation
= 0 of (F), shows that E,q,2 <0,. provided that some s*/0.
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By the hypothesis of (F), there is some s* or p* nonzero; hence
S.g.z + S,fc,z < 0, which contradicts the equation 1,q, + £,fc, = 0 in (F). Hence
x = a is a minimum for (MP).

4. Applications

REMARK. If P and S are polyhedral cones, then so also are P* and S*.
The variables p* and s* can then be restricted to the generators of their
respective cones.

LEMMA. Define the function g: R" —> R by g(x) = (xTAx)"2, where A is a
(symmetric) positive semidefinite n x n matrix. Then g is convex, and

zGdg(a) iff {z = wTA, wTAw ^ 1, g(a)= wTAa}. (2)

PROOF. If g ( a ) ^ 0 , then g has derivative g'(a) = aTA/(aTAa)"2 at a.
From the Schwarz inequality:

wTAx g | wTAx | ̂  (xTAx)m(wTAw)m, (3)

it follows that g(x)- g(a)=£ g'(a)(x - a), and therefore that g is convex on
R"\N, where N = {a: g(a) = 0} = A~'(0). Since g is continuous on R", it then
follows that g is convex on R". Now

zGdg(a) iff Q/x)g(x)-g(a)*z(x-a).

If g(a) = 0 and if A is positive definite, then (3) shows that z £ dg(a) iff
2 = wrA where * V T A H ' ^ 1 ; this extends to A positive semidefinite by
diagonalizing A, then expressing it as the direct sum of a positive definite
matrix and a zero matrix. Also g(a) = 0 0 Aa = 0 => g(a) = wTAa.

Suppose now that g(a)^0. Then dg(a) = {g'(a)}, where g'(a)= wTA,
and w = a/g(a) satisfies wTAw = 1 and wTAa - g(a).

Conversely, suppose that z = wrA, wTAw S 1, and g(a) = wTAa. Then

z(x - a)= wTAx - g(a)^(W
TAw)m(xTAx)m - g(a)^ g(x)- g(a),

and hence z G dg(a).
Consider now the minimization problem:

(MP'): Minimize F(x) + (xTB()x)m subject to

where F :R"->R' and G:R"-»Rm are (linear Gateaux) differentiate
functions, B, (j = 1,2, • • •, r) and D,- (i = 1,2, • • •, m) are positive semidefinite
matrices, xTBt.)X denotes the vector in Rr whose yth component is xTB,x, and
xTD{)x is similarly defined. Now (MP') is of the form (MP), with S = R? and
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taking P = R+. For this P, minimization at a, namely f(x)- f(a) &. - i n t P , is
equivalent to (3/) / , ( * ) - / , ( a ) § 0 , where /, is the yth component of f(x) =
F(x) + (xTBnx)"2.

For (MP'), the Fritz John conditions (F) take the form

(F):

+vjBi} + 2 A,[G:(a)+H>,TD,]=0;
, - i 1 = 1

A, SO, X,[G(a) + {aTD,a)"2) = 0,

wjD,w,Sl, wWia = (aTD,a)"2, (i = 1,2, • • •, m);

T,gO, vjB,v,^\, vjB,a=(aTB,a)m, (j = 1,2, • • •, r).

In (F'), at least one of the A, or T, is nonzero. Here the characterization, in the
above lemma, of the subgradient of a square root function has been used.

Assume now that F is R+-convex (thus each component F, is convex);
that G is R+-convex; and that, for each i = 1,2, • • •, m, G, is strictly convex or
D, is positive definite. Then g(x) = G(x) + (xTDnx)U2 is a strictly RT-convex
function of x. The sufficient Fritz John theorem then shows that these
hypotheses, with (F'), imply that (MP') attains a minimum at x = a.

The cone R? can be replaced by a polyhedral cone S, and an analogous
result obtained. Here the s* become the generators of S*. In order that the
function x >-» s*(xTDnx)"2 is convex, it is necessary, and sufficient, that
S* CR+, hence that S D R7.

Similar conclusions hold with xTB,x replaced by (xr - bJ)B,(x - b,), for
constant vectors b,.
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