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Abstract

We derive asymptotic properties for a stochastic dynamic network model in a stochastic
dynamic population. In the model, nodes give birth to new nodes until they die, each
node being equipped with a social index given at birth. During the life of a node it creates
edges to other nodes, nodes with high social index at higher rate, and edges disappear
randomly in time. For this model, we derive a criterion for when a giant connected
component exists after the process has evolved for a long period of time, assuming that
the node population grows to infinity. We also obtain an explicit expression for the degree
correlation ρ (of neighbouring nodes) which shows that ρ is always positive irrespective
of parameter values in one of the two treated submodels, and may be either positive or
negative in the other model, depending on the parameters.
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1. Introduction

The models of dynamical graphs are defined by the rules of attachment and deletion of
vertices and edges chosen to fit particular processes in nature. Intensive study in this area
began at the end of the twentieth century when a number of models were formulated primarily
in the physics literature (see, e.g. Barabási et al. (1999), Callaway et al. (2001), and Malyshev
(1998)). The important paper by Bollobás et al. (2007) provided a unified approach based
on branching processes to many known models of random networks (see the reference list in
Bollobás et al. (2007)).

In the present paper we continue the study of a Markovian model describing a random time-
dynamic network in a random time-dynamic population. The model was originally defined in
Britton and Lindholm (2010), extending an earlier model of Turova (2003), which in turn was
derived from a general model of Malyshev (1998). The population process is a Markovian linear
birth-and-death process in which individuals are assigned random independent and identically
distributed (i.i.d.) social indices. Given the population process, a Markovian network is defined
where edges between individuals appear and disappear in such a way that ‘social’ individuals
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1164 T. BRITTON ET AL.

tend to have more neighbours. Note also that it was shown in Turova (2002) that the model
without social index and also without deletion of nodes includes as a subcase yet another model
studied in Callaway et al. (2001).

We study the asymptotic properties of the network: the properties that the network (and
population) will have after having evolved for a long time, assuming that the size of the
population has grown large. We can check that a snapshot of the limiting network of Britton
and Lindholm (2010) falls into the general class of inhomogeneous random graphs introduced
in Bollobás et al. (2007). In particular, we can consult Britton and Lindholm (2010) as well as
Bollobás et al. (2007) for the age, the type, and the degree distribution in this model.

In the present paper we shall make essential use of the theory of Bollobás et al. (2007) to
study the phase transition in the model of Britton and Lindholm (2010). More precisely, we
will determine the critical values which separate the set of parameters under which the model
with a high probability has a giant connected component (i.e. of order of the entire network),
and the area of parameters which do not produce a giant component. This extends earlier results
of Turova (2006) for the model without social index.

Besides global properties of the network, e.g. phase transition, we shall study a characteristic
which reveals more about the local structure, namely the degree correlation, or the mixing
coefficient, as introduced in Callaway et al. (2001). Inspiring numerical results on the mixing
coefficient in different empirical networks have already been presented and analyzed in Newman
(2002). Recently, Bollobás et al. (2011) derived formulae for the mixing coefficient in terms
of small subgraph counts for a rather general graph model, which includes, in particular, the
inhomogeneous graphs.

According to empirical results provided in Newman (2002), real-life networks appear to be
of two classes: assortative, when the mixing coefficient is positive, as in many social networks,
or disassortative, when the mixing coefficient is negative, which is a feature of technological or
biological networks. Still, most of the models tend to have positive degree correlation/mixing
coefficient. However, Newman (2002) constructed an example of a network model where the
mixing coefficient changes sign depending on the parameters of the model. More recently,
Bollobás et al. (2011) gave another approach for constructing a network with a negative mixing
coefficient. Therefore, it is a challenge to look for an example of a somewhat ‘naturally grown’
random network which possesses the property of enabling both positive and negative mixing
coefficients depending on the parameters. As pointed out in Newman (2002), the property of
assortativity affects qualitatively the sharpness of the phase transition with respect to the size
of the giant component: the phase transition is sharper for the dissasortative networks.

Here we provide an example of a dynamic (growing) social network with a degree correlation
(mixing coefficient) that may be either negative or positive depending on the model parameters.
We derive an explicit formula for the degree correlation, showing the dependence of the sign
of the mixing coefficient on the parameters. Note that the formula for the mixing coefficient
for the model of Callaway et al. (2001) derived in Newman (2002) is a subcase of the formula
we prove here.

Although our model is a subcase of the general model studied in Bollobás et al. (2011), and,
hence, the general formula from their paper should be applicable for our model as well, we find
a somewhat more direct way to obtain a formula for the degree correlation in our case. We use
the invariant measures for the random walk associated with the graph. It is worth noting that
our method is not restricted to the particular model we study here, but would work as well for a
class of inhomogeneous random graphs. However, this will be the subject of a separate study.
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2. The Markovian random network in a Markovian dynamic population

Below we define the Markovian random network in a Markovian dynamic population,
originally defined in Britton and Lindholm (2010). There are two versions of the model, referred
to as the uniform (U) version and the preferential (P) version. In what follows a network denotes
a finite set of nodes (the population) together with undirected edges connecting pairs of nodes.
Nodes that are directly connected by an edge are called neighbours (in sociological applications
nodes correspond to individuals, edges to some type of friendship, and neighbours are referred
to as friends). The model is dynamic in the double sense that nodes are born and may die, and
the same applies to edges.

2.1. The model and its two versions

We first define the node population dynamics. Let Y (t) denote the number of nodes alive
at time t , and assume that Y (0) = 1. While alive, each node gives birth to new nodes at the
constant rate λ and each node lives for an exponentially distributed time having mean 1/µ

(denoted Exp(µ)), so each node dies at the rate µ. We assume that λ > µ, implying that
the expected number of births during a life span is larger than 1. This means that the node
population is modelled by a Markovian supercritical branching process. Additional to this,
each node i is at birth given a random ‘social index’ Si having distribution FS on R+, i.i.d. for
different nodes. We will throughout assume that S has finite mean i.e. E[S] := µS < ∞.

There are two versions of the model for births and deaths of edges, the U- and P-versions,
both being Markovian given the node population and their social indices. In both versions,
nodes are isolated at birth, i.e. have no neighbours. During the life of a node i, having social
index Si = s, it creates new neighbour edges at rate αs. The difference between the two
versions lies in how neighbour nodes are selected. In the U-version the neighbour node is
chosen uniformly at random among all living nodes. In the P-version the neighbour node is
instead chosen at random among all living nodes with probabilities proportional to their social
index. Finally, in both versions each edge is removed, independently of everything else, at the
rate β. If a node dies, all edges connected to the node in question are removed. We emphasize
that a node gets new neighbours in two ways: it ‘creates’ new neighbour edges itself but may
also be selected as the neighbour of another node that has created a neighbour edge.

2.2. Comments on the model

The model has four parameters: the birth and death rates of nodes, λ and µ, respectively,
the death rate β of edges, and α, which is related to the birth rate of new edges. Beside these
four parameters, we have the distribution FS for the social indices {Si} (in what follows we let
fs denote the corresponding density function).

The P-version of the model is inspired by the preferential attachment model (see Barabási
and Albert (1999)); however, in the P-version the probability of receiving edges is determined
at birth, whereas it is determined by random events during life in the preferential attachment
model. In both models there is also an age factor, in the sense that older nodes tend to have
more edges.

Some submodels are worth mentioning, such as the case where there is no node heterogeneity
and nodes have the same social index S ≡ s (for example, set to 1 without loss of generality).
Loosely speaking, allowing node heterogeneity makes it possible to achieve degree distributions
having heavy tails: if FS is heavy tailed, there will be some nodes with very high social indices
that hence have a large number of neighbours (cf. the next section). The case where µ = 0 and
S ≡ 1 has been studied in Turova (2002), (2006), who derived more results for this submodel.
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2.3. Known results of the model

The model allows for multiple edges and self-loops, which usually does not make sense in
applications. However, it was shown in Britton and Lindholm (2010) that the proportion of
such edges is asymptotically negligible as long as E[S] < ∞ for the U-version, and as long as
E[S2] < ∞ for the P-version. As a consequence, the network will then have identical properties
if loops and multiple edges are ignored or not allowed.

In the rest of the paper we will consider only the case where the node population tends to
∞, i.e. we condition on the event B := {ω; Y (t) → ∞}, which has positive probability since it
was assumed that λ > µ. The first two results follow from standard branching process theory.

Asymptotic population size. As t → ∞,

Y (t)e−t (λ−µ) d−→ Exp(1).

Stable age distribution. As t → ∞, the age A of a randomly selected living node will satisfy
A ∼ Exp(λ), having mean 1/λ; see, e.g. Section 3.4 of Haccou et al. (2005).

Social index distribution. Since the social indices are defined to be i.i.d. with distribution
FS , and they affect only the occurrence of edges, the social index of a randomly selected living
node will have the same social index distribution FS .

Asymptotic degree distribution. As t → ∞, the degree (i.e. the number of neighbours) D

of a randomly selected living individual has a mixed Poisson distribution in both versions of
the model (see Britton and Lindholm (2010)). For the U-version,

DU ∼ MixPo

(
α(S + µS)(1 − e−(β+µ)A)

β + µ

)
, (2.1)

where A ∼ Exp(λ) and S ∼ FS are independent. This simply means that, conditional on
A = a and S = s, the degree is Poisson distributed with mean parameter equal to α(s + µS) ×
(1 − e−(β+µ)a)/(β + µ). The mean and variance of this distribution are given by

E[DU] = 2α

λ + β + µ
µS,

var[DU] = 2α

λ + β + µ
µS + 4λα2

(λ + β + µ)2(λ + 2(β + µ))
µ2

S

+ 2α2

(λ + β + µ)(λ + 2(β + µ))
var[S].

For the P-version of the model, the degree distribution satisfies

DP ∼ MixPo

(
2αS(1 − e−(β+µ)A)

β + µ

)
, (2.2)

where A ∼ Exp(λ) and S ∼ FS are independent. The mean and variance are given by

E[DP] = 2α

λ + β + µ
µS,

var[DP] = 2α

λ + β + µ
µS + 4λα2

(λ + β + µ)2(λ + 2(β + µ))
µ2

S

+ 8α2

(λ + β + µ)(λ + 2(β + µ))
var[S],
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i.e. the same mean degree but a larger variance. For both versions, it is seen that the variance of
the degree distribution increases with the variance of the social index distribution, so having a
heavy-tailed social index distribution FS implies that the degree distribution will also be heavy
tailed.

3. Results

In what follows we derive some further properties of the model, still assuming that t → ∞
and conditioning on the fact that the node population grows beyond all limits. We do this for
the U-version and only present the results for the P-version, which are obtained in a similar
way.

3.1. Type distribution of neighbour nodes

Assume that t is large, and consider a randomly selected individual alive at this time of age a

and social index s. We derive the distribution of the number of (a′, s′)-neighbours that this
(a, s)-node has. The number of neighbours of any type (a′, s′) will be Poisson distributed, so
we first compute the mean of the distribution and then divide by the total mean, thus obtaining
the type distribution.

How many neighbours of type (a′, s′) does the (a, s)-individual have? Any edge must
have been created at some time τ ∈ (t − (a ∧ a′), t) (‘∧’ denotes the minimum: both
individuals must have been born). At such τ the (a, s)-individual creates edges with density
αsλe−λ(τ−(t−a′))fS(s′): αs is the rate at which the individual creates edges and λe−λ(τ−(t−a′))

fS(s′) is the density of the fraction of nodes having age τ − (t − a′) (at τ ) and type s′.
Similarly, the (a, s)-individual receives edges with density αs′λe−λ(τ−(t−a′))fS(s′), as there
are Y (τ)λe−λ(τ−(t−a′))fS(s′) having the ‘correct’ age and type, each of which creates edges at
rate αs′ and, with probability 1/Y (τ), each of these created edges reaches the (a, s)-individual.
Any such edge created at τ remains at t if and only if both the (a′, s′)-individual and the edge
survive until t (we have already conditioned on the fact that the (a, s)-individual is alive at
time t). The probability of this equals e−(β+µ)(t−τ). Hence, the total expected number of edges
with (a′, s′)-individuals equals

mU(a′, s′ | a, s) da′ ds′ = da′ ds′
∫ t

t−(a∧a′)
α(s + s′)λe−λ(τ−(t−a′))fS(s′)e−(β+µ)(t−τ) dτ

= α(s + s′)fS(s′)λe−λa′ e(λ−β−µ)(a∧a′) − 1

λ − β − µ
da′ ds′. (3.1)

It is easy to check from this that the integral over all a′ and s′ of the expected total number of
neighbours of any type of the (a, s)-node equals

mU(·, · | a, s) = α(s + µS)

β + µ

(
1 − e−(β+µ)a

)
. (3.2)

This also confirms that the unconditional degree distribution has the mixed Poisson distribution
specified in (2.1) (while, conditionally on the age a and type s, it has Poisson distribution with
mean given by (3.2)).

Consequently, for the U-version of the model, the type distribution of the neighbours of an
individual of type (a, s), which equals the expected number of (a′, s′)-types divided by the
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total expected number of types, becomes

f U(a′, s′ | a, s) = mU(a′, s′ | a, s)

mU(·, · | a, s)
= (s + s′)fS(s′)

s + µS

(β + µ)λe−λa′
(e(λ−β−µ)(a∧a′) − 1)

(λ − β − µ)(1 − e−(β+µ)a)
.

We hence have conditional independence, i.e. f U(a′, s′ | a, s) = f U(a′ | a)f U(s′ | s), where

f U(a′ | a) = (β + µ)λe−λa′
(e(λ−β−µ)(a∧a′) − 1)

(λ − β − µ)(1 − e−(β+µ)a)
, (3.3)

f U(s′ | s) = (s + s′)fS(s′)
s + µS

. (3.4)

We draw attention to the abuse of notation here, and in what follows, in that f U(a′ | a) and
f U(s′ | s) really denote different density functions, as indicated by the difference in arguments.

Using similar arguments, for the P-version of the model, we obtain f P(a′, s′ | a, s) =
f P(a′ | a)f P(s′ | s), where

f P(a′ | a) = (β + µ)λe−λa′
(e(λ−β−µ)(a∧a′) − 1)

(λ − β − µ)(1 − e−(β+µ)a)
, (3.5)

f P(s′ | s) = s′fS(s′)
µS

, (3.6)

i.e. the same density as for the U-version with respect to age but a different density with respect
to social index.

3.2. Phase transition

Here we will apply the results of Bollobás et al. (2007) to the above models in the limit as
t → ∞. Therefore, we will first put our model into a general setup of the theory (and notation)
of inhomogeneous random graphs of Bollobás et al. (2007).

Let us enumerate the individuals at time t by i = 1, . . . , n := Y (t). Let Xi = (Ai, Si),

where Ai and Si respectively denote the age and social index of individual i. Note that this
means that this individual was born at time t − Ai (and remains alive at time t). The random
variables Xi are independent for different i. For a randomly selected i, as we argued above, the
distribution of the social index follows the original social index distribution and Ai is Exp(γ );
denote the corresponding measures by µ1 and µ2:

µ1(da) = λe−λa da, µ2(ds) = fS(s) ds. (3.7)

We shall call Xi the type of individual i. Given the types Xi = (ai, si) and Xj = (aj , sj )

of individuals i and j , we derive the probability pij (n) that they are connected. From above
we know that the expected number of (a′, s′)-individuals individual i is connected to equals
m(a′, s′ | ai, si) da′ ds′, defined by (3.1) for the U-version (and similarly for the P-version). In
total, if Y (t) = n, the expected total number of individuals of type (a′, s′) equals nλe−λa′

da′ ×
fS(s′) ds′. This reasoning implies that the probability that i is connected to j (of type (aj , sj ))
equals the ratio of these two expressions:

pij (n) = 1

n
κ1(ai, aj ) κ2(si, sj ). (3.8)

Here

κ1(ai, aj ) = e(λ−β−µ)(ai∧aj ) − 1

λ − β − µ

https://doi.org/10.1239/jap/1324046025 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046025


A dynamic network in a dynamic population 1169

and

κ2(si, sj ) =
{

κU
2 (si, sj ) = α(s + s′) in the U-version,

κP
2 (si, sj ) = 2αss′ in the P-version.

Let µ = µ1 × µ2, which, by (3.7), is a probability measure on S = R2+, and let

κ = κ(xi, xj ) = κ1(ai, aj )κ2(si, sj ).

Given the sequence x1, . . . , xn, we let GV(n, κ) be the random graph on {1, . . . , n} such that
any two vertices i and j are connected by an edge, independently of the other vertices, with
probability given by (3.8), which we write as

pij (n) = min

{
κ(xi, xj )

n
, 1

}
.

Hence, conditionally on Y (t) = n, the graph GV(n, κ) describes our model. On the other
hand, GV(n, κ) with κ as above satisfies the definition of the inhomogeneous random graph
from Bollobás et al. (2007), and, thus, we can apply some known results here.

Recall first the fundamental result on phase transitions in the inhomogeneous random graphs.
Define

Tκf (x) =
∫

S

κ(x, y)f (y) dµ(y)

and
‖Tκ‖ = sup{‖Tκf ‖2 : f ≥ 0, ‖f ‖2 ≤ 1}.

Then, by Theorem 3.1 of Bollobás et al. (2007), the largest connected component of GV(n, κ),
denoted by C1(G

V(n, κ)), satisfies

1

n
C1(G

V(n, κ))
p−→ ρκ =

∫
S

ρ(x) dµ(x) as n → ∞,

where ρκ > 0 if and only if ‖Tκ‖ > 1.
Then, for our model as well, conditionally on the number Y (t) of individuals in the population

at time t , we have, with a high probability, approximately ρκY (t) individuals connected; this
holds unconditionally as well. The function ρκ(x) is described more precisely in the following
theorem.

Theorem 3.1. (Theorem 6.1 of Bollobás et al. (2007).) Suppose that κ is the kernel on (S, µ),
that κ ∈ L1, and that ∫

S
κ(x, y) dµ(y) < ∞

for every x ∈ S. Then ρκ(x) is the maximal solution to

f (x) = 1 − exp{−Tκf (x)}. (3.9)

Furthermore, the following statements hold.

(i) If ‖Tκ‖ ≤ 1 then ρκ(x) = 0 for every x, and (3.9) has only the zero solution.
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(ii) If 1 < ‖Tκ‖ ≤ ∞ then ρκ(x) > 0 on a set of positive measure. If, in addition, κ is
irreducible, i.e. if

A ⊆ S and κ = 0 almost everywhere on A×(S\A) implies that µ(A) or µ(S\A) = 0,

then ρκ(x) > 0 for almost every x, and ρκ(x) is the only nonzero solution of (3.9).

First we shall derive conditions for ρκ(x) > 0. By the cited results, this amounts to
computing ‖Tκ‖. Unfortunately, there is no general formula to simply compute the norm
‖Tκ‖. Therefore, we shall use a criterion for the condition when ‖Tκ‖ > 1, which is what we
need here.

Proposition 3.1. (Proposition 17.2 of Bollobás et al. (2007).) For k ≥ 1, let

α(k) := 1

2

∫
Sk+1

κ(x0, x1)κ(x1, x2) · · · κ(xk−1, xk) dµ(x0) · · · dµ(xk).

Then ‖Tκ‖ > 1 if and only if α(k) → ∞ as k → ∞.

It follows from definition (3.7) that, for our model,

α(k) = 1
2α1(k)α2(k), (3.10)

where, for i = 1, 2,

αi(k) =
∫

R
k+1+

κi(u0, u1)κi(u1, u2) · · · κi(uk−1, uk) dµi(u0) · · · dµi(uk). (3.11)

First we shall compute α2(k). We start with the U-version in the next proposition.

Proposition 3.2. Consider the matrix

A =
(

E[S] 1
E[S2] E[S]

)
.

Then, for all k ≥ 3,

αU
2 (k) = αk

{
Ak−1

(
2 E[S]

(E[S])2 + E[S2]
)}

1
, (3.12)

where, for a vector B, we denote by {B}i component i.

Proof. Let S0, S1, . . . be i.i.d. copies of the random variable S. Then, by definition (3.11),

αU
2 (k) = αk E

[ k∏
i=1

(Si−1 + Si)

]
=: αkf (k), (3.13)

where

f (k) = E

[ k∏
i=1

(Si−1 + Si)

]
.

Also, define

g(k) = E

[( k∏
i=1

(Si−1 + Si)

)
Sk

]
.

https://doi.org/10.1239/jap/1324046025 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046025


A dynamic network in a dynamic population 1171

Then we recursively derive

f (k) = g(k − 1) + f (k − 1) E[S]
and

g(k) = g(k − 1) E[S] + f (k − 1) E[S2]
for k > 1, with

f (1) = 2 E[S], g(1) = (E[S])2 + E[S2]. (3.14)

Hence, for all k > 1, (
f (k)

g(k)

)
= A

(
f (k − 1)

g(k − 1)

)
= Ak−1

(
f (1)

g(1)

)
,

and (3.12) follows from (3.13) upon using the above formula and (3.14).

Corollary 3.1. We have

lim
k→∞(αU

2 (k))1/k = α(E[S] +
√

E[S2]). (3.15)

In the case of the P-version, when α2 = αP
2 , it is straightforward to derive from (3.11) that

αP
2 (k) = (2α)k(E[S])2(E[S2])k−2,

which yields
lim

k→∞(αP
2 (k))1/k = 2α E[S2]. (3.16)

Now define

ccr(λ, µ + β) := sup

{
x > 0 :

∞∑
k=2

xk α1(k) < ∞
}
.

Then, owing to definitions (3.10) and (3.11), together with asymptotics (3.15) and (3.16), we
have the following criteria, which hold for both the P-version and U-version.

Corollary 3.2. If
lim

k→∞(α2(k))1/k > ccr(λ, µ + β)

then α(k) → ∞; if
lim

k→∞(α2(k))1/k < ccr(λ, µ + β)

then α(k) < ∞.

The value ccr(λ, µ + β) is known from Turova (2003). Let us record this result here. Write
first

α1(k) =
∫

R
k+1+

κ1(a0, a1) · · · κ1(ak−1, ak)λe−λa0 da0 · · · λe−λak dak

= E

[
κ1

(
X0

λ
,
X1

λ

)
· · · κ1

(
Xk−1

λ
,
Xk

λ

)]
,
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where X0, . . . , Xk are i.i.d. random variables with a common Exp(1) distribution. Then, by
the results of Turova (2007b) (see Equation (1.7) therein, or consult Bollobás et al. (2007)), the
value ccr(λ, µ + β) is the smallest positive root of

H(x) = 1 +
∞∑

n=1

(−1)n
(

x

µ + β

)n 1

n!
[ n∏

l=1

1

1 + (l − 1)(µ + β)/λ

]
. (3.17)

Finally, combining Corollary 3.2 and Proposition 3.1 with asymptotics (3.15) and (3.16), we
can derive, apart from the critical case, the necessary and sufficient conditions for the existence
of the giant component.

Corollary 3.3. Define
κU = κ1κ

U
2 , κP = κ1κ

P
2 ,

and let

RU(α, β, λ, γ, S) := α(E[S] + √
E[S2])

ccr(λ, µ + β)
and RP(α, β, λ, γ, S) := 2α E[S2]

ccr(λ, µ + β)
.

(3.18)
Then there exists a giant component in the U -model if RU(α, β, λ, γ, S) > 1, and there is no
giant component if RU(α, β, λ, γ, S) < 1.

Similarly, there exists a giant component in the P -model if RP(α, β, λ, γ, S) > 1, and there
is no giant component if RP(α, β, λ, γ, S) < 1.

Note also that although we define the function ccr(λ, u) foru > 0, the model withµ+β = 0 is
treated similarly; in fact, when S ≡ 1 also, this model becomes the model studied in Callaway et
al. (2001). We define ccr(λ, 0) as the critical parameter, above which there is a giant component.
It is known (see Callaway et al. (2001)) that ccr(λ, 0) = 1

4 , and, moreover, the function ccr(λ, u)

is continuous at u = 0 (see Bollobás et al. (2007) and Turova (2007)).
In general, there is no closed form for the function ccr, but we can mention some qualitative

properties of this function. First, simply from the model it follows that ccr(λ, µ + β) is
decreasing in λ and increasing in µ + β, i.e. both in µ and β. For any u > 0, denote by c(u)

the smallest positive root of the rescaled function (3.17)

Hu(x) = 1 +
∞∑

n=1

(−1)nxn 1

n!
[ n∏

l=1

1

1 + (l − 1)u

]
.

Then

ccr(λ, µ + β) = (µ + β)c

(
µ + β

λ

)
.

In conclusion, both RU(α, β, λ, γ, S) and RP(α, β, λ, γ, S) are increasing in λ and α (the
birth rate of individuals and edges, respectively) as well as the first and second moments of
S, whereas they are both decreasing in µ and β (the death rate of individuals and edges,
respectively).

3.3. Degree correlation

We now derive an expression for the degree correlation ρ (also known as the ‘mixing
coefficient’) of the network when it has grown and reached its stationary phase. That is, after a
long time t we take a snapshot of the network and compute the degree correlation ρ, which is
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defined as the correlation of the degrees of the two adjacent nodes of a randomly selected edge
in the network. We derive ρ in two different ways. In the first method we pick a random node
in the snapshot network and then perform a random walk on this fixed network. When this
random walk has reached stationarity, we consider the node in one step as the ‘first’ node and
then pick the ‘second’ node randomly among the neighbouring nodes, and let the edge between
these two nodes be our randomly selected edge. In the second method we pick the ‘first’ node
randomly in a size-biased way in the snapshot network (such that the node is adjacent to a
randomly selected edge) and we pick the ‘second’ node randomly among the neighbours of this
individual (the size-biased distribution of a nonnegative random variable X with probability
density function (PDF) fX(x) and finite mean µX has PDF xfX(x)/µX—below we denote such
a random variable by X̃). As will be seen, the two methods of picking neighbouring nodes give
the same result. The degree correlation is then obtained by computing the degree correlation
of the two neighbouring nodes.

3.3.1. The type distribution obtained using the random walk method. We start with the first
method, in which we pick a node at random among all living nodes. From the results of
Section 2.3, this means that the node has an exponential age distribution and an independent
social index distribution given by the original distribution. More precisely, the type distribution
of a randomly selected node equals λe−λa dafS(s) ds. The neighbours of this node, conditional
on its type, all have distribution f (a′, s′ | a, s), defined in Section 3.1, where its form depends
on whether we consider the U-version or the P-version of the model. Iterating this procedure
gives the type distribution of nodes after additional steps in the random walk. Eventually, this
random walk reaches stationarity and the distribution f∞(a′, s′) of the type of node is then
given by the solution to the functional equation

f∞(a′, s′) =
∫ ∫

f∞(a, s)f (a′, s′ | s, a) ds da.

Since f (a′, s′ | s, a) = f (a′ | a)f (s′ | s) in both versions of the model, it follows that
the age and social index distributions are independent in the stationary distribution as well:
f∞(a′, s′) = f∞(a′)f∞(s′). The corresponding densities are therefore the solutions to

f∞(a′) =
∫

f∞(a)f (a′ | a) da, (3.19)

f∞(s′) =
∫

f∞(s)f (s′ | s) ds. (3.20)

The functions f (a′ | a) and f (s′ | s) were defined in Section 3.1, with f (a′ | a) being the
same for the two versions and f (s′ | s) being different for the two versions. The (unique)
solution f∞(a′) to (3.19) is given by

f∞(a′) = λ

(
1 + λ

β + µ

)
e−λa′

(1 − e−(β+µ)a′
). (3.21)

The solution to (3.20) depends on which version of the model we consider, i.e. whether we use
f P(s′ | s) or f U(s′ | s). The (unique) solutions f P∞(s′) and f U∞(s′) are given by

f P∞(s′) = s′fS(s′)
µS

, (3.22)
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and

f U∞(s′) = s′ + µS

2µS

fS(s′). (3.23)

Hence, the P-version has the size-biased version of the social index distribution, whereas the
U-version has a mixture of the original and the size-biased social index distribution.

The stationary distribution defined by (3.21) and (3.22) for the P-version, and (3.21) and
(3.23) for the U-version, is the distribution of the ‘first’ node of a randomly selected edge.
Given the type (a′, s′) of this individual, a randomly selected neighbour of this individual has
the previously defined type distribution f (a, s | a′, s′) = f (a | a′)f (s | s′) (where f (s | s′),
but not f (a | a′), depends on the model version we consider).

3.3.2. The type distribution obtained using the size-biased method. We now derive the type
distribution of the nodes of a randomly selected edge using the second method described above,
which will be seen to give the same solution. We do this for the P-version of the model.

We know from before (see (2.2)) that the degree D of a randomly selected node in the
snapshot network is mixed Poisson with (random) parameter

2αS(1 − e−(β+µ)A)

β + µ
, (3.24)

where S has the original social index distribution fS and A is independent Exp(λ). We now
instead pick our ‘first’ node as a node of a randomly selected edge. As a consequence, this
node will have the size-biased version D̃ of this random variable (because a node of degree
k has probability proportional to k of being selected). The size-biased distribution of mixed
Poisson is also mixed Poisson, but with the size-biased version of the random parameter. The
size-biased distribution of the random parameter (3.24) equals

2α

β + µ
S̃ ( ˜1 − e−(β+µ)A).

By this tilde notation we mean that the type (A∗, S∗) of the ‘first’ node will have social index
distribution S̃ (the size-biased distribution of the original density, having density sfS(s)/µS),
which agrees with (3.22). The age distribution A∗ will be independent and have distribution

defined by 1 − e−(β+µ)A∗
, being distributed like ( ˜1 − e−(β+µ)A), where A ∼ Exp(λ). But,

since A ∼ Exp(λ), it follows that

1 − e−(β+µ)A ∼ Beta

(
1,

λ

β + µ

)
.

From this, it follows that the size-biased distribution

( ˜1 − e−(β+µ)A) ∼ Beta

(
2,

λ

β + µ

)
.

So 1 − e−(β+µ)A∗
has this distribution, implying that e−(β+µ)A∗ ∼ Beta(λ/(β + µ), 2). From

this, it follows after some straightforward calculations that A∗ has exactly the density given
in (3.21). As in the previous subsection, given the type (a′, s′) of the ‘first’ node, a randomly
selected neighbour of this node has the type distribution f (a, s | a′, s′) = f (a | a′)f (s | s′).
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3.3.3. The degree correlation ρ. In the two previous subsections we derived the type distribution
of the two nodes of a randomly selected edge. The type (A∗, S∗) of the ‘first’ node has density
f∞(a′)f∞(s′), where f∞(a′) is defined in (3.21) for both versions of the model, and f∞(s′)
is given by (3.22) for the P-version (and not explicit for the U-version). Given the type (a′, s′)
of the first node, the second node has type distribution f (a, s | a′, s′) = f (a | a′)f (s | s′),
where f (a | a′) and f (s | s′) are as defined in (3.3)–(3.6). We now derive the degree correlation
between two such randomly selected nodes.

In order to compute the degree correlation of the nodes adjacent to the randomly selected
edge, we condition on the types. Given the types, we know from before that the degree
distribution is Poisson: an individual of type (a, s) has a Poisson number of neighbours and
the mean g(a, s) = g1(a)g2(s) equals

g1(a) = 1 − e−(β+µ)a

β + µ
and g2(s) =

{
gU

2 (s) = α(s + µS) for the U-version,

gP
2 (s) = 2αs for the P-version.

(3.25)

We now compute the degree correlation using these results. Let D1 denote the degree of
the ‘first’ node, and let D2 denote its selected neighbour. In order to compute the degree
correlation ρ(D1, D2), we need to compute the following expectations: E[D1] = E[D2],
E[D2

1] = E[D2
2], and E[D1D2] (the first as well as the second moment of D1 and D2 are

the same since we have reached stationarity). We do this excluding the edge connecting the
two nodes (subtracting the value 1 everywhere does not change the degree correlation). The
conditional degree distributions remain Poisson with the same means because if X ∼ Po(β)

then the conditional distribution of X − 1, conditional on X ≥ 1, is also Po(β). We hence
obtain

E[D1] = E[D2] =
∫

g1(a)f∞(a) da

∫
g2(s)f∞(s) ds,

E[D2
1] = E[D2

2] =
∫ ∫

(g1(a)g2(s) + g2
1(a)g2

2(s))f∞(a)f∞(s) da ds,

E[D1D2] =
∫ ∫

g1(a)g1(a
′)f∞(a)f (a′ | a) da da′

∫ ∫
g2(s)g2(s

′)f∞(s)f (s′ | s) ds ds′.

Given these expressions, the degree correlation is given by

ρ(D1, D2) = E(D1D2) − E(D1) E(D2)

E(D2
1) − (E(D1))2

= C(D1, D2)

var[D1] . (3.26)

Perhaps the most important issue is to determine if ρ, or, equivalently, the covariance C,
is positive or negative. For this, it is sufficient to compute the numerator of (3.26). Using
f∞(a, s) (defined by (3.21), (3.22), and (3.23)) and (3.25) in the expressions above for the
P-version and U-version, separately, standard but tedious calculations reveal that

E[DP
1 ] = E[DP

2 ] = 2

λ + 2(β + µ)

2α E[S2]
E[S] ,

E[DP
1 DP

2 ] = 5λ + 6(β + µ)

(λ + β + µ)(λ + 2(β + µ))(λ + 3(β + µ))

(
2α E[S2]

E[S]
)2

,
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as well as

E[DU
1 ] = E[DU

2 ] = 2

λ + 2(β + µ)

α(E[S2] + 3(E[S])2)

2 E[S] ,

E[DU
1 DU

2 ] = 5λ + 6(β + µ)

(λ + β + µ)(λ + 2(β + µ))(λ + 3(β + µ))
2α2(E[S2] + (E[S])2).

This gives, for the P-version,

C(DP
1 , DP

2 ) = λ2

(λ + β + µ)(λ + 2(β + µ))2(λ + 3(β + µ))
(2α E(S2))2.

Since all parameters are positive, we conclude that, for the P-version of the model, the covari-
ance, and, hence, also the degree correlation ρ, is always positive. This is true irrespective of
the model parameters and choices of social index distribution.

For the U-version, the picture is different. Introduce γ = β + µ, and compute

C(DU
1 , DU

2 ) = α2 6γ + 5λ

(λ + γ )(λ + 2γ )(λ + 3γ )
2

(
E[S2] + (E[S])2

)
(3.27)

− α2 1

(λ + 2γ )2

(
E[S2] + 3(E[S])2

E[S]
)2

= α2

(λ + 2γ )2 (E S)2

×
(

(6γ + 5λ)(λ + 2γ )

(λ + γ )(λ + 3γ )
2

(
E[S2]

(E[S])2 + 1

)
−

(
E[S2]

(E[S])2 + 3

)2)
.

Let us also define

a = λ2

(λ + γ )(λ + 3γ )
.

Then we can rewrite (3.27) as

C(DU
1 , DU

2 ) = α2

(λ + 2γ )2 (E S)2
(

2(a + 4)

(
E[S2]

(E[S])2 + 1

)
−

(
E[S2]

(E[S])2 + 3

)2)

= α2

(λ + 2γ )2 (E S)2
(

−
(

E[S2]
(E[S])2

)2

+ 2
E[S2]

(E[S])2 (a + 1) − (1 − 2a)

)
.

It follows from this, together with the facts that E[S2]/(E[S])2 ≥ 1 and 0 < a < 1, that if

E[S2]
(E[S])2 < 1 + a +

√
a2 + 4a

then C(DU
1 , DU

2 ) > 0, and, hence, also that ρU > 0. If

E[S2]
(E[S])2 = 1 + a +

√
a2 + 4a

then ρU = 0, otherwise, ρU < 0.
We conclude that, for a fixed value of E[S] and the other model parameters, increasing

the variance of S from 0 (constant S) to a very large variance allows us to pass through the
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assortative regime, to neutral (no assortativity), and then to disassortative. We can also observe
that increasing the variance (i.e. E[S2]) also increases RU and RP, respectively (see (3.18)),
which thus might cross the critical value of 1, leading to percolation. This second effect,
that disassortativity facilitates percolation, was also reported in Newman (2002) for a different
model.

4. Discussion

In the present paper we studied properties of a stochastic dynamic network in which nodes are
born and die randomly in time, and while alive, pairs of nodes are connected and disconnected
by edges randomly in time. The rate of connecting to other nodes depended on the social index,
given at birth, of the node. For this model, we derived limiting properties of a snapshot of the
network after a long time, assuming that the node population grew large.

The three main results were: the type distribution of neighbour nodes (Section 3.1), a
criterion for when phase transition occurs, above which the network has a giant component
(Section 3.2), and an expression for the degree correlation of connected edges (Section 3.3).
One of the most interesting features of the model is that the U-version of the model (in which
neighbouring nodes are selected uniformly among all living nodes) may have either positive or
negative degree correlation depending on the numerical values of the model parameters (birth
and death rates of nodes and edges) and the social index distribution.

Together with previous results of the model (see Britton and Lindholm (2010)), the most
important limiting local properties of the network are known, as well as whether or not the
network has a giant component. Other global properties, such as the diameter of the network,
remains to be analysed. An interesting problem would be to study the limiting properties of
some process taking place ‘on’ the network. For example, can an epidemic, forest fire, or
similar persist on the network forever or will it die out? What happens if a lightning process
kills randomly selected nodes and all their neighbours at a constant rate?

The model can of course also be generalized in several ways to make it more applicable to
certain situations. Nodes could be of different types with different attachment rates depending
on the types of node in question, for example male or female if mimicking a sexual network.
Similarly, edges could be of different types, perhaps reflecting the ‘degree’ of acquaintance
which, for example, could affect the transmission probability of an epidemic taking place on
the network. Still, the current model does capture some important properties of a real-world
network in that the nodes as well as the edges are created and cease to exist. Also, depending
on the model parameters, the model is quite flexible in producing different degree distributions
and degree correlations (the network has no clustering asymptotically).
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