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Abstract

In this paper we establish an extension of the method of approximating optimal discrete-
time stopping problems by related limiting stopping problems for Poisson-type processes.
This extension allows us to apply this method to a larger class of examples, such as those
arising, for example, from point process convergence results in extreme value theory.
Furthermore, we develop new classes of solutions of the differential equations which
characterize optimal threshold functions. As a particular application, we give a fairly
complete discussion of the approximative optimal stopping behavior of independent and
identically distributed sequences with discount and observation costs.
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1. Introduction

The theory of optimal stopping of independent and dependent sequences X1, . . . , Xn is
a classical subject of probability theory for which many open problems remain and new
applications (for instance, in the area of financial mathematics) have been suggested. In a
series of papers an approximation method was developed in order to solve approximatively
optimal stopping problems for X1, . . . , Xn by some limiting stopping problems for Poisson
and related point processes (see Kühne and Rüschendorf (2000a), (2000b), (2003), (2004)).
The basic assumption in this approach is convergence of the imbedded planar point process

Nn =
∑
i=1

δ(i/n,Xn
i )

d−→ N

to some Poisson (or related) point process N . Here Xn
i = (Xi − bn)/an is a normalization of

Xi induced typically from the central limit theorem for maxima. For the limiting Poisson-type
process N , which has accumulation points along a lower boundary curve, an optimal stopping
problem in continuous time can be formulated.

The optimal solution for this limiting stopping problem is given by a threshold stopping
time. The threshold function is determined by a first-order differential equation. This is in
analogy to stopping problems for diffusion processes which typically lead to free boundary
value problems with second-order differential equations for the stopping curve (the Stefan
free boundary problem). The differential equation for the optimal threshold function in the
Poisson case can be solved in several cases explicitly or numerically. Under some uniform
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integrability and separation conditions, a differentiability condition for the intensity measure
of N as well as an asymptotic independence condition in the dependent case of the optimal
stopping problem for X1, . . . , Xn can be approximated by the optimal stopping problem for
the limiting Poisson-type process.

In this paper we establish some relevant extensions of interest for this approximation method.
In Section 2 we give a new and simplified derivation of the optimal stopping curve u for the
optimal stopping problem for continuous-time Poisson processes as above. These curves solve
a differential equation of the form

u′(t) = −
∫ ∞

u(t)

G(t, y) dy, t ∈ [0, 1), u(1) = c, (1.1)

with some guarantee value c ∈ R ∪ {−∞}. Here G is defined explicitly via the intensity
measure of N and is called the ‘intensity function’. For c ∈ R, (1.1) has a unique solution and,
thus, characterizes the optimal stopping curve. For c = −∞, there may exist several solutions
of (1.1). While the finite case c ∈ R

1 has been dealt with in Kühne and Rüschendorf (2000a),
the case where c = −∞ has been left mostly open in the previous literature and has been
dealt with only under an uniqueness assumption on (1.1). Based on our new derivation of the
approximation result, we characterize the optimal stopping curve for c = −∞ as the maximal
solution of (1.1). We also establish some uniqueness criteria for (1.1) in the case c = −∞.
There are several interesting applications with c = −∞ (see, e.g. the examples in Section 5 of
this paper) which can be solved with our new extension of the approximation method.

The second main contribution of this paper concerns the differential equation (1.1), which
characterizes optimal stopping boundaries. The classical results from differential equations
for (1.1) concern the so-called separable case where G(t, y) = a(t)b(y). However, even
in this case the known characterization results for solutions are typically not explicit but
need numerical tools. In this paper we introduce two interesting new classes of intensity
functions G—not leading to the case of separate variables in (1.1)—which allow us to solve
the differential equation (1.1) in ‘explicit’ form. For these classes of intensity functions, the
so-called ‘separation condition’, which is needed in our approximation approach to optimal
stopping problems, can be verified. In Section 4 we state an extension of the approximation
theorem in Kühne and Rüschendorf (2004, Theorem 2.1) for the optimal stopping of dependent
sequences. This is the second main ingredient of the approximation method. Our version gives
a precise uniform integrability condition which allows us to also treat the case c = −∞ (which
was not included in previous results) and allows for more general filtrations.

As an application of our extensions, in Section 5 we discuss in fairly complete form the
optimal stopping of independent and identically distributed (i.i.d.) sequences (Zi) with discount
factors (ci) and observation costs (di), i.e. of

Xi = ciZi + di.

Here ci and di fulfill some criteria to ensure point process convergence, and (Zi) is an i.i.d.
sequence in the maximum domain of an extreme value distribution �, �α , or �α . The new
results on the solution of the optimality equation in (1.1) and the inclusion of the case c = −∞
allow us to complete some partial results on this problem in Kühne and Rüschendorf (2000b).
This kind of stopping problem was first considered in the i.i.d. case without discount and
observation cost in Kennedy and Kertz (1990), (1991).

It has been observed in several papers in the literature that optimal stopping problems may
have an easier solution in a related form for Poisson numbers of points, as, for instance, in the

https://doi.org/10.1239/aap/1324045700 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045700


1088 A. FALLER AND L. RÜSCHENDORF

classical house selling problem (see Chow et al. (1971), Bruss and Rogers (1991), and Gnedin
and Sakaguchi (1992)). The approach extended in this paper makes this method applicable to
a wider class of examples. Based on the new results in this paper, an interesting extension to
multistopping problems has recently been proposed in Faller and Rüschendorf (2011). Several
details and proofs in this paper have been omitted to save space; they can be found in the
dissertation of Faller (2009), on which this paper is based.

2. Optimal stopping of Poisson processes

We consider optimal stopping of a Poisson process N = ∑
k δ(τk,Yk) in the plane restricted

to some set
Mf = {(t, x) ∈ [0, 1] × R̄ : x > f (t)},

where f : [0, 1] → R ∪ {−∞} is a continuous function describing the lower boundary of N .
We consider Poisson processes restricted to Mf which may have infinite intensity along the
lower boundary f . We assume that the intensity measure µ of N is a Radon measure on Mf

with the topology on Mf induced by the usual topology on [0, 1] × R̄. Thus, any compact set
A ⊂ Mf has only finitely many points. By convergence in distribution, i.e. Nn

d−→ N on Mf ,
we mean convergence in distribution of the restricted point processes.

We generally assume the boundedness condition:

(B) E(supk Yk)
+ < ∞.

Let At = σ(N(· ∩ [0, t] × R̄ ∩ Mf )), t ∈ [0, 1], denote the relevant filtration of the point
process N . A stopping time T : � → [0, 1] for N is a stopping time with respect to the
filtration (At ), i.e. {T ≤ t} ∈ At , t ∈ [0, 1]. In general, N may have multiple points. Denote
by ȲT := sup{Yk : T = τk}, sup ∅ := −∞, the reward with respect to the stopping time T .
For any guarantee value x ∈ [c, ∞], c := f (1), define the optimal stopping curve with respect
to x by

u(t, x) := sup{E[ȲT ∨ x] : T > t a stopping time}, t ∈ [0, 1),

u(1, x) := E[Ȳ1 ∨ x].
In contrast to Kühne and Rüschendorf (2000a) we consider stopping times T > t and introduce
a guarantee value. This has some technical advantages with respect to the continuity properties
and leads to some changes in the optimal stopping time formulae. For notational convenience,
we write

u(t) := u(t, c), t ∈ [0, 1].
Every instance of u without arguments is to be understood as u(·, c). The critical point of N

for x is given by

t0(x) := inf{t ∈ [0, 1] : N((t, 1] × (x, ∞] ∩ Mf ) = 0, P-almost surely}, inf ∅ := 1.

The following lemma gives some basic properties of the optimal stopping curve u.

Lemma 2.1. (a) For any x ∈ [c, ∞], the optimal stopping curve u(·, x) is right continuous on
the interval {t ∈ [0, 1] : u(t, x) > −∞}.
(b) For x, y ∈ R, x ≤ y,

0 ≤ u(t, y) − u(t, x) ≤ y − x, t ∈ [0, 1].
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(c) For x ∈ [c, ∞], x > −∞,

t0(x) = inf{t ∈ [0, 1] : u(t, x) = x}, inf ∅ := 1.

Proof. For the proof, see Faller (2009).

In order to identify the optimal stopping curve u for the stopping of the Poisson process N ,
in the following we generally assume that t0(c) = 1, and that the intensity measure µ of N is
a Radon measure on Mf and Lebesgue continuous with density g.

An important condition is the separation condition:

(S) assume that u > f on [0, 1).

If c = −∞ then (S) implies the right continuity of uon [0, 1] and the validity of Lemma 2.1(c)
for x = −∞ also. By our general assumption t0(c) = 1, the separation condition (S) is in
general satisfied for c ∈ R if f ≤ c.

With the additional guarantee parameter x, Theorem 2.5(a) of Kühne and Rüschendorf
(2000a) in our slightly modified form can be formulated as follows.

Theorem 2.1. (Existence and uniqueness of an optimal stopping time.) Let N satisfy conditions
(B) and (S). Then, for any x ≥ c, the optimal stopping curve u(·, x) : [0, 1] → [x, ∞) is
continuous on [0, 1]. Furthermore,

u(t, x) = E[ȲT (t,x) ∨ x], t ∈ [0, 1],
where the optimal stopping time T (t, x) at time t is given by

T (t, x) = inf{τk > t : Yk > u(τk, x)}, inf ∅ := 1.

Thus, T (0, x) is an optimal stopping time for N, x at time 0. It is P-almost surely (P-a.s.)
unique.

Note that, by condition (S), in the c = −∞ case we have P(T (t, c) < 1) = 1, or,
equivalently, µ((t, 1] × R ∩ Mu) = ∞ for all t ∈ [0, 1).

In the following we want to characterize the optimal stopping curve u by a differential
equation. The following lemma will be needed in the c = −∞ case.

Lemma 2.2. Let N satisfy the boundedness condition (B), and define

v(t) := lim
x↓c

u(t, x), t ∈ [0, 1].

If, for some continuous function w : [0, 1) → R, v ≥ w > f holds on [0, 1), then v = u. In
particular, the separation condition (S) is satisfied.

Proof. For t ∈ [0, 1], let Tv(t) := inf{τk > t : Yk > v(τk)}, inf ∅ := 1, denote the
threshold stopping time of v. This is a stopping time for N since v ≥ w > f on [0, 1). Then
u ≤ v ≤ u(·, x) and, thus, Tv(t) ≤ T (t, x). Furthermore, ȲT (t,x) ∨ x → ȲTv(t) ∨ c, P-a.s. for
x ↓ c. This follows from our modified definition of T (t, x) = inf{τk > t : Yk > u(τk, x)} (in
comparison to the usual ‘≥’ definition) and the fact that the thresholds u(·, x) converge to v.
Thus, by Fatou’s lemma, it follows that

u(t) ≤ v(t) = lim
x↓c

u(t, x) = lim
x↓c

E[ȲT (t,x) ∨ x] ≤ E[ȲTv(t) ∨ c] ≤ u(t).
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For any continuous function v : [0, 1] → R ∪ {−∞} with v > f on [0, 1) and threshold
stopping times

Tv(t) := inf{τk > t : Yk > v(τk)}, inf ∅ := 1,

for t ∈ [0, 1), the Poisson assumption allows us to calculate the joint distribution of
(Tv(t), ȲTv(t)). By standard arguments for Poisson processes we obtain the following result.

Lemma 2.3. Let N satisfy condition (B). Then the distribution of (Tv(t), ȲTv(t)) on [0, 1) × R

has Lebesgue density

Ft(s, z) :=
{

e−µ((t,s]×R∩Mv)g(s, z)χMv (s, z) if s ∈ (t, 1),

0 if s ∈ [0, t].

In the sequel we will need the following differentiability condition on the density g of µ.

(D) Assume that there exists a version of the density g of µ on Mf such that the intensity
function

G(t, y) :=
∫ ∞

y

g(t, z) dz (2.1)

is continuous on Mf ∩ [0, 1) × R. Furthermore, assume that limy→∞ yG(t, y) = 0 for
all t ∈ [0, 1).

Based on Lemma 2.3, we now prove that, for x ∈ [c, ∞), the optimality equation for a
threshold function v, i.e.

v(t) = E[ ȲTv(t) ∨ x], t ∈ [0, 1), v(1) = x, (2.2)

which, by Theorem 2.1, is fulfilled in particular for the optimal stopping curve u(·, x), is
essentially equivalent to a first-order differential equation:

v′(t) = −
∫ ∞

v(t)

G(t, y) dy, t ∈ [0, 1), v(1) = x. (2.3)

In order to apply the differentiation and integration rules needed in the proof of this equiv-
alence, we assume that the differentiability condition (D) holds. In the following we give
a simplified proof of Theorem 2.5 of Kühne and Rüschendorf (2000a) and add essential
information to the important c = −∞ case. In this case a solution of the differential equation
(2.3) does not need to satisfy the optimality equation (2.2), but we give a formula for the
difference between v(t) and the expected value E ȲTv(t), which will be used later to derive
uniqueness results for the differential equation (2.3).

Proposition 2.1. (Equivalence of the optimality equation and differential equation.) Let N

satisfy conditions (B) and (D), and let v : [0, 1] → R ∪ {−∞} be continuous with v > f on
[0, 1) and x ∈ [c, ∞).

(a) If v satisfies the optimality equation (2.2) then it also satisfies the differential equation
(2.3).

(b) If x ∈ R and v satisfies the differential equation (2.3), then v satisfies the optimality
equation (2.2).
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(c) If x = −∞ and v satisfies the differential equation (2.3), then, for t ∈ [0, 1),

v(t) − lim
s↑1

v(s)e−µ((t,s]×R∩Mv) = E ȲTv(t). (2.4)

As v is assumed to be continuous and v(1) = −∞, this implies that v(t) ≤ E ȲTv(t).

Proof. We will make use of the partial integration formula which states that, for p ≥ 0
measurable satisfying

∫ ∞
a

zp(z) dz < ∞ and limy→∞ y
∫ ∞
y

p(z) dz = 0 for a ∈ R,∫ ∞

a

zp(z) dz = a

∫ ∞

a

p(z) dz +
∫ ∞

a

∫ ∞

y

p(z) dz dy. (2.5)

(a) For t < 1, with T (t) := Tv(t),

v(t) = E[ȲT (t) ∨ x] = E[ȲT (t)χ{T (t)<1}] + x P(T (t) = 1).

Since v(t) > −∞ for t < 1, we obtain P(T (t) = 1) = 0 if x = −∞. Without loss of
generality, in the x > −∞ case we can assume that x = 0 (by shifting the point process and v

by −x). Consequently, we obtain, by (2.5),

v(t) = E[ȲT (t)χ{T (t)<1}]

=
∫ 1

t

∫ ∞

v(s)

zg(s, z) dze−µ((t,s]×R∩Mv) ds

=
∫ 1

t

(
v(s)h(s) +

∫ ∞

v(s)

∫ ∞

y

g(s, z) dz dy

)
e−µ((t,s]×R∩Mv) ds,

where h(s) := ∫ ∞
v(s)

g(s, z) dz = G(s, v(s)).
By condition (D) and the continuity of v, h is continuous. For f (s, t) differentiable in s and

continuous in t ,
d

dt

∫ 1

t

f (s, t) ds =
∫ 1

t

d

dt
f (s, t) ds − f (t, t).

Since µ((t, s] × R ∩ Mv) = − ∫ s

t

∫ ∞
v(r)

g(r, z) dz dr = − ∫ s

t
h(r) dr is differentiable in t with

derivative h(t), we obtain

v′(t) = v(t)h(t) −
(

v(t)h(t) +
∫ ∞

v(t)

∫ ∞

y

g(t, z) dz dy

)
= −

∫ ∞

v(t)

G(t, y) dy.

(b) Let t < r ≤ 1. Similarly as in (a) and using condition (D), we obtain

E[ȲT (t)χ{T (t)<r}] =
∫ r

t

(
v(s)h(s) +

∫ ∞

v(s)

∫ ∞

y

g(s, z) dz dy

)
e−µ((t,s]×R∩Mv) ds

=
∫ r

t

(v(s)h(s) − v′(s))e−µ((t,s]×R∩Mv) ds

=
∫ r

t

v(s)h(s)e−µ((t,s]×R∩Mv) ds

−
([

v(s)e−µ((t,s]×R∩Mv)
]r
t
+

∫ r

t

v(s)h(s)e−µ((t,s]×R∩Mv) ds

)
= v(t) − v(r)e−µ((t,r]×R∩Mv).
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With r = 1 and using the fact that P(T (t) = 1) = P(N((t, 1] × R ∩ Mv) = 0) =
e−µ((t,1]×R∩Mv), we obtain (b) as v(1) = x.

(c) For t < 1, as in (b), using Fatou’s lemma, we obtain

−∞ < v(t) ≤ lim sup
r↑1

E[ȲT (t)χ{T (t)<r}] ≤ E[ȲT (t)χ{T (t)<1}].

Thus, ȲT (t)χ{T (t)<1} is integrable. This implies uniform integrability of {ȲT (t)χ{T (t)<r} | 0 <

r < 1}, and, thus, convergence of the expectations. Furthermore, from the proof of (b), it
follows by condition (B) that µ((t, 1] × R̄ ∩ Mv) = ∞ as v(r) ↓ −∞ for r ↑ 1. As
P(T (t) = 1) = P(N((t, 1] × R̄ ∩ Mv) = 0) = e−µ((t,1]×R̄∩Mv) = 0, we obtain T (t) < 1,
P-a.s. and, thus,

v(t) ≤ v(t) − lim
s↑1

v(s)e−µ((t,s]×R∩Mv) = E ȲTv(t).

Based on the equivalence in Proposition 2.1, we now establish that the optimal stopping
curve can be described as the solution of the first-order differential equation (2.3). We will see
that the separation condition (S) is equivalent to the existence of a solution v > f on [0, 1)

with v(1) = c. This also holds in the c = −∞ case. We first treat the case of a finite guarantee
value.

Proposition 2.2. Let x ∈ [c, ∞) ∩ R, and let N satisfy conditions (B) and (D).

(a) If v1, v2 : [0, 1] → R with vi > f on [0, 1) are solutions of the differential equation
(2.3), then v1 = v2.

(b) If a solution v : [0, 1] → R of (2.3) exists such that v > f on [0, 1) then u(·, x) = v. In
particular, if x = c then the separation condition (S) is satisfied.

Proof. (a) See Kühne and Rüschendorf (2000a, p. 310).
(b) By Proposition 2.1(b), v satisfies the optimality equation (2.2). By the definition of

u(·, x), u(t, x) ≥ E[ȲTv(t) ∨ x] = v(t) > f (t) for all t ∈ [0, 1). By Theorem 2.1 and
Proposition 2.1(a), u(·, x) solves (2.3) and by part (a) we thus obtain u(·, x) = v.

In contrast to the case of a finite guarantee value x, uniqueness of the solutions of (2.3) does
not hold for x = −∞. The following theorem identifies the optimal stopping curve in the set
of all solutions of (2.3) as the largest one. It also gives a criterion for uniqueness.

Theorem 2.2. Let c = x = −∞, and let N satisfy conditions (B) and (D). Also, let v : [0, 1] →
R∪{−∞}be a solution of the differential equation (2.3) withv > f on [0, 1). Then the following
statements hold.

(a) We have v ≤ u. In particular, the separation condition (S) is satisfied and so u is also a
solution of (2.3).

(b) If, for some function b : [0, 1) → R, we have u ≤ b (as, e.g. for b(t) := E[supτk>t Yk])
and

lim inf
t↑1

v(t)

b(t)
< ∞, (2.6)

then u = v. If (2.6) holds with v replaced by f then the solution of (2.3) is uniquely
determined.
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(c) Let us denote the optimal stopping curve of Ns := N(·∩[0, s]×R̄∩Mf ), let b : [0, 1) →
R satisfy u ≤ b, and assume that, for every s ∈ (1 − ε, 1) with some ε > 0, there exists
a function as : [0, s) → R with f < as ≤ us on [0, s) such that

lim inf
t↑1

lim sups↑1 as(t)

b(t)
< ∞. (2.7)

Then the solution of (2.3) is unique.

Proof. (a) The proof follows from Proposition 2.1(c).
(b) By Lemma 2.1, u is continuous and, therefore, u solves (2.3). If v �= u then, as in the

proof of Proposition 2.2, it follows that u > v and u′ ≥ v′ on [0, 1). With w(s) := u(s) − v(s)

for s ∈ [0, 1) we have

w′(s) = u′(s) − v′(s) =
∫ u(s)

v(s)

∫ ∞

y

g(s, x) dx dy ≥ w(s)

∫ ∞

u(s)

g(s, x) dx,

and, thus,

∂

∂s
log(w(s)) = w′(s)

w(s)
≥

∫ ∞

u(s)

g(s, x) dx.

By integration we obtain w(t) ≥ w(0)eµ([0,t]×R∩Mu). Since, for v = u, equality holds in (2.4),
we obtain

lim
t↑1

u(t)e−µ([0,t]×R∩Mu) = 0,

and, thus,

v(t)

u(t)
− 1 = −w(t)

u(t)
≥ w(0)

1

−u(t)e−µ([0,t]×R∩Mu)
→ ∞ for t ↑ 1.

Since u(t) ≤ b(t), it follows that

v(t)

b(t)
≥ v(t)

u(t)
→ ∞ as t ↑ 1,

contradicting our assumption. Thus, v is the optimal stopping curve. If (2.6) holds for f then
it also holds for any solution v > f . Thus, uniqueness follows.

(c) See Faller (2009).

To verify the separation condition (S) and, thus, the existence of a solution of (2.3) (which is
an assumption of Theorem 2.2), or to construct the functions as used in part (c) of Theorem 2.2,
we can use a comparison argument given in the following proposition.

Proposition 2.3. Let N and N∗ be Poisson processes on Mf which satisfy conditions (B)
and (D), with intensity functions G and G∗ and optimal stopping curves u(t, x) and u∗(t, x).
Furthermore, let N∗ satisfy condition (S), and let u(·, x) > f for all x > c. Then, for any s ∈
[0, 1), G ≥ G∗ on [s, 1)×R∩Mf implies that u(t, x) ≥ u∗(t, x) for all (t, x) ∈ [s, 1]×[c, ∞].
In particular, if G ≥ G∗ then condition (S) is also satisfied for N .

Proof. Assume first that x ∈ R. For any t ∈ [s, 1) with u(t, x) < u∗(t, x), it holds that
u′(t, x) ≤ u′∗(t, x) since

u′(t, x) = −
∫ ∞

u(t,x)

G(t, y) dy ≤ −
∫ ∞

u∗(t,x)

G(t, y) dy ≤ −
∫ ∞

u∗(t,x)

G∗(t, y) dy = u′∗(t, x).

Assume that, for some r ∈ [s, 1), u(r, x) < u∗(r, x).
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Since u(1, x) = u∗(1, x) = x, there exists a t0 ∈ (r, 1] such that u(t0, x) = u∗(t0, x) and
u(t, x) < u∗(t, x) for all t ∈ [r, t0). This implies that

u(t0, x) − u(r, x) =
∫ t0

r

u′(t, x) dt ≤
∫ t0

r

u′∗(t, x) dt = u∗(t0, x) − u∗(r, x),

and, thus, u(r, x) ≥ u∗(r, x).
In the x = −∞ case we obtain, from Lemma 2.2, u ≥ u∗ > f on [s, 1).

For some applications of this comparison principle, see Faller (2009).

Example 2.1. Let the intensity function be of the form G(t, y) = A(t)e−B(t)y on [0, 1) ×
(−∞, ∞] with continuous functions A, B : [0, 1) → R such that A ≥ 0, A(t) > 0 for large t ,∫ 1

0 A(t) dt < ∞, and B > 0 is bounded such that lim inf t↑1 B(t) > 0. Then we can compare
G, G∗, i.e.

G(t, y) ≥ G∗(t, y) :=
{

A(t)e−My if y ≥ 0,

A(t)e−my if y < 0,

where M := sup B and m := inf B. Thus, by Proposition 2.3 and using the terminology of
Theorem 2.2(c), we obtain

us(t) ≥ as(t) := u∗,s(t) = 1

m
log

(
1

d

(
1 − exp

(
−d

∫ s

t

A(r) dr

)))

with d := 1 − m/M > 0 for large enough t < s. Similarly, by estimating G from above,

u(t) ≤ b(t) := 1

M
log

(
1

d ′

(
1 − exp

(
−d ′

∫ 1

t

A(r) dr

)))

with d ′ := 1 − m/M < 0. This implies that condition (2.7) holds as limx↓0 log(1 −
e−x)/ log(eυx − 1) < ∞ for any υ > 0. Consequently, uniqueness of the solutions of (2.3)
follows.

With w(t) := eu(t) we find as a particular consequence that the differential equation

w′(t) = −A(t)w(t)1−B(t), t ∈ [0, 1), w(1) = 0,

has a unique solution w such that w > 0 on [0, 1).

3. Explicit solutions of the optimality equation

In Section 2 the optimal threshold function was characterized by the differential equation
(2.3), which, by the results in Section 2, we also call the optimality equation. In the case
where the intensity function G is separable, i.e. G(t, y) = a(t)H(y), a characterization of the
existence of solutions is given by a classical result on differential equations in separate variables
(see Kühne and Rüschendorf (2000a, Proposition 2.6)). However, note that even in this case
the characterization is in general far from an ‘explicit’ form of the solution. The second main
point in this paper is the introduction of some new classes of intensity functions G(t, y) which
allow us to establish ‘explicit’ solutions of the optimality equation (2.1). An important class of
applications of this development is given in Section 5 to optimal stopping of i.i.d. sequences
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with discount and observation costs. For further interesting applications of this development
to a general treatment of multistopping problems, see Faller and Rüschendorf (2011).

In the following we will introduce two classes of intensity functions, which allow us to give
an explicit form for the solutions of (2.3). These intensity functions are of the form

G(t, y) = H

(
y

v(t)

)
v′(t)
v(t)

(3.1)

and
G(t, y) = H(y − v(t))v′(t). (3.2)

It should be noted that the functions v used here are different from the threshold functions used
in the last paragraph. The function v in the representation of G(t, y) is in general not unique.
The main reason for introducing the type of representations given in (3.1) and (3.2) is that they
imply that v is up to a normalization concerning the boundary value a solution of the optimality
equation (2.3). Thus, (3.1) and (3.2) are particularly useful representations of G concerning
solutions of (2.3). To see this connection, note that the optimality equation for u can be written
by substitution in the equivalent forms:

u′(t) = −
∫ ∞

u(t)

G(t, y) dy = −
∫ ∞

1
G(t, yu(t))u(t) dy = −

∫ ∞

0
G(t, y + u(t)) dy.

In both representations (3.1) and (3.2) v is therefore verified to be up to a normalizing constant
and up to the boundary condition a solution of (2.3). This crucial observation motivates the
representations in (3.1) and (3.2). We will see in the following that, for both (3.1) and (3.2),
under some conditions on H , v explicit solutions of the essential differential equation (2.3) can
be found for any boundary value. This needs a detailed study of several cases.

Let f : [0, 1] → R ∪ {−∞} be a continuous lower boundary function, and, as before, let
c := f (1). Let N be a Poisson process on Mf with intensity function G which satisfies
conditions (B) and (D).

3.1. First class of intensity functions

Let f = av on [0, 1) with a ∈ R ∪ {−∞} and a monotone C1-function v : [0, 1) → R,

v > 0, and assume that G is of the form

G(t, y) = H

(
y

v(t)

) |v′(t)|
v(t)

(3.3)

with some monotone nonincreasing continuous function H : (a, ∞] → R, H ≥ 0. Assume
that

∫ ∞
a

H(y) dy > 0, and that v is not constant in (1 − ε, 1) for some ε > 0, so that 1 is the
critical point for c. Define v(1) := limt↑1 v(t) ∈ R̄. The following example shows how the
case of separate variables fits into the form given in (3.3).

Example 3.1. Let a : [0, 1] → [0, ∞] be continuous and integrable, and define A(t) :=∫ 1
t

a(s) ds.

(a) For α > 1, the intensity function G(t, y) = a(t)y−α on [0, 1) × (0, ∞] is of the form
given in (3.3) with H(y) = (α − 1)y−α and v(t) = ((α/(α − 1))A(t))1/α .

(b) For α > 0, the intensity function G(t, y) = a(t)(−y)α for y ≤ 0 and G(t, y) = 0 for
y > 0 on [0, 1) × (−∞, ∞] is of the form given in (3.3) with H(y) = 0 for y > 0 and
H(y) = (α + 1)(−y)α for y ≤ 0, and v(t) = ((α/(α + 1))A(t))−1/α .

https://doi.org/10.1239/aap/1324045700 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045700


1096 A. FALLER AND L. RÜSCHENDORF

Representation (3.3) is in general even for fixed H not unique since v has to satisfy only a
differential equation without an initial value. It depends on H , for which initial value solutions
can be found. We distinguish three cases: v(1) = 0, v(1) = 1, and v(1) = ∞. (If v(1) = d ∈
(0, ∞), consider ṽ(t) := v(t)/d and absorb the d into H by considering H̃ (x) := H(x/d).)
The cases v(1) = 0 and v(1) = ∞ lead to a simpler structure of solutions.

For v monotonically nonincreasing, we define

R(x) := x −
∫ ∞

x

H(y) dy, x ∈ [a, ∞). (3.4)

Then R : [a, ∞) → R̄ is concave and monotonically nondecreasing.
For v monotonically nondecreasing, we define

R(x) := x +
∫ ∞

x

H(y) dy, x ∈ (a, ∞), R(a) := lim
x↓a

R(x). (3.5)

In this case R : [a, ∞) → R̄ is convex.
The form of solutions of the optimality equation (2.3) with boundary value x depends

critically on the existence and on the number of zero points of R. In the following we reduce
the problem of solving the optimality equation (2.3) for all boundary values x to finding solutions
� of the differential equation

�′(x) = �(x)

R(x)
�= 0. (3.6)

Solutions of (3.6) are given, e.g. by

�(x) = exp

(∫ x

x0

1

R(y)
dy

)
,

with x0 chosen such that the integral exists. The inverse mapping φ of � exists and solves the
equation

φ′(z) = R(φ(z))

z
. (3.7)

The definitions of R given in (3.4) and (3.5), and the solutions of (3.6) and (3.7) will allow us
in the following to construct solutions of the optimality equation (2.3) for any boundary values
and to verify the separation condition (S).

In the following we omit some of the simple calculations. We distinguish four cases.
Case 1: v monotonically nonincreasing, v(1) = 0. Then c = 0. Let a ≥ 0, and assume

that R(r) = 0 for some r > a. Then the separation condition (S) is satisfied and the optimal
stopping curves are given by

u(t, x) = φ

(
x

v(t)

)
v(t), (t, x) ∈ [0, 1) × [0, ∞),

where φ : [0, ∞) → [r, ∞) is the inverse to

� : [r, ∞) → [0, ∞), �(x) = x exp

(
−

∫ ∞

x

(
1

R(y)
− 1

y

)
dy

)
.

In particular, the optimal solution u is given explicitly as u(t) = rv(t).
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For the proof, we first note that � satisfies the differential equation (3.6) and φ satisfies
(3.7), and then establish that u satisfies the optimality equation (2.3). By definition,

u(t, x) = φ

(
x

v(t)

)
v(t)

x
x → x as t → 1,

since limy→∞ φ(y)/y = limx→∞ x/�(x) = 1. Thus, the boundary condition is satisfied.
Furthermore,

∂

∂t
u(t, x) = φ′

(
x

v(t)

)−xv′(t)
v(t)2 v(t) + φ

(
x

v(t)

)
v′(t)

= R(φ(x/v(t)))

x/v(t)

−xv′(t)
v(t)

+ φ

(
x

v(t)

)
v′(t)

=
(

−φ

(
x

v(t)

)
+

∫ ∞

φ(x/v(t))

H(y) dy

)
v′(t) + φ

(
x

v(t)

)
v′(t)

=
∫ ∞

φ(x/v(t))v(t)

H

(
y

v(t)

)
v′(t)
v(t)

dy

= −
∫ ∞

u(t,x)

G(t, y) dy.

Thus, u(·, x) solves the optimality equation (2.3).
It remains to show that

∫ ∞
x

(1/R(y) − 1/y) dy < ∞ for x ∈ (r, ∞). With I (y) :=∫ ∞
y

H(x) dx we have

1

R(y)
− 1

y
= I (y)

y(y − I (y))
= 1

y2

I (y)

1 − I (y)/y
≤ C

1

y2 ,

and, thus, the integral is finite.
Case 2: v monotonically nondecreasing, v(1) = ∞. In this case we have c = −∞. Let

a < 0, and assume that R(r) = 0 for some a < r < 0. We also assume in this case that

∫ ∞

0
H(x) dx = 0 and

∫ 0

y

H(x)

−x
dx < ∞ for y < 0.

Under this assumption, the separation condition (S) is satisfied and the optimal stopping curves
are given, for (t, x) ∈ [0, 1) × R̄, by

u(t, x) =
⎧⎨
⎩

x if x ≥ 0,

φ

(
x

v(t)

)
v(t) if x < 0,

with φ : [−∞, 0] → [r, 0] the inverse of

� : [r, 0] → [−∞, 0], �(x) := x exp

(∫ 0

x

(
1

y
− 1

R(y)

)
dy

)
.

In particular, the optimal solution u is given by u(t) = rv(t).
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For the proof, note that � solves the differential equation (3.6), while the inverse φ solves
(3.7). We have to establish that

∫ 0
x
(1/y − 1/R(y)) dy < ∞ for x ∈ (r, 0). Again, with

I (y) := ∫ 0
y

H(x) dx we obtain the estimate

1

y
− 1

R(y)
= I (y)

y(y + I (y))
= 1

−y

I (y)/(−y)

1 − I (y)/(−y)
≤ 1

−y

H(y)

1 − H(y)
≤ C

H(y)

−y

for y < 0 with H(y) ≤ 1 − 1/C < 1. By assumption, this is integrable. As in case 1, we
find, by similar calculations, that u(t, x) satisfies the optimality equation (2.3). Thus, the result
follows.

The following two cases are derived similarly to cases 1 and 2, and, therefore, we only state
the results.

Case 3: v monotonically nonincreasing, v(1) = 1. Then c = a. Let r > c be such that
R(r) = 0. We assume that

∫ x

c
R(y)−1 dy > −∞ for some x ∈ (c, r). This is, e.g. the case

when c ∈ R. Under this assumption, the separation condition (S) is satisfied and the optimal
stopping curves are given, for (t, x) ∈ [0, 1) × [c, ∞), by

u(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1

(
�1(x)

v(t)

)
v(t) if r < x < ∞,

xv(t) if x = r,

φ2

(
�2(x)

v(t)

)
v(t) if c ≤ x < r,

where �1 : (r, ∞) → R and �2 : [c, r) → R are solutions of (3.6), and φ1 and φ2 are the
inverses. The function �2 can be chosen as �2(x) := exp(

∫ x

c
R(y)−1 dy).

The boundary case x = r is particularly simple here.
Case 4: v monotonically nondecreasing, v(1) = 1. Then c = a. We have to distinguish

three cases. In each of these cases the solution is similar to case 3 and will therefore be omitted.
In conclusion, the v(1) = 0 and v(1) = ∞ cases yield solutions of a simpler structure

compared to the v(1) = 1 case. Thus, a representation of G as in (3.3)—which is not unique—
is preferable if it leads to one of the first two cases.

3.2. Second class of intensity functions

Let f = a + v on [0, 1) with a ∈ R ∪ {−∞} and a monotone C1-function v : [0, 1) → R

with v(1) := limt↑1 v(t).
We consider intensity functions on Mf ∩ [0, 1) × R̄ of the form

G(t, y) = H(y − v(t))|v′(t)| (3.8)

with a continuous monotonically nonincreasing function H : (a, ∞] → R, H ≥ 0, such that∫ ∞
a

H(y) dy > 0. We assume that v is not constant in (1 − ε, 1) for some ε > 0, so that 1 is
the critical point of c.

As an example, let a : [0, 1] → [0, ∞] be continuous and integrable, and let, as in
Example 3.1, A(t) := ∫ 1

t
a(s) ds. Then the intensity function G(t, y) = a(t)e−y on [0, 1) ×

(−∞, ∞] is a case of separate variables. It fits into the form (3.8) with H(y) = e−y and
v(t) = log A(t).

If v is monotonically nonincreasing then we define

R(x) := 1 −
∫ ∞

x

H(y) dy for x ∈ [a, ∞).
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The function R : [a, ∞) → [−∞, 1) is concave and monotonically nondecreasing. If v is
monotonically nondecreasing then we define

R(x) := 1 +
∫ ∞

x

H(y) dy for x ∈ [a, ∞).

In this case R : [a, ∞) → [1, ∞) is convex and monotonically nonincreasing.
We construct optimal stopping curves by means of solutions of the equation

�′(x) = 1

R(x)
. (3.9)

Equation (3.9) is solved, e.g. by �(x) = ∫ x

x0
(1/R(y)) dy, where x0 is chosen such that the

integral exists. The inverse function φ of � satisfies

φ′(z) = R(φ(z)).

Similarly to the examples in cases 1–4, we obtain explicit forms for the solution u(t, x) of
the optimal stopping curves. The arguments are similar and, therefore, we essentially only state
the results.

Case (i): v monotonically nonincreasing, v(1) = −∞. Then c = −∞. Assume that
R(r) = 0 for some r > a. We further assume here that∫ ∞

z

∫ ∞

y

H(x) dx dy < ∞ for z > r.

Then the separation condition (S) is satisfied and the optimal stopping curves for (t, x) ∈
[0, 1) × R̄ are given by

u(t, x) = φ(x − v(t)) + v(t),

where φ : R̄ → [r, ∞] is the inverse of � : [r, ∞] → R̄, given by

�(x) := x −
∫ ∞

x

(
1

R(y)
− 1

)
dy.

The optimal stopping curve u is given by u(t) = r + v(t).
For the proof, note that � solves the differential equation �′(x) = 1/R(x) and φ solves

φ′(z) = R(φ(z)). Consequently, as in case 1, we find that u(·, x) solves the optimality equation
(2.3) with boundary value x. We still need to show that

∫ ∞
x

(1/R(y) − 1) dy < ∞ for x ∈
(r, ∞). With I (y) := ∫ ∞

y
H(x) dx we obtain the bound

1

R(y)
− 1 = I (y)

1 − I (y)
≤ CI (y).

The last term is integrable by assumption.
The next two cases allow similar explicit solutions but are not used in the applications in

Section 5 and, therefore, are not explicitly stated. For details, see Faller (2009).
Case(ii): v monotonically decreasing, v(1) = 0.
Case(iii): v monotonically increasing, v(1) = 0.
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Remark 3.1. We can extend the class of intensity functions for which solutions can be given in
a simple way by translations. Let N satisfy conditions (B), (S), and (D) with intensity function
G on Mf . For d ∈ R, consider the intensity function

Gd(t, y) := G(t, y − d), (t, y) ∈ Mf +d .

Then the optimal stopping curves ud(·, x) with respect to Gd and cd := c + d are given by

ud(t, x) = u(t, x − d) + d for (t, x) ∈ [0, 1] × [cd, ∞]. (3.10)

For x ∈ R, (3.10) follows by a simple calculation. For x = −∞, (3.10) follows by means
of Lemma 2.2.

As an application of Remark 3.1, we consider the following example, which is relevant in
Section 5 for the stopping of i.i.d. sequences with discount and observation costs.

Example 3.2. In this example c ∈ R denotes a real constant and the guarantee value is −∞.
On [0, 1) × R̄, consider

Gc,d(t, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if
y

v(t)
≥ d,

1

t

(
− y

v(t)
+ d

)α

if
y

v(t)
< d,

(3.11)

with v(t) := tc−1/α , where α > 0 and c, d ∈ R with c �= 1/α. These intensity functions satisfy
(3.3) with

H(x) :=
⎧⎨
⎩

0 if x ≥ d,
α

|1 − cα| (−x + d)α if x < d.

By cases 3 and 4, the optimal stopping curve uc,d of the Poisson process N = Nc,d with
intensity function G = Gc,d , where uc,d(t) := uc,d(t, −∞), is given by

uc,d(t) = φc,d

(
1

v(t)

)
v(t). (3.12)

Here φc,d is the inverse of

�c,d(x) := exp

(∫ x

−∞
1

Rc,d(y)
dy

)
.

The function �c,d is defined on [−∞, r], where r is the smallest zero point of

Rc,d(x) :=
⎧⎨
⎩

x if x ≥ d,

x − α

α + 1

1

1 − cα
(−x + d)α+1 if x < d,

or r := ∞ if no zeros exist. The function φc,d is defined on [0, 1] if c < 1/α, and on [1, ∞] if
c > 1/α.
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For d = 0, all functions can be calculated explicitly. The primitive of 1/(y − c(−y)α+1) is
given by −(1/α) log |(−y)−α/c + 1| and, consequently, we obtain

uc,0(t) = −
(

α

α + 1

1

1 − cα
(1 − t1−cα)

)−1/α

,

uc,0(t, x) =

⎧⎪⎨
⎪⎩

x if x ≥ 0,

−
(

α

α + 1

1

1 − cα
(1 − t1−cα) + (−x)−α

)−1/α

if x < 0.

For d �= 0 and general α, �c,d and φc,d cannot be calculated explicitly. We can, however,
derive the following bounds (see Faller (2009) for details).

If c > 1/α and d > 0 or c < 1/α and d < 0, then, for all (t, x) ∈ [0, 1] × R̄,

uc,0(t, x − dv(t)) + dv(t) ≤ uc,d(t, x) ≤ uc,0(t, x − d) + d.

In the other cases c > 1/α and d < 0 or c < 1/α and d > 0,

uc,0(t, x − d) + d ≤ uc,d(t, x) ≤ uc,0(t, x − dv(t)) + dv(t). (3.13)

In particular, we obtain in all cases

lim
t↑1

(uc,d(t) − uc,0(t)) = d. (3.14)

Equation (3.14) opens up another way of calculating uc,d numerically. In the first step we
should solve the differential equation for uc,d − uc,0. This is relieved by the fact that the
initial value d is finite. In the second step we just add the explicitly known constant uc,0 to
obtain uc,d .

For the proof of (3.13), assume that d < 0 and c < 1/α, and, thus, that v is monotonically
nonincreasing. The other cases follow similarly. Choose t1 ∈ [0, 1). Then, for t ∈ [t1, 1),
ε := v(t1) ≥ v(t) > 1 and we have

Gc,d(t, y) ≥ Gc,0(t, y − εd).

By the comparison result (see Proposition 2.3) and Remark 3.1, we obtain, for the optimal
stopping curves,

uc,d(t, x) ≥ uc,0(t, x − εd) + εd for t ≥ t1.

This holds in particular for t = t1. In the opposite direction we have, for all t ,

Gc,d(t, y) ≤ Gc,0(t, y − d),

and, thus,
uc,d(t, x) ≤ uc,0(t, x − d) + d.

4. Approximation of optimal stopping problems

In this section we state an extension of the approximation result in Kühne and Rüschendorf
(2004, Theorem 2.1) for optimal stopping problems for dependent sequences. In particular, we
add essential information to the important case c = −∞. We also extend the approximation
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result to general filtrations, which is useful when dealing with dependent sequences. In Section 5
we apply this extended approximation result and the developments of the previous sections to
the optimal stopping of i.i.d. sequences with discount and observation costs.

As in Section 2, let N be a Poisson process on Mf , let the intensity measure µ have Lebesgue
density g, and let c := f (1) and t0(c) = 1. Let u(t, x) and u(t) denote the optimal stopping
curves of N , let T (t, x) and ȲT (t,x) denote the optimal stopping times and rewards, and assume
that conditions (B) and (S) hold in general.

For n ∈ N, let Xn
1 , . . . , Xn

n be real random variables with E(Xn
i )+ < ∞ adapted to the

filtration F n = (F n
i )0≤i≤n and such that F n�tn� ⊂ F n+1

�t (n+1)�. For the imbedded point process,

Nn :=
n∑

i=1

δ(i/n,Xn
i )

in [0, 1] × R̄, we define the optimal stopping curve with respect to F n with guarantee value
x ∈ [c, ∞] by

un(t, x) := WF n(Xn�tn�+1 ∨ x, . . . , Xn
n ∨ x), t ∈ [0, 1),

un(1, x) := x.
(4.1)

Here WF n denotes the optimal stopping value over all F n-stopping times. In detail, (4.1) is
given by

un(t, x) = esssup{E[Xn
T ∨ x | F n�tn�] : T > tn, T is an F n-stopping time}

= E[Xn
Tn(t,x) ∨ x | F n�tn�] P -a.s.,

with optimal stopping times

Tn(t, x) := min

{
tn < i ≤ n : Xn

i > un

(
i

n
, x

)}
, Tn(1, x) := n.

The function un(·, x) is a right-continuous piecewise constant curve. It is monotone in the
sense that, for 0 ≤ s ≤ t ≤ 1,

un(s, x) ≥ E[un(t, x) | F n�sn�] P -a.s.

In the other direction, inductively by the recursive definition of optimal thresholds, for 0 ≤ s ≤
t ≤ 1, we obtain

un(s, x) ≤ E
[

max
s<i/n≤t

Xn
i ∨ un(t, x)

∣∣∣ F n�sn�
]

P -a.s.

An important condition in the dependent case is the following asymptotic independence condi-
tion.

(A) For 0 ≤ s < t ≤ 1,

P
(

max
s<i/n≤t

Xn
i ∨ f (s) ≤ x

∣∣∣ F n�sn�
)

p−→ P
(

sup
s<τk≤t

Yk ∨ f (s) ≤ x
)

for all x ∈ R.
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We need the uniform integrability condition:

(U) M+
n , with Mn := max1≤i≤n Xn

i , is uniformly integrable and E[lim supn→∞ M+
n ] < ∞.

The addition E[lim supn M+
n ] < ∞ can be omitted when F n is the canonical filtration and

Nn
d−→ N on ([0, 1] × R̄) \ graph(f ). In this case the Skorokhod theorem is applicable and

the above additional condition is a consequence of condition (B) for N , which is assumed
throughout this paper. To ensure uniform integrability in the c = −∞ case, the following
uniform integrability condition from below is postulated, which is a functional version of the
corresponding condition in Kühne and Rüschendorf (2004).

(L) For some sequence (vn)n∈N of monotonically nonincreasing functions vn : [0, 1] →
R ∪ {−∞} with vn → u pointwise, all t ∈ [0, 1), and the corresponding threshold
stopping times

T̂n(t) := min

{
tn < i ≤ n : Xn

i > vn

(
i

n

)}
,

it holds that

lim
s↑1

lim sup
n→∞

E[Xn

T̂n(t)
χ{T̂n(t)>sn}] = 0.

Conditions (L) and (U) imply uniform integrability of (Xn

T̂n(t)
)n∈N (see Faller (2009, p. 30)).

For notational convenience, we write

Tn := Tn(0, c) and T := T (0, c).

Theorem 4.1. (Approximation of stopping problems.) Assume that Nn
d−→ N on Mf , and that

conditions (A) and (U) hold. If c = −∞ then we additionally assume that condition (L) holds.

(a) For all (t, x) ∈ [0, 1] × [c, ∞),

un(t, x)
p−→ u(t, x).

If c ∈ R and assuming that µ(Mu) = ∞ or Xn
n

p−→ c, then

(
Tn

n
, Xn

Tn

)
d−→ (T , ȲT ∨ c).

(b) If c ∈ R and Xn
n

L1→ c, then T̂n := min{1 ≤ i ≤ n : Xn
i > u(i/n)} is an asymptotically

optimal sequence of stopping times, i.e.

E Xn

T̂n
→ u(0).

If c = −∞ then T̂n := min{1 ≤ i ≤ n : Xn
i > vn(i/n)}, with vn from condition (L), is

an asymptotically optimal sequence of stopping times and E Xn

T̂n
→ u(0).

For a detailed proof of this extended approximation result, we refer the reader to Faller
(2009, Satz 1.20).

https://doi.org/10.1239/aap/1324045700 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045700


1104 A. FALLER AND L. RÜSCHENDORF

5. Optimal stopping of i.i.d. sequences with discount and observation costs

Based on the results in Sections 2–4, we are able to give a fairly complete treatment of
the optimal stopping problem of i.i.d. sequences with discount and observation costs. Some
particular instances of this problem were established in Kühne and Rüschendorf (2000b). The
problem goes back to Kennedy and Kertz (1990), (1991) in the i.i.d. case.

Let (Zi) be an i.i.d. sequence with distribution function F in the domain of attraction of an
extreme value distribution G; thus, for some constants an > 0, bn ∈ R,

n(1 − F(anx + bn)) → − log G(x), x ∈ R. (5.1)

Consider Xi = ciZi + di , the sequence with discount and observation factors, ci > 0, di ∈ R,
and both sequences monotonically nondecreasing or nonincreasing. For convergence of the
corresponding imbedded point processes,

N̂n =
n∑

i=1

δ
(i/n,(Xi−b̂n)/ân)

, (5.2)

the following choices of ân and b̂n turn out to be appropriate:

ân := cnan, b̂n := 0, for F ∈ D(�α) or F ∈ D(�α),

ân := cnan, b̂n := cnbn + dn for F ∈ D(�).

Here �α , �α , and � are the Fréchet, Weibull, and Gumbel distributions, and an and bn are
the corresponding normalizations in (5.1). We give further conditions on ci and di to establish
point process convergence in (5.2). Related conditions are given in De Haan and Verkaade
(1987) and in Kühne and Rüschendorf (2000b) in the treatment of i.i.d. sequences with trends.

In the following c denotes some general constant and not as before the guarantee value.
The guarantee value of N is given by 0 in the �α case and generally by −∞ in the �α and �

cases. This application shows the importance of treating the case with lower boundary −∞ as
in Sections 2–4. We state the optimality results for all three cases.

Theorem 5.1. Let F ∈ D(�α) with α > 1 and F(0) = 0. Also, let bn = 0, and assume that

dn

cnan

→ d,
c�tn�
cn

→ tc for all t ∈ [0, 1]

for constants c, d ∈ R, and that cn does not converge to 0. Then

E XTn

ân

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if c ≤ − 1

α
,

d exp

(∫ ∞

d

(
1

x
− 1

R(x)

)
dx

)
if c > − 1

α
, d > 0,

(
α

α − 1

1

1 + cα

)1/α

if c > − 1

α
, d = 0,

exp

(∫ ∞

1

(
1

x
− 1

R(x)

)
dx−

∫ 1

d

1

R(x)
dx

)
if c > − 1

α
, d < 0, r = ∞,

0 if c > − 1

α
, d < 0, r < ∞,

(5.3)
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where r > d is the smallest zero point of

R(x) := x + α

α − 1

1

1 + cα
(x − d)−α+1, x ∈ (d, ∞),

and r := ∞ if R has no zero point greater than d.
For the values of c and d where the limit in (5.3) is not 0 or ∞, we determine asymptotically

optimal sequences of stopping times. For c > −1/α, define

u(t) := φ

(
1

v(t)

)
v(t) (5.4)

with v(t) := tc+1/a and φ the inverse of � : [d, r] → [1, ∞], given by

�(x) := exp

(∫ x

d

1

R(y)
dy

)
.

Then T̂n := min{1 ≤ i ≤ n : Xi > ânu(i/n)} is an asymptotically optimal sequence of stopping
times, i.e. the sequence of normalized expectations has the same limit as in (5.3).

Theorem 5.2. Let F ∈ D(�α) with α > 0 and F(0) = 1. Also, let an ↓ 0 and bn = 0, and
assume that

dn

cnan

→ d,
c�tn�
cn

→ tc for all t ∈ [0, 1]

for constants c, d ∈ R. If dn > 0 then assume that either (dn)n∈N is monotonically nonde-
creasing or cnan does not converge to 0. Then

E XTn

ân

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if c <
1

α
, d > 0,

−
(

α

α + 1

1

1 − cα

)−1/α

if c <
1

α
, d = 0,

d exp

(
−

∫ d

−∞
1

R(x)
dx

)
if c <

1

α
, d < 0,

0 if c = 1

α
,

d exp

(
−

∫ d

−∞
1

R(x)
dx

)
if c >

1

α
, r = ∞ (⇒ d > 0),

0 if c >
1

α
, r < ∞,

(5.5)

where r is the smallest zero point of

R(x) :=
⎧⎨
⎩

x if x ≥ d,

x − α

α + 1

1

1 − cα
(−x + d)α+1 if x < d,

or r := ∞ if R has no zero point.
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For the values of c andd where the limit of (5.5) is not 0 or∞, we can construct asymptotically
optimal sequences of stopping times. Let (wn)n∈N be a monotonically nondecreasing sequence
of negative constants with

lim
n→∞ n(1 − F(wn)) = α + 1

α
,

as, e.g. wn := −((α + 1)/α)1/αan. For c �= 1/α, let uc,d be the solutions derived in (3.12) and
define

vn(t) := uc,0(t)

u0,0(t)

w�(1−t)n�
an

+ uc,d(t) − uc,0(t) for t ∈ [0, 1), vn(1) := −∞,

where

uc,0(t) = −
(

α

α + 1

1

1 − cα
(1 − t1−cα)

)−1/α

and

u0,0(t) = −
(

α

α + 1
(1 − t)

)−1/α

.

Then T̂n := min{1 ≤ i ≤ n : Xi > ânvn(i/n)} is an asymptotically optimal sequence of
stopping times.

Theorem 5.3. Let F ∈ D(�), and assume that

bn

an

(
1 − c�tn�

cn

)
→ c log(t),

dn − d�tn�
cnan

→ d log(t) for all t ∈ [0, 1] (5.6)

for constants c, d ∈ R. Assume that (cn)n∈N and (dn)n∈N are monotonically nondecreasing.
Then

E XTn − b̂n

ân

→
⎧⎨
⎩

∞ if c + d ≥ 1,

log

(
1

1 − (c + d)

)
if c + d < 1.

For c + d < 1, let (wn)n∈N be monotonically nondecreasing with limn→∞ n(1 − F(wn)) = 1,
as, e.g. wn := bn. Let

u(t) := log

(
1

1 − (c + d)
(1 − t1−(c+d))

)
and

vn(t) := w�(1−t)n� − bn

an

+ u(t) − log(1 − t).

Then T̂n := min{1 ≤ i ≤ n : Xi > ânvn(i/n) + b̂n} is an asymptotically optimal sequence of
stopping times.

Remark 5.1. If F is the distribution function of the standard normal distribution N(0, 1) then
F ∈ D(�) and normalization constants satisfying condition (5.6) are given by

an = 1√
2 log n

, bn = √
2 log n − log log n + log 4π

2
√

2 log n
.
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Then possible choices of the constants cn and dn which satisfy (5.6) are

cn := C(log n)A, dn := D(log n)B

with A, B, C, D ∈ R, A ≥ 0, C > 0, and B ≤ A + 1
2 . The limit constants c and d from

(5.6) are given in this case by c = −2A, and d = −√
2BD/C if B = A + 1

2 and d = 0 if
B < A + 1

2 .

Proof of Theorem 5.1. By rearrangement,

Xi − b̂n

ân

= ci

cn

Zi − bn

an

− bn

an

(
1 − ci

cn

)
+ di

cnan

,

and, thus,

N̂n :=
n∑

i=1

δ
(i/n,(Xi−b̂n)/ân)

=
n∑

i=1

δRn(i/n,(Zi−bn)/an)

with the transformation

Rn(t, y) :=
(

t,
c�tn�
cn

y − bn

an

(
1 − c�tn�

cn

)
+ d�tn�

cnan

)
→ R(t, y)

:= (t, tcy + dtc+1/α). (5.7)

For (5.7), note that a�tn�/an → t1/α (see Resnick (1987, Equation (0.18))) and, thus,

d�tn�
cnan

= d�tn�
c�tn�a�tn�

c�tn�
cn

a�tn�
an

→ dtc+1/α.

Monotonicity of the constants implies that Rn converges to R uniformly on compact subsets
in (0, 1]×R and R maps [0, 1]×(0, ∞] to M

f̂
with f̂ (t) := dtc+1/d . The continuous mapping

principle implies convergence of the point processes N̂n to a Poisson process N̂ on M
f̂

, where
N̂ has the intensity function

Ĝ(t, z) = G(R−1(t, z)) = tcα(z − dtc+1/α)−α on M
f̂
,

where here G(t, y) = y−α for (t, y) ∈ [0, 1] × (0, ∞].
The intensity function Ĝ can be represented for c+ = 1/α �= 0 in the form

Ĝ(t, z) = H

(
z

v(t)

)
v′(t)
v(t)

with v(t) := tc+1/α and H(x) := (α/(αc + 1))(x − d)−α for x > d. Theorem 5.1 implies
convergence of the optimal stopping curves and stopping times of N̂n to those of N̂ . The optimal
stopping curve u of N̂ for the guarantee value has, by the results in Section 3, for c �= −1/α,
the form given in (5.4). Thus, we obtain

u(0) = lim
t↓0

φ

(
1

v(t)

)
v(t) = lim

y↑r

y

�(y)
= lim

y↑r
y exp

(
−

∫ y

d

1

R(z)
dz

)
.

This implies Theorem 5.1, considering all cases one by one.
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Proof of Theorem 5.2. As in the previous proof, we calculate the intensity function of the
limiting process as

Ĝ(t, z) = t−cα(−z + dtc−1/α)α

for z < dtc−1/α and 0 otherwise (which equals (3.11)).
To check that the uniform integrability condition (L) holds, we use the functions vn and their

associated threshold stopping times

T̂n(t) := min

{
tn < i ≤ n : Xi

ân

> vn

(
i

n

)}
, T̂n := T̂n(0).

Convergence of λn(t) := c�tn�/cn → tc and µn(t) := d�tn�/cnan → dtc+1/α follow by the
monotonicity conditions and by continuity of the limiting functions uniform on each interval
[t, 1], t > 0. Furthermore, limt↑1 uc,0(t)/u0,0(t) = 1 and, by (3.14), limt↑1 uc,d(t)−uc,0(t) =
d. This is the basic tool for establishing the uniform integrabilty condition (L). For details of
the proof, see Faller (2009).

Proof of Theorem 5.3. The proof is analogous to the previous proofs. With the constants
b̂n := cnbn + dn we obtain in the limit the transformation R(t, y) = (t, y − c log t − d log t).
Thus, R−1(t, z) = (t, z + (c + d) log t) and the intensity function of the limit process N̂ is
given by

Ĝ(t, z) = G(R−1(t, z)) = e−zt−(c+d),

where here G(t, y) = e−y . The optimal stopping curve of N̂ is given by

u(t) = log

(
1

1 − (c + d)
(1 − t1−(c+d))

)
.

For details of the proof of the uniform integrability condition (L), we refer the reader to Faller
(2009).
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