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Abstract
Water supply unreliability in many public water systems stems from aging infrastructure.
We measure unreliability by the issuance of boil water notices (BWNs) within one year
prior to single-family residential sale observations. Using a spatial quantile regression
framework on transactions between 2012 and 2017, we find statistically significant, nega-
tive relationships between BWNs and residential properties. The estimated impacts of
unreliability on residential housing prices, however, are not uniform across the distribu-
tion of prices. Specifically, we find that BWNs have a larger impact on medium- to
low-priced houses (at or below the 60 percent quantile) compared with high-priced
houses. An aggregate marginal willingness-to-pay value of $4.2 million was computed
for a one-day reduction in annual BWN throughout Marion County.

Keywords: boil water notices; hedonic property price model; spatial quantile regression; water
infrastructure

Introduction

Studies have shown that even developed countries, like the U.S., face water challenges due to
problems associated with affordability, demographic changes, high environmental quality
expectations, and aging infrastructure (Wescoat, Headington, and Theobald 2007; OECD
2016; Allaire, Wu, and Lall 2018; Allen et al. 2018). Examining affordability concerns,
Mack and Wrase (2017) project increasing water affordability issues with raising water
rates, particularly in the state of West Virginia, where the highest percentage of at-risk cen-
sus tracts (46 percent) for households unable to afford water bills of any state in the nation.

Aging water infrastructure, coupled with major funding shortfalls, is threatening the
nation’s water security (Alfredo et al. 2016).1 Many of the pipes and main lines that
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Economics Association. This is an Open Access article, distributed under the terms of the Creative Commons Attribution
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1Water infrastructure involves what is constructed to pump, divert, transport, treat, store, and deliver
water, as well as to collect, treat, and discharge storm and wastewater.
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deliver water across the country are more than 100 years old and subject to a variety of
stressors (American Society of Civil Engineers [ASCE] 2017). Aging water infrastruc-
ture leads to increased rates of main breaks, which result in water quantity and quality
problems due to leaks and flowing contaminants into the water supply. An estimated 40
percent of the water distribution network’s valves in the U.S. are not functioning prop-
erly (Baird 2011). According to the ASCE (2017), an estimated 240,000 water main
breaks occur every year, resulting in wastage of over two trillion gallons of treated drink-
ing water. In terms of quality, previous research has linked water system deficiencies
(e.g., loss of pressure caused by main breaks or maintenance work) to an increase in
the flow of contaminants, resulting in more gastrointestinal illness incidents among
the exposed households (Nygård et al. 2007; Ercumen, Gruber, and Colford 2014).

The costs associated with replacing outdated water infrastructure are large. The
American Water Works Association (2012) has estimated that $1 trillion in water infra-
structure just needs to maintain the current levels of water service over the next 25
years. West Virginia, being one of the most rural states in the country, faces many chal-
lenges related to water supply reliability due to aging or non-existent water infrastruc-
ture (Levêque and Burns 2018). Statewide, there have been an increasing number of boil
water notices (BWNs) related to water main breaks and other contamination episodes.
The West Virginia Infrastructure and Jobs Development Council (WVIJDC 2017) has
estimated that $17 billion is needed to connect all state residents to public water and to
rehabilitate the existing water infrastructure.

Most of the needed improvements in water infrastructure are funded by local gov-
ernments and public water system revenues generated by ratepayers (ASCE 2017).
Since it is not optimal for a water system to achieve 100 percent reliability, decision
makers need to make decisions that require trade-offs between cost and risk (Howe
et al. 1994). The required investment costs are usually known, but the risk preferences
of the affected consumers are not. A large literature exists that examines consumers’
willingness to pay (WTP) for different levels of public water supply reliability (e.g.,
Howe et al. 1994; Griffin and Mjelde 2000; Koss and Khawaja 2001), with the majority
of these studies using stated preference approaches to conduct their analyses in devel-
oping countries. Other studies, using the revealed preference approach (averting behav-
ior), have found that an unreliable water supply can also alter consumer behavior,
leading to additional costs to the affected households (e.g., Pattanayak et al. 2005;
Jakus et al. 2009; Vásquez 2012).

One previous study by Des Rosiers, Bolduc, and Thériault (1999) has investigated
the impact of public water system unreliability on housing prices. They used data for
800 housing transactions in Quebec City, Canada, between 1990 and 1991, where 23
public warnings were issued during the study period. Warnings were grouped into 17
spatial sectors, each of which experienced one or more warnings. Using ordinary
least squares (OLS) regression, they found that warnings were capitalized into property
values with an average duration of the warning period per sector as a dominant factor.
Also, market segmentation suggests that higher-price property buyers are much more
responsive to this issue, such that they experienced value losses between 5.2 percent
and 10.3 percent of the mean sale price.

Since water service is location-specific, access to a reliable and safe water supply
should be an important public infrastructure attribute in determining residential prop-
erty values. Therefore, the objective of this research is to examine the impact of water
supply unreliability on residential property values. We examine this impact using a
hedonic property model and measure this unreliability with BWNs in Marion
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County, West Virginia. Since water service reliability has been found to vary with the
sociodemographic characteristics of communities (see VanDerslice 2011) and external
impacts on property values can vary depending upon residential values (Lang and
Cavanagh 2018), we utilize a quantile regression approach to estimating the impact
of water supply unreliability on residential values across the entire distribution of
house prices. We find statistically significant, negative relationships for estimated
price impacts that are not uniform across the distribution of housing prices.
Specifically, we find that BWNs have a larger impact on medium- to low-priced houses
compared with high-priced houses. These results demonstrate implications for water
affordability that extend beyond just what percentage of income is spent on water ser-
vice to include wealth generated in the value of home ownership.

The rest of this article is organized as follows. A background section describing the
study is followed by a section that covers the theoretical aspect of this research that
combines a hedonic property price model and defensive expenditures along with the
empirical framework of spatial quantile regression. The next section examines the
data utilized in analyses. The final two sections discuss the results and conclusions.

Background

Located in the north central region of West Virginia, Marion County is a largely rural
county with a population of nearly 56,000 (Figure 1). The county encompasses an area
of 312 square miles and contains two cities (Fairmont and Mannington) and nine
towns. Fairmont is the county’s seat and the most populated city in the county.
According to the U.S. Census Bureau (2018), the median household income in

Figure 1. Residential Property Transactions Affected by Boil Water Notices in Marion County, West Virginia,
Between 2012 and 2017.
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Marion County is $48,158, which is about 10 percent higher than the West Virginia
median, but 20 percent lower than the U.S. median. The largest employers in the county
are Fairmont State University and Fairmont Regional Medical Center. There are about
19,839 owner-occupied housing units in Marion County with a median value of
$110,100 (U.S. Census Bureau 2018). Based upon comparisons of Marion County
house sale data gathered for this research with regional and national housing median
price trends, the residential real estate market in this county was reflective of regional
and national housing price trends and judged to be relatively competitive between
2012 and 2017.

Most of Marion County is served by the 28 public water systems located in the
county—estimates include 95 percent of the population (USGS 2015) and 83 percent
of structures (WVIJDC 2017). The city of Fairmont Water Department is by far the
largest, serving over half of the county’s population. Almost all public water systems
in the county use surface water as source water, with only one system mixing ground
and surface waters. Statewide in West Virginia, water systems with surface water sources
have fewer violations than systems that utilize groundwater as a water source (U.S. EPA
2021).

One indication of problems with public water supplies is evidenced by water systems
issuance of a BWN to alert their customers. A BWN, also known as a Boil Water
Advisory, is issued when there is an identified or suspected microbial contaminant in
the water distribution system. A BWN often occurs due to water main breaks. In
Marion County, the reason for 80 percent of BWNs is water main breaks or leaks.
Fixing a water main break, however, does not imply a lower likelihood in future breaks.
In fact, the number of previous breaks is often reported as the most important factor for
predicting future breaks (Pelletier, Mailhot, and Villeneuve 2003).

The BWN will instruct consumers to boil all water used for drinking, cooking, food
preparation, brushing teeth, and making ice (Water Quality Research Foundation 2018).
There are multiple methods of communications used to alert residents in the affected
areas about BWNs, including local news, radio, newspaper, emails, texts, official web-
sites, and door tags. In addition to the BWN, water system customers should be able
to notice signs of a water main break from inside or outside their house. Inside a
house, these signs include (1) low water pressure, (2) slowly flowing water, and (3)
dirty water or a rusty discoloration, while outside a house, indicators include (1)
water gushing or flowing from the ground, (2) sinking roads, sidewalks, or ground,
and (3) water seeping or pooling out of the ground.

Marion County is among the top 10 counties in West Virginia that face major chal-
lenges related to water supply reliability based upon BWNs per 10,000 people. In addi-
tion, about 20 percent of the county’s population are being served by public water
systems that violated the health-based standards of the Safe Drinking Water Act
(SDWA). Finally, 19 systems are designated as under-resourced (Public Service
Commission of West Virginia 2017). These facts indicate that most water systems in
Marion County are facing financial difficulties that may restrict service improvements
and compliance with the SDWA standards.

Theoretical and empirical model development

Theoretical framework

The basic framework for the hedonic property price model was provided by Rosen
(1974), where consumers choose between differentiated products with multiple
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attributes to maximize their utility. In applying this model to housing markets, let Z =
(z1, z2, …, zn) be a vector of observable attributes where zi measures the amount of the
ith attribute of a house that includes property attributes (such as age, square footage,
and number of bedrooms), neighborhood attributes (such as distance to schools and
highways), and environmental attributes. Water supply unreliability (WSR) is included
as a separate attribute that combines both neighborhood and environmental elements.
Here, we assume that information about WSR is obtained by consumers of housing
from BWNs that have been issued prior to the sale (BWN0).

Assuming a single competitive housing market and full information, the housing
consumer decision problem is described as

maxU〈X, Z, WSR{E(BWN0), DE[E(BWN0)]} 〉 (1)

subject to Y = X + P{Z, WSR[E(BWN0)]}+ DE[E(BWN0)] (2)

where X is the numeraire good, WSR is a measure of water supply unreliability which is
positively related to consumer expectations as derived BWN0, Y is income, P is the
hedonic price schedule, and DE represents the associated defensive expenditures
incurred (i.e., bottled water and water filter) when the water supply is unreliable so
that (dDE)/(dBWN0) > 0.

Furthermore, we assume an expectation function:

E(BWN0) = 0 ∀ BWN0 ≤ p (3)

E(BWN0) . 0 ∀ BWN0 . p (4)

where π represents a threshold on the number of BWN that housing consumers use
when deciding whether water service provided to the house is deemed unreliable.
When the number of BWNs issued prior to the sale is higher than π, then expectations
of unreliable water supply are formed about the impacted property. Water supply unre-
liability will generate negative utility to the consumer, leading to a decrease in the price
of the house.

Assuming that E(BWN0) > 0, the first-order conditions lead to:

∂U
∂WSR

· ∂WSR
∂E(BWN0)

+ ∂U
∂WSR

· ∂WSR
∂DE

· dDE
dE(BWN0)

∂U
∂X︸������������������������������︷︷������������������������������︸

Marginal rate of substitution

− ∂DE
∂E(BWN0)︸�����︷︷�����︸

Marginal cost of DE

= ∂P
∂WSR

· dWSR
dE(BWN0)︸����������︷︷����������︸

Marginal implicit price

(5)

Equation 5 shows that, at the optimum, the marginal implicit price of BWN0 from a
hedonic property price model (RHS) reflects the marginal rate of substitution between
water supply unreliability and the numeraire good X on the LHS along with a second
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term that measures the marginal change in defensive expenditures associated with
BWN0 in order to achieve water supply reliability.

Rosen (1974) also described the consumer’s maximum ‘bid’ function for a house θ
(Z;U, Y ), where utility and income are fixed. This function represents the amount a
consumer is willing to pay for different attribute vectors for a given utility–income
index. Substituting the budget constraint into the utility function, we obtain:

U〈Y − u{Z, WSR[E(BWN0)]}− DE[E(BWN0)], Z,

WSR{E(BWN0), DE[E(BWN0)]}〉 = �u
(6)

If we implicitly differentiate θ( ⋅ ) with respect to BWN0, we obtain:

∂U
∂WSR

· ∂WSR
∂E(BWN0)

+ ∂U
∂WSR

· ∂WSR
∂DE

· dDE
dE(BWN0)

∂U
∂X

− ∂DE
∂E(BWN0)

= ∂u

∂WSR
· dWSR
dE(BWN0)

(7)

Combining conditions (5) and (7), we find that the marginal bid or the marginal WTP
(MWTP) for a housing characteristic is equal to its equilibrium marginal price. The
first-stage hedonic property price function P( ⋅ ) represents an envelope of a consumer’s
bid functions in equilibrium. Therefore, it can be used to obtain the marginal value that
consumers place on housing attributes. This means that the marginal price of an attri-
bute is equal to the MWTP for that attribute (Taylor 2003). Econometrically, we obtain
the marginal price of any attribute by regressing the price of the house on the attribute
of interest, i.e.,BWN0 as a measure of WSR.

Empirical framework

Models stemming from the above theoretical framework could be estimated using OLS.
However, recent studies adopt alternative estimation techniques to account for spatial
dependence, i.e., the existence of a functional relationship between what happens at
one location and what happens elsewhere (Anselin 2013). This issue may occur in
hedonic property price models when houses in one location are impacted by the prices
or characteristics of nearby houses compared with houses that are farther apart (Anselin
and Lozano-Gracia 2009). Also, spatial dependence may occur in hedonic property
price models because of the presence of common practical issues such as measurement
errors in explanatory variables, omitted variables, and other forms of model misspeci-
fication (Baumont 2004). Traditional OLS hedonic property price models do not con-
sider the spatial dimension of housing price data, and ignoring spatial dependence may
result in biased and inconsistent or inefficient estimates depending on the type of spa-
tial process involved with the model (LeSage and Pace 2009).

Therefore, spatial econometric techniques are used to address this problem and to
obtain reliable coefficient and standard error estimates.2 To address this, we account
for potential spatial price spillovers using the spatial lag model as suggested by the

2Moran’s I statistic is 0.5262, and it is statistically significant at 1% indicating the existence of spatial
autocorrelation.
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Lagrange multiplier test results in Table 1. Thus, we can write the model as

ln (P) = rW ln(P)+ ZB+ 1 (8)

where ln(P) is the natural log of the sale price, Z is a N × K matrix of property char-
acteristics, B is a K × 1 vector of coefficients, W is a N ×N spatial weight matrix asso-
ciated with the autoregressive process in house prices and in the error term, and ε is a
N × 1 spatial autoregressive error.

A spatial weight matrix defines the relationship between neighbors in the model (i.e.,
how the value in one location in the system is affected by the values in other locations).
This relationship can be based on either the distance or the contiguity between obser-
vations. For the spatial weight matrix, we use K-nearest neighbor (KNN) weights, in
which all observations have the same numbers of neighbors (K) irrespective of the dis-
tance. This method is recommended to avoid the possibility of islands (i.e., observations
without neighbors), which may result in loss of degrees of freedom, since all uncon-
nected observations will be eliminated in the spatial model (Anselin and Bera 1998).
Also, this type of spatial weight matrix has been used frequently in other hedonic stud-
ies (e.g., Mueller and Loomis 2008; Pandit et al. 2013; Netusil, Kincaid, and Chang
2014; Liu, Opaluch, and Uchida 2017). We also use a row-standardized weight matrix.
For the number of neighbors K, we follow LeSage and Pace (2009), and we choose the
number that maximizes the value of a log-likelihood function. Using the log-likelihood
function criterion, we find that using five nearest neighbors results in the maximum
log-likelihood value.3

In our data, BWNs are not equally distributed across housing price transactions
(Table 2). On average, properties transacted at the lower-price quantiles experience
more water supply reliability problems than the properties sold at the higher-price quan-
tiles. Therefore, we focus our analysis and look at the impact of water supply unreliability
across the price distribution instead of assessing its impact with a focus on the mean. To
do this, we employ the quantile regression approach (see Koenker and Bassett 1978;
Koenker and Hallock 2001; Hao and Naiman 2007) to examine the impact of housing
characteristics at different points (quantiles) across the distribution of housing prices.

Table 1. Lagrange multiplier (LM) diagnostics for spatial dependence

Test Statistic p-value

LMError 48.3510 0.0000

LMLag 73.7100 0.0000

Robust LMError 3.1320 0.0768

Robust LMLag 28.4910 0.0000

3According to Anselin, the KNN weights can have an impact called “relative distance effect,” which hap-
pens when distances between neighbors are not similar (some points will have close neighbors, while others
will have them far away). Appendix Figure A1 is a histogram for distances between neighbors from the
weight matrix. These results indicate that most neighbors are within a distance of less than 1 km. This indi-
cates that differing distances between weights should not be an issue for this data set.
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Unlike OLS, quantile regression specifies changes in the conditional quantile, which
allows us to observe how housing characteristics are valued differently by consumers of
housing at different price ranges. Similar to equation 8, the spatial quantile lag model is
expressed as

ln(P) = r(t)W ln(P)+ ZB(t)+ 1(t) (9)
which will result in estimates based on the conditional quantile, taking account of the
spatial effect at the same time.

To estimate the spatial quantile model, the two-stage quantile regression approach
proposed by Kim and Muller (2004) is used to account for the endogeneity in the spa-
tially lagged variable. In the first stage, the spatially lagged exogenous variables WZ and
Z are used to predict the spatially lagged endogenous variable W ln(P) at an individual
quantile. The predicted ̂W ln(P) is substituted for W ln(P) in the spatial lag model to
eliminate the correlation between the spatially lagged endogenous variable and the
error term. Then, the second-stage regression for that quantile is performed to obtain
ρ(τ) and β(τ). This two-stage procedure is then repeated for each quantile.

Data

Our analysis is based on two main sources of data: (1) West Virginia Office of
Environmental Health Services (OEHS) and (2) Marion County Assessor. The next
two subsections provide descriptions of these data.

Boil water notices

To measure water supplier unreliability, we use BWNs issued by either public water sys-
tems or the Marion County Health Department. The OEHS provides information on all
BWNs in West Virginia starting from 2012. Between January 2012 and December 2017,
there were a total of 440 BWNs in Marion County, varying annually between 64 and 80
with no discernible trend over time. For each notice, the provided information includes
the following: when the notice is issued and lifted, the name of the public water system
plus its PWSID, the public health sanitation district where the notice is issued, the

Table 2. Boil Water Notices (BWNs) means by price quantile

Price quantile
Mean number of

BWNs days per year
Mean of BWN experienced
one year prior to sale

$31,928 (0.1) 4.694 0.811

$59,864 (0.2) 1.907 0.471

$81,286 (0.3) 0.890 0.313

$102,267 (0.4) 1.314 0.319

$124,881 (0.5) 0.995 0.301

$144,611 (0.6) 1.185 0.291

$167,371 (0.7) 0.540 0.268

$210,602 (0.8) 0.549 0.228

$301,113 (0.9) 0.505 0.162
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reason for the notice, and details about the affected areas or street names.4 Using infor-
mation from the SDWIS/Fed database and details from each notice, we obtained city
and county affected by each notice.5

Housing data

The Marion County Assessor provides data for all residential property sales between
January 2012 and December 2017. This data set contains 7,972 residential property
transactions. By dropping all property sales without structures, the number of transac-
tions declined to 5,525. To ensure only arm’s length sales in our analysis, a process fol-
lowing Herriges, Secchi, and Babcock (2005) is used to drop all properties that were less
than 50 percent of their assessed values and/or sold for less than $5,000. Therefore, after
eliminating these sales, the total number of transactions included in our analysis is
1,985 single-family residential properties.6

To capture housing attributes previously found in the literature to influence housing
prices, we include variables for housing characteristics in the hedonic model such as
size, story height, age, number of bedrooms, total number of bathrooms, and existence
of house amenities (e.g., air-conditioning and fireplace). In addition, we control for two
variables that have been consistently neglected in hedonic property price models: (1)
house physical condition and (2) material and workmanship quality. Based upon asses-
sor data for physical condition, we rank houses from Unsound = 1 to Excellent = 6. For
quality, we use the quality grade factor provided by the county’s assessor ranging from
E = Poor (0.5) to X = Excellent (2.5). According to the assessor, these two variables are
unrelated, as the first one measures only the physical condition, but the second mea-
sures the quality of the building regardless of the physical condition. We compute a
simple correlation coefficient, and we find that it is equal to 0.60, indicating a moderate
correlation between the physical condition and the quality of the building.

All property sales are geocoded using house’s street address with ArcGIS to measure
neighborhood and proximity characteristics such as crime, school quality, distance to
Fairmont State University, and to the nearest highway interchange.7 For crime, we
use the total crime index that compares the average local crime level to that of the entire
U.S. (an index of 100 is average). This index includes both property and violent crimes
for 2010 at the block group level, and it is obtained from the ArcGIS database. For
school quality, we follow the literature and use proficiency tests as a proxy
(Brasington 1999). Specifically, we use the percentage of students in elementary school
who scored at or above proficiency levels in math tests. We obtain these shapefiles for
attendance zones in the county from the National Center for Education Statistics
(NCES) and the data for math tests from the GreatSchools website. For distance

4PWSID is an identification code that starts with the state’s initials and followed by seven numbers.
These codes can be used to find more information about the water system (e.g., city and county served
or the source of the primary water) in the Safe Drinking Water Information System/Federal Warehouse
(SDWIS/Fed).

5Some water systems were not available on SDWIS/Fed, so we used the WV Drinking Water Watch to
obtain the necessary information. Available at: http://129.71.204.189:1977/DWWpublic/index.jsp.

6County Assessor data did not include information about the source of potable water for each property.
Given the high percentage of the county population being served by public water systems, all properties in
this data set are assumed to be supplied by public water for potable water needs as opposed to private wells.

7This variable was included since Fairmont serves a “bedroom” community for the more prosperous
communities of Morgantown to the north and Clarksburg to the south.
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variables, we obtain the shapefiles for Fairmont State University and highway inter-
change locations from the Census Bureau TIGER/Line database. Finally, we include
year-fixed effects to control for housing market changes over time.

Linking BWNs to housing transactions

There were 440 BWNs in Marion County between 2012 and 2017, but 90 BWNs could
not be used due to insufficient information about the affected locations (54 BWNs) or
because the date when the BWNs were lifted are unavailable (36 BWNs). Thus, the total
number of BWNs used in the analysis is 350. Then, based upon the details provided for
each BWN along the street address for each property transaction, West Virginia
Property Viewer was used to allocate properties and BWNs among the 22 tax districts
in Marion County.8 Following this, the details of each BWN are linked to all affected
houses based on street addresses or affected areas. For example, if a BWN affects
Street A and is issued on January 1, 2014 and lifted on January 5, 2014, houses located
at Street A and sold between January 1, 2014 and January 1, 2015 are assigned the
appropriate values for each BWN variable utilized in the analysis.

Table 3 shows the distribution of property transactions, BWNs, and properties affected
by BWNs in each tax district in Marion County between 2012 and 2017. Over the entire
county from 2013 to 2017, about 35 percent of residential property transactions are
affected by a BWN, and as expected, Fairmont has the largest number of transactions
and BWNs. Specifically, about 41.6 percent of the transactions happen in Fairmont
with 29 percent of these transactions being affected by BWNs.

Two variables are used to measure water supply unreliability: (1) the number of days
a sold house is under BWNs within one year prior to its sale date and (2) a binary var-
iable indicating that if a sold house is affected by the BWN or not within one year prior
to its sale date.9 For these variables, property sales from January 1, 2013 to December
31, 2017 are used in the analysis and BWNs from January 1, 2012 to December 31,
2016.

Table 4 provides summary statistics and descriptions for all variables included in the
analysis. Explanatory variables are grouped into four categories. The first category con-
sists of focus variables related to BWNs as proxy measures of water supply unreliability.
We expect these variables to have negative impacts on housing prices. The second cat-
egory is structural variables that include building characteristics and house amenities.
Except for story height, construction material, and house age, all the other variables
are expected to have positive impacts on housing prices. Property variables are the
third category, and these include parcel characteristics of lot size and fencing with pos-
itive impacts and sidewalks with a negative impact, since they are associated with clean-
ing responsibilities. Finally, there are neighborhood and proximity variables. For the
variables crime level and distance to highway plus a major employer (Fairmont State
University), negative impacts are expected, whereas school quality should have a posi-
tive impact on housing prices.

8WV Property Viewer is an online interactive GIS map that provides information on all properties in
West Virginia and their owners. Also, it provides information on tax district boundaries in each county.
Available at: https://www.mapwv.gov/parcel/.

9Hedonic property models with monthly variables (i.e., number of BWNs and days a month before the
sale) were also estimated, but the results were statistically insignificant coefficients for BWN variables in all
specifications and we do not report them here.
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Results

First, a single market assumption for residential properties in Marion County is con-
firmed from our data using a Chow test on models comparing two data subsamples:
(1) the city of Fairmont and (2) the rest of Marion County. To examine the changing
impact of water supply unreliability over the distribution of housing prices, the spatial
quantile regression model results are reported in Appendix Tables A1 and A2. All esti-
mates for the spatial autoregressive coefficient (ρ) are positive and statistically signifi-
cant, meaning that a positive spatial similarity exists between residential property sale
prices. Focusing on the BWN variables with coefficients statistically different from

Table 3. Property transactions and BWNs by tax districts in Marion County, West Virginia, between 2012
and 2017

Number District
Property

transactions BWNs
Properties affected by

BWNs (%)

1 Barrackville 53 4 30 (56.6)

2 Fairmont District 78 20 23 (29.5)

3 Fairmont Citya 485 51 138 (28.5)

4 Grant Annexa 136 20 45 (33.1)

5 Union Citya 177 11 34 (19.2)

6 Winfield Citya 28 4 21 (75)

7 Fairview 9 3 1 (11.1)

8 Farmington 14 5 10 (71.4)

9 Grant District 236 20 32 (13.6)

10 Grant Town 19 2 12 (63.2)

11 Lincoln District 133 37 69 (51.9)

12 Mannington District 17 3 11 (64.7)

13 Mannington City 75 7 59 (78.7)

14 Monongah-Grantb 24 0 14 (58.3)

15 Monongah-Lincolnb 19 0 12 (63.2)

16 Paw Paw District 59 31 41 (69.5)

17 Rivesville 50 24 37 (74)

18 Union District 113 12 29 (25.7)

19 Winfield District 86 11 22 (25.6)

20 Worthington 5 1 4 (80)

21 White Hall 25 2 11 (44)

22 Pleasant Valley 144 17 45 (31.3)

Multiple Districts — 65 —

Total 1,985 350 700 (35.3)

aPart of Fairmont City.
bBWNs that affect districts 14 and 15 usually affect other districts as well.
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Table 4. Summary statistics and variable descriptions

Variable Description Unit Average St. Dev. Min. Max.

Dependent variable

House price House’s sale price $ 135,338 81,082 6,000 650,000

Independent variables

BWN variables

Days BWNs_year Number of days the house was under BWNs a year
before the sale

Days 1.40 5.52 0 116

BWN 1 = if the house was affected by a BWN, 0 = otherwise 0/1 0.35 0.48 0 1

Structural variables

SQFT Building area in square feet ft2 1,645.45 658.89 480 5,488

Story height Story height Number 1.27 0.42 1 3

Construction material Material used in construction, 1 = if the material used is
Alum/Vinyl, 0 = otherwise

0/1 0.63 0.48 0 1

Physical condition Physical condition of the house (1–6, 1 = unsound, 6 = excellent) Number 4.75 0.82 1 6

Quality grade factor Quality of the material and workmanship (0.5–2.5, 0.5 = E, 2.5 = X+) Number 1.05 0.24 0.5 2.5

Age Age of the house Years 63 36 0 167

Bedrooms Number of bedrooms Number 2.80 0.76 1 12

Total bathrooms Total number of bathrooms (full + half) Number 1.88 0.81 1 6

AC Heating system with AC, 1 = central with A/C, 0 = otherwise 0/1 0.77 0.42 0 1

Fireplace 1 = if there is a wood-burning fireplace, 0 = otherwise 0/1 0.31 0.46 0 1

Basement garage 1 = if there is basement garage, 0 = otherwise 0/1 0.29 0.45 0 1
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Property variables

Lot size Lot size Acres 0.96 5.30 0.01 130.28

Sidewalk 1 = if there is a sidewalk, 0 = otherwise 0/1 0.06 0.24 0 1

Fence 1 = if there is a fence around the property, 0 = otherwise 0/1 0.49 0.50 0 1

Neighborhood and proximity variables

Crime Total crime index Number 54.05 24.28 19 101

School quality Percentage of students scoring at or above proficiency levels in
the math test

% 48.91 14.26 29 71

Distance to highway exit Distance to the nearest highway interchange (I-79) Miles 2.63 2.68 0.09 17.47

Distance to FSU Distance to Fairmont State University (FSU) Miles 3.19 2.57 0.14 17.30

Note: Observations = 1,985.
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zero, it is clear from Table 5 that water supply unreliability has more negative impacts
on house sales at the lower quantiles of the house price distribution compared with
houses priced at the high quantiles. For example, the Days BWNs_year variable has
negative, statistically significant impacts for quantiles between 0.1 and 0.6, but no stat-
istically significant impacts at quantiles 0.7 or greater.

We also examine the valuation of water supply unreliability computed using the esti-
mates from the first-stage hedonic property price model. As mentioned in the theory
section, the MWTP is defined as the derivative of the hedonic price equilibrium equa-
tion with respect to the characteristics of interest. Following Muller and Loomis (2008)
and Anselin et al. (2010), the MWTP from the spatial lag model consists of a coefficient
and a spatial effect because the impacts from a change in one household’s water supply
unreliability spill over to neighbors. Following Kim, Phipps, and Anselin (2003), the
equation can be written as

MWTPLag = ∂lnP(Z)
∂zi

= b̂�P
1

1− r̂

( )
(10)

where b̂ is the coefficient, �P is the mean housing price, and r̂ is the estimated spatial
autoregressive coefficient. This spatial multiplier effect needs to be accounted for to
accurately compute the MWTP.

It is important to note that these marginal benefit estimates represent a capitalized
rather than an annual impact from water supply unreliability. As such, the marginal
benefit estimates are influenced by the length of time the buyer of the house expects
to reside in the house, the amount the buyer expects to receive for this attribute
when the house is resold, the discount rate, and any projected improvements in
water infrastructure. Table 6 shows the MWTP calculations for the BWN variables
with statistically significant coefficients from the estimated spatial models. As can be
seen, on average, the MWTP for improving water supply reliability ranges from
$1,160 to $35,116 depending upon how unreliability is measured—in either days or
presence versus absence.

Since the number of days in which the house is expected to be under BWNs over a
year represents a clear and known marginal change, we use it as the preferred measure
to value water supply unreliability. Thus, by reducing the expected number of BWN by
one day per year per house, the total effect of this change, on average, would be an
improvement by $1,160 in housing prices when including the impacted house itself
and its neighbors. This impact represents 0.86 percent of the average house price in
Marion County. This impact is more substantial than other neighborhood variables
in the model such as crime and school quality (see Appendix Table A1 for coefficient
estimates).

The average MWTP of $1,160 for a one-day reduction in the annual number of
BWN is high, relative to the defensive expenditures involved. Daily household estimates
from three studies that examined the economic costs of defensive expenditures due to
potable water contamination (Harrington, Krupnick, and Spofford 1989; Abdalla,
Roach, and Epp 1992; Collins and Steinbeck 1993) range from $3 to $20 in 2017 dollars.
This compares with a capitalized defensive expenditure value of $70 per day from the
average MWTP value.10 There are several explanations for this large difference: (a) the

10The calculation of this capitalized value of defensive expenditure includes a 1.8% average real interest
rate from World Bank data over 2012–2017 and 20-year home ownership assumption.
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Table 5. Two stage least square (2SLS) estimates for the spatial quantile models (dependent variable is ln (P))

2SLS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Days
BWNs_year

−0.0065***
(0.0016)

−0.0664***
(0.0173)

−0.0271**
(0.0121)

−0.0155
(0.0095)

−0.0075
(0.0048)

−0.0064**
(0.0033)

−0.0049**
(0.0025)

−0.0048
(0.0034)

−0.0015
(0.0033)

0.0009
(0.0030)

BWN −0.1853***
(0.0186)

−0.5392***
(0.0653)

−0.2971***
(0.0483)

−0.1750***
(0.0265)

−0.1017***
(0.0209)

−0.0676***
(0.0171)

−0.0509***
(0.0185)

−0.0449**
−(0.0449)

−0.0074
(0.0205)

0.0077
(0.0172)

Note: Bootstrapped standard errors in parentheses.
***p<0.01, **p<0.05.

Table 6. MWTP ($) for a change in water supply reliability from the estimated spatial models

2SLS 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Days BWNs_year 1,160 2,679 2,093 982 868

BWN 35,116 28,690 24,746 18,304 12,875 10,421 9,090 9,129

Notes: The values represent coefficients that are statistically significant at 5 percent; empty cells are for insignificant coefficients. Since BWN is a binary variable, its marginal impact is equal to:
Mean P in quantile * (exp(b)− 1) * (1/1 − ρ).
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spatial correlation impacts between houses impacted by the BWN that are embedded in
the MWTP estimates, (b) enhanced risk perceptions of households impacted by the
BWN as explained below, and (c) the capitalized defensive expenditure value may rep-
resent the cost of leaving the home temporarily while the BWN is in effect rather than
the economic cost of in-house responses.

Furthermore, we see that the MWTP values for consumers of low-priced houses are
greater than for consumers of high-priced houses. That is, a reduction of one day under
BWN per year will increase housing prices at the medium to lower end of the housing
price distribution by $2,100 to $2,700, whereas houses at the mid-range of the distribu-
tion will increase by $850 to $1,000 (Table 6). These impacts range from 0.60 percent to
8.4 percent of average sale prices across these quantiles. Houses at the 0.7 quantile and
above of the price distribution show no statistically significant impacts from the days of
the BWN variable. Finally, given the mean distribution of BWNs by quantile in Table 2,
a threshold value (π) of approximately 1.0 BWNs annually is indicated by the statisti-
cally insignificant results at the 0.7 quantile and above.

One interpretation of these results is that the greater prevalence of BWN for
lower-priced houses leads to greater risk perceptions and awareness about public water
supply problems among these housing consumers. Previous studies have shown that
consumers who experience more problems with their water supply perceive the associ-
ated health risks differently and were willing to pay more to fix water supply problems
than those consumers who experience water supply problems infrequently (Anadu and
Harding 2000; Genius and Tsagarakis 2006). As shown in Table 2, experience with and
duration of BWNs consistently declines with housing price quantiles.

Overall, water supply unreliability has a substantial impact on the value of residential
properties in Marion County. To calculate the aggregate MWTP across the entire
county for a one-day reduction of BWN, three factors are multiplied together: (1)
the average value of statistically significant coefficients from the spatial quantile regres-
sion ($1,694), (2) the estimated annual average number of owner-occupied housing
units that would be expected to be affected by the BWN in Marion County between
2013 and 2017 (6,150), and (3) finally, from the quantile regression results, a factor
of 0.4 as the percentage of houses would incur a price impact from these notices.
Following this procedure, we obtain an aggregate MWTP value of $4.2 million for a
one-day reduction of the annual BWN throughout Marion County.

Conclusions

Aging water infrastructure, combined with funding shortfalls, poses serious challenges
to local governments and water systems across the U.S. The number of water main
breaks in the U.S. has been increasing every year resulting in more interruptions in pub-
lic water service (Folkman 2018). Since achieving full reliability in water service is most
likely not an optimal policy, decision makers at local water utilities must attempt to bal-
ance between cost and risk associated with their policies (Howe et al. 1994). However,
water customers’ perceptions of the risk associated with supply disruptions are usually
unknown to decision makers. Therefore, studies have attempted to examine the WTP
for water supply reliability using stated preference approaches (Genius and
Tsagarakis 2006; Vásquez and Espaillat 2016).

In this research, we examine the impact of water supply unreliability on single-
family, residential property sales in Marion County, West Virginia, using spatial quan-
tile hedonic property price models. To measure the impact of water supply unreliability,

Alzahrani and Collins120

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
1.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2021.24


we define two variables based on the issuance of BWNs within one year prior to the sale
and link them to house sale transactions. Our analysis is based on 1,985 housing trans-
actions and 350 BWNs throughout the county between 2012 and 2017. Important
factors that affect observed house prices are controlled for by including house size,
age, number of bedrooms plus bathrooms, construction quality, and existence of
house amenities (air-conditioning, fireplace, and fence).

We find that there are statistically significant, negative impacts on house prices from
prior issuances of BWNs. When unreliability is measured by days of BWNs, a one-day
increase can depreciate housing prices at the margin from 0.6 percent to 8.4 percent.
Furthermore, using a quantile regression approach, we find that water supply unreliabil-
ity has a larger impact on medium- to low-priced houses compared with high-priced
houses. Based on what we would judge as the best estimate of water supply unreliability,
the MWTP for a reduction in one day under a BWN per year will increase house values
at the lower end of the price distribution in the range of $2,100 and $2,700, whereas
houses at the mid-range of the distribution will increase by $850 to $1,000. However,
house transactions at the higher end of the housing price distribution show no statisti-
cally significant impacts from the days of the BWN variable. The conclusion that
improving water infrastructure will increase property values is supported by previous
research that examines the impact of public infrastructure investments on housing
prices (Janeski and Whitacre 2014; McIntosh et al. 2018).

The results from the quantile regression models can be interpreted as an inconvenience
measure, where consumers are willing to pay to fix water supply reliability problems until a
certain threshold in which after that point their MWTP will be zero. Our results indicate
that consumers’ MWTP will be positive if the house is expected to experience, on average,
one day or more under BWNs annually. Since many residences in Marion County (par-
ticularly medium- to low-priced houses) experience more than one day of BWNs, water
supply unreliability has a substantial impact on the value of residential properties in this
county (between 1 percent and 10 percent of the sale price). Given that the primary
impacts from water supply reliability fall upon medium- to low-priced houses, this research
result shows that affordability of public water service is an issue that not only involves the
amount or percentage of income expended upon water services (Mack and Wrase 2017;
Whittington 2020), but also entails service reliability and its impact on the wealth gener-
ated in housing values for low- to medium-priced houses.

Comparing our BWN impact estimate with the results of Des Rosiers, Bolduc, and
Thériault (1999), we note that these authors found a larger magnitude of impact for
BWNs. This difference is to be expected since we are using a larger sample size and
a different methodology of linking BWNs to sale observations. For linking BWNs to
sale observations, they used aggregated measures and grouped the BWNs into multiple
“spatial sectors” where each of them had one or more warnings, and any house that was
located in those sectors was considered having problems with water quality. On the
other hand, we use specific measures for each house as explained in the subsection link-
ing BWNs to housing transactions.

Our estimates indicate that some households in Marion County have a positive
MWTP for a greater reliability in their water supply. This research demonstrates, via
these enhanced housing values, the public desirability of addressing water infrastructure
needs of lower- to middle-income communities through federal programs such as the
American Jobs plan. In addition, the aggregated value for the MWTP of $4.2 million
to reduce the BWN by one day may help guide and motivate water systems in their
decisions regarding water pricing and investments in the water distribution network.

Agricultural and Resource Economics Review 121

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
1.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2021.24


With its negative impact on property valuation, property tax revenues collected by the
county are potentially reduced due to unreliable water supplies.

Finally, it is important to note, however, that our findings reflect the specific nature of
our data. The area of study is a relatively small geographical area. Also, due to missing data,
we had to drop a relatively large number of BWNs (90) from our analysis. In addition,
when allocating BWNs to house sale observations, most BWNs affect one or multiple
streets in addition to surrounding areas. Due to our limited knowledge, we were unable
to include those surrounding areas in our analysis. Therefore, not all of the house sale
transactions affected by the BWN were included in this analysis. Against this background,
our monetary estimates of BWN impacts should be regarded as conservative.

Data availability statement. All data are available on public databases.

Funding statement. This research received no specific grant from any funding agency, commercial, or
not-for-profit sectors.
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Appendix

Spatial quantile regression models—dependent variable is ln (P)11

Table A1. Spatial quantile regression results for model (1)—days BWNs_year

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Days BWNs_year −0.0664***
(0.0173)

−0.0271**
(0.0121)

−0.0155
(0.0095)

−0.0075
(0.0048)

−0.0064**
(0.0033)

−0.0049**
(0.0025)

−0.0048
(0.0034)

−0.0015
(0.0033)

0.0009
(0.0030)

SQFT 0.0002***
(0.0000)

0.0002***
(0.0000)

0.0002***
(0.0000)

0.0002***
(0.0000)

0.0002***
(0.0000)

0.0003***
(0.0000)

0.0002***
(0.0000)

0.0002***
(0.0000)

0.0002***
(0.0000)

Story height −0.0575*
(0.0306)

−0.0303
(0.0283)

−0.046*
(0.0244)

−0.0413**
(0.0192)

−0.0323*
(0.0173)

−0.0266
(0.0198)

−0.0092
(0.0243)

0.0052
(0.0225)

−0.0063
(0.0222)

Construction material −0.0672**
(0.0286)

−0.0668***
(0.0231)

−0.0636***
(0.0185)

−0.0525***
(0.0154)

−0.0297**
(0.0141)

−0.0298*
(0.0160)

−0.0285*
(0.0168)

−0.0256
(0.0174)

−0.0311*
(0.0159)

Physical condition 0.2683***
(0.0281)

0.2637***
(0.0217)

0.2266***
(0.0187)

0.1998***
(0.0146)

0.1758***
(0.0156)

0.1634***
(0.0158)

0.1472***
(0.0181)

0.1373***
(0.0167)

0.1473***
(0.0159)

Quality grade factor 0.4243***
(0.1245)

0.3806***
(0.0792)

0.3937***
(0.0677)

0.3875***
(0.0544)

0.3909***
(0.0488)

0.3472***
(0.0507)

0.364***
(0.0668)

0.4398***
(0.0532)

0.4374***
(0.0657)

Age −0.0025***
(0.0007)

−0.0025***
(0.0005)

−0.0026***
(0.0005)

−0.0024***
(0.0003)

−0.0025***
(0.0004)

−0.0026***
(0.0004)

−0.0025***
(0.0004)

−0.0021***
(0.0004)

−0.0016***
(0.0003)

Bedrooms 0.0235
(0.0264)

0.0198
(0.0212)

0.0411**
(0.0164)

0.0487***
(0.0150)

0.0518***
(0.0126)

0.0463***
(0.0158)

0.0319**
(0.0152)

0.0448***
(0.0140)

0.0474***
(0.0133)

Total bathrooms 0.0059
(0.0320)

0.0258
(0.0192)

0.0372**
(0.0153)

0.0572***
(0.0134)

0.034***
(0.0123)

0.028**
(0.0142)

0.0279*
(0.0145)

0.0152
(0.0149)

0.0152
(0.0178)

AC 0.2074***
(0.0540)

0.2328***
(0.0335)

0.2202***
(0.0309)

0.2217***
(0.0250)

0.2169***
(0.0244)

0.2099***
(0.0259)

0.1711***
(0.0233)

0.1615***
(0.0271)

0.0909**
(0.0371)
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Table A1. (Continued.)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fire place 0.1527***
(0.0362)

0.1059***
(0.0220)

0.113***
(0.0191)

0.1052***
(0.0138)

0.0905***
(0.0158)

0.0867***
(0.0150)

0.0799***
(0.0163)

0.0667***
(0.0176)

0.0553***
(0.0153)

Basement garage 0.0573**
(0.0263)

0.0169
(0.0203)

0.0298*
(0.0168)

0.0159
(0.0140)

0.0113
(0.0144)

0.0142
(0.0144)

0.0085
(0.0185)

0.0032
(0.0172)

−0.0058
(0.0179)

Lot size −0.0009
(0.0075)

0.0088
(0.0065)

0.0112**
(0.0044)

0.0105**
(0.0050)

0.0117*
(0.0065)

0.0108
(0.0073)

0.0244**
(0.0102)

0.0212**
(0.0100)

0.0381***
(0.0070)

Sidewalk −0.0753
(0.0730)

−0.0562
(0.0529)

−0.0216
(0.0462)

−0.035
(0.0325)

−0.0415
(0.0291)

−0.0376
(0.0298)

−0.0559*
(0.0315)

−0.0885***
(0.0298)

−0.0933**
(0.0410)

Fence 0.1351***
(0.0308)

0.1127***
(0.0249)

0.0967***
(0.0160)

0.0944***
(0.0155)

0.0903***
(0.0130)

0.0912***
(0.0163)

0.0764***
(0.0161)

0.0659***
(0.0156)

0.0434***
(0.0161)

Crime −0.0004
(0.0010)

−0.0004
(0.0005)

−0.0007
(0.0005)

−0.0005
(0.0005)

−0.0002
(0.0004)

−0.0005
(0.0004)

−0.0008
(0.0005)

−0.0005
(0.0004)

−0.0006
(0.0005)

School quality 0.0014
(0.0014)

0.0001
(0.0011)

−0.0006
(0.0008)

−0.0014**
(0.0007)

−0.001
(0.0007)

−0.001
(0.0008)

−0.0009
(0.0010)

−0.0005
(0.0007)

−0.0007
(0.0007)

Distance to highway exit −0.0046
(0.0116)

−0.007
(0.0085)

−0.0156**
(0.0072)

−0.0204***
(0.0061)

−0.0139**
(0.0058)

−0.0103*
(0.0062)

−0.0154**
(0.0064)

−0.0128**
(0.0064)

−0.014**
(0.0067)

Distance to FSU −0.0093
(0.0106)

−0.0115
(0.0078)

−0.0072
(0.0060)

0.0005
(0.0054)

−0.0016
(0.0052)

−0.0044
(0.0052)

−0.0024
(0.0056)

0.0015
(0.0061)

0.0055
(0.0067)

ρ 0.2085***
(0.0439)

0.2248***
(0.0341)

0.1709***
(0.0302)

0.1705***
(0.0245)

0.1862***
(0.0248)

0.1841***
(0.0266)

0.1633***
(0.0288)

0.1628***
(0.0267)

0.1694***
(0.0264)

Constant 6.7475***
(0.5188)

6.7145***
(0.4221)

7.569***
(0.3615)

7.7436***
(0.2913)

7.6613***
(0.2727)

7.8642***
(0.3232)

8.3129***
(0.3527)

8.2941***
(0.3355)

8.2796***
(0.3264)

Notes: Bootstrapped standard errors in parentheses. The statistical software used for the estimation of spatial quantile regression, and the qregspiv command of the McSpatial package in the
software R. This command does not return goodness-of-fit measures for the regression results. Year-fixed effects are included in this model.
***p<0.01, **p<0.05, *p<0.1.
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Table A2. Spatial quantile regression results for model (2)—BWN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BWN −0.5392***
(0.0653)

−0.2971***
(0.0483)

−0.175***
(0.0265)

−0.1017***
(0.0209)

−0.0676***
(0.0171)

−0.0509***
(0.0185)

−0.0449**
−(0.0449)

−0.0074
(0.0205)

0.0077
(0.0172)

SQFT 0.0003***
(0.0000)

0.0002***
(0.0000)

0.0002***
(0.0000)

0.0002***
(0.0000)

0.0002***
(0.0000)

0.0003***
(0.0000)

0.0002***
(0.0002)

0.0002***
(0.0000)

0.0002***
(0.0000)

Story height −0.0357
(0.0372)

−0.0317
(0.0285)

−0.0466**
(0.0205)

−0.0374*
(0.0197)

−0.0238
(0.0217)

−0.0326*
(0.0194)

−0.0065
−(0.0065)

0.0089
(0.0211)

−0.0044
(0.0208)

Construction
material

−0.078***
(0.0262)

−0.0762***
(0.0235)

−0.0519**
(0.0202)

−0.0567***
(0.0159)

−0.0407***
(0.0152)

−0.0311**
(0.0146)

−0.0275*
−(0.0275)

−0.0197
(0.0170)

−0.0308**
(0.0151)

Physical
condition

0.2086***
(0.0238)

0.2265***
(0.0227)

0.2058***
(0.0173)

0.2014***
(0.0173)

0.1733***
(0.0176)

0.1622***
(0.0153)

0.1478***
(0.1478)

0.1407***
(0.0166)

0.1474***
(0.0181)

Quality grade
factor

0.5079***
(0.0963)

0.4762***
(0.0734)

0.4752***
(0.0509)

0.4117***
(0.0578)

0.4025***
(0.0609)

0.3566***
(0.0585)

0.3477***
(0.3477)

0.4225***
(0.0632)

0.4505***
(0.0692)

Age −0.0021***
(0.0006)

−0.0025***
(0.0005)

−0.0024***
(0.0004)

−0.0025***
(0.0005)

−0.0026***
(0.0004)

−0.0026***
(0.0003)

−0.0023***
−(0.0023)

−0.0023***
(0.0004)

−0.0017***
(0.0003)

Bedrooms 0.0165
(0.0161)

0.024
(0.0192)

0.0406**
(0.0166)

0.0463***
(0.0165)

0.0447***
(0.0154)

0.0481***
(0.0130)

0.0366**
(0.0366)

0.0433***
(0.0128)

0.047***
(0.0141)

Total bathrooms −0.0178
(0.0211)

0.021
(0.0223)

0.0406***
(0.0148)

0.0454***
(0.0168)

0.0335***
(0.0118)

0.0273*
(0.0141)

0.037***
(0.0370)

0.0148
(0.0172)

0.0143
(0.0153)

AC 0.1847***
(0.0347)

0.2161***
(0.0372)

0.2305***
(0.0272)

0.2244***
(0.0271)

0.2281***
(0.0268)

0.2081***
(0.0295)

0.1684***
(0.1684)

0.1468***
(0.0287)

0.0936***
(0.0334)

Fire place 0.1368***
(0.0260)

0.1306***
(0.0234)

0.1319***
(0.0204)

0.1094***
(0.0159)

0.0972***
(0.0149)

0.0896***
(0.0159)

0.0836***
(0.0836)

0.077***
(0.0165)

0.0604***
(0.0171)

Basement garage 0.0209
(0.0253)

0.0326
(0.0214)

0.0232
(0.0184)

0.017
(0.0179)

0.0153
(0.0151)

0.0081
(0.0153)

−0.0006
−(0.0006)

0.0019
(0.0165)

−0.0104
(0.0181)
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Table A2. (Continued.)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Lot size 0.0022
(0.0049)

0.0088
(0.0066)

0.0122**
(0.0050)

0.0111**
(0.0047)

0.01*
(0.0057)

0.0112
(0.0078)

0.022***
(0.0220)

0.0218**
(0.0099)

0.0372***
(0.0074)

Sidewalk −0.0141
(0.0515)

−0.0541
(0.0345)

−0.0527
(0.0443)

−0.0385
(0.0334)

−0.0523
(0.0400)

−0.0374
(0.0312)

−0.0647**
−(0.0647)

−0.0876**
(0.0357)

−0.0889**
(0.0445)

Fence 0.0783***
(0.0277)

0.104***
(0.0226)

0.1003***
(0.0176)

0.0936***
(0.0182)

0.0993***
(0.0156)

0.0938***
(0.0170)

0.0729***
(0.0729)

0.066***
(0.0144)

0.0514***
(0.0155)

Crime −0.0001
(0.0008)

−0.0009
(0.0007)

−0.0007
(0.0005)

−0.0004
(0.0004)

−0.0001
(0.0005)

−0.0004
(0.0004)

−0.0007*
−(0.0007)

−0.0006
(0.0005)

−0.0007
(0.0005)

School quality 0.0018
(0.0012)

0.00002
(0.0011)

−0.0008
(0.0009)

−0.0012
(0.0008)

−0.0005
(0.0007)

−0.0009
(0.0007)

−0.0008
−(0.0008)

−0.0005
(0.0007)

−0.0005
(0.0007)

Distance to
highway exit

−0.0158
(0.0104)

−0.0151*
(0.0089)

−0.02***
(0.0067)

−0.022***
(0.0065)

−0.0123*
(0.0071)

−0.0124**
(0.0058)

−0.0146***
−(0.0146)

−0.0163***
(0.0061)

−0.0141*
(0.0076)

Distance to FSU −0.0024
(0.0094)

−0.0072
(0.0079)

−0.0032
(0.0064)

0.0014
(0.0061)

−0.0033
(0.0061)

−0.0006
(0.0048)

−0.0017
−(0.0017)

0.0012
(0.0056)

0.0043
(0.0065)

ρ 0.2047***
(0.0326)

0.1631***
(0.0298)

0.1507***
(0.0284)

0.1497***
(0.0236)

0.1619***
(0.0281)

0.1693***
(0.0274)

0.158***
(0.1580)

0.1442***
(0.0255)

0.1539***
(0.0263)

Constant 7.0339***
(0.3612)

7.5819***
(0.3441)

7.8347***
(0.3136)

7.9704***
(0.2879)

7.9343***
(0.3276)

8.0273***
(0.3113)

8.3479***
(8.3479)

8.5324***
(0.3105)

8.4602***
(0.3152)

Notes: Bootstrapped standard errors in parentheses. The statistical software used for the estimation of spatial quantile regression, and the qregspiv command of the McSpatial package in the
software R. This command does not return goodness-of-fit measures for the regression results. Year-fixed effects are included in this model.
***p<0.01, **p<0.05, *p<0.1.
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Figure A1. Distance Histogram Between Neighbors in the Weight Matrix.
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