THE SECOND DUAL OF $C_{0}(S, A)$
 STEPHEN T. L. CHOY and JAMES C. S. WONG ${ }^{\dagger}$

(Received 15 May 1991; revised 10 December 1991)

Communicated by P. G. Dodds

Abstract

The second dual of the vector-valued function space $C_{0}(S, A)$ is characterized in terms of generalized functions in the case where A^{*} and $A^{* *}$ have the Radon-Nikodým property. As an application we present a simple proof that $C_{0}(S, A)$ is Arens regular if and only if A is Arens regular in this case. A representation theorem of the measure μh is given, where $\mu \in C_{0}^{*}(S, A)$, $h \in L_{\infty}\left(|\mu|, A^{* *}\right)$ and μh is defined by the Arens product.

1991 Mathematics subject classification (Amer. Math. Soc.): 46 G 10, 46 J 10.

1. Introduction

Let A be a Banach space and let S be a locally compact Hausdorff topological space, $\mathscr{B}(S)$ be the σ-algebra of all the Borel sets of S. The space of continuous functions from S to A vanishing at infinity, endowed with the uniform norm, is denoted by $C_{0}(S, A)$. The second dual of $C_{0}(S, A)$ is considered in the case where S is compact and the dual A^{*} has the Radon-Nikodým property in [3], and for the case where S is locally compact and A is a Banach algebra with a positive cone satisfying certain conditions in [5]. When $A=\mathbb{C}$, the complex numbers, the second dual of $C_{0}(S, A)$ is characterized by means of generalized functions in [12].

In Section 2, a characterization of $C_{0}^{* *}(S, A)$ by means of generalized functions is given, in the case where A^{*} and $A^{* *}$ have the Radon-Nikodým property.

[^0]Recall that both A^{*} and $A^{* *}$ have the Radon-Nikodým property if any one of the following conditions is satisfied:
(i) A is reflexive,
(ii) $A^{* *}$ is separable,
(iii) $A^{* *} / A$ is separable (see [6, p. 219], for example).

Let A be a Banach algebra and F, G be in $C_{0}^{* *}(S, A)$. Denote by $F G$ and $F . G$ the left and right Arens products of F and G in $C_{0}^{* *}(S, A)$ respectively. A Banach algebra is called Arens regular if the two Arens products coincide. It has been shown recently in [11] that if S is compact and A is Arens regular, then $C(S, A)$ is Arens regular. Since the technique used in [11] is quite complicated and $C_{0}(S, A)$ is a very important Banach algebra, as an application of the results in Section 2, we present a simpler proof of the Arens regularity of $C_{0}(S, A)$ in Section 3, assuming of course A^{*} and $A^{* *}$ both have the Radon-Nikodým property.

Let $T: C_{0}(S, A) \rightarrow \mathbb{C}$ be a bounded linear operator. The representing measure $m: \mathscr{B}(S) \rightarrow A^{*}$ is a weakly compact measure and it is shown in [8, p. 54] that the total variation $|m|$ and the semivariation \tilde{m} of m are the same in this case. Let $M W\left(S, A^{*}\right)$ and $D\left(S, A^{*}\right)$ be the collection of all weakly compact measures and dominated measures respectively. Then

$$
C_{0}^{*}(S, A)=M W\left(S, A^{*}\right)=D\left(S, A^{*}\right)
$$

(see [2] and [5], for example). Since $|m|(S)=\tilde{m}(S)=\|T\|$ is finite, we see that $|m| \in M(S)$, the space of all bounded regular Borel measures on $S[2$, Theorem 2.8].

If $\mu \in M W\left(S, A^{*}\right)$ and $h \in L_{\infty}\left(|\mu|, A^{* *}\right)$, then h can be viewed as an element in $C_{0}^{* *}(S, A)$ (see Lemma 3) and μh defined by the right Arens product is an element in $C_{0}^{*}(S, A)$. A representation theorem for μh, when considered as a measure, is given in Section 4.

Throughout this paper we assume that A^{*} and $A^{* *}$ have the Radon-Nikodym property and we follow the standard notation of Arens product used in Duncan and Hosseinium [9]. The bilinear integration theory used in this paper is developed in Dinculeanu [8].

2. The dual of $M W\left(S, A^{*}\right)$

Let $L_{1}\left(|m|, A^{*}\right)$ be the space of all the equivalence classes of A^{*}-valued Bochner integrable functions defined on S. Then the dual

$$
L_{1}\left(|m|, A^{*}\right)^{*}=L_{\infty}\left(|m|, A^{* *}\right)
$$

if and only if $A^{* *}$ has the Radon-Nikodým property (see, for example, Diestel and Uhl [6], where $L_{\infty}\left(|m|, A^{* *}\right)$ stands for the space of equivalence classes of $A^{* *}$-valued Bochner integrable functions defined on S that are $|m|$-essentially bounded, that is, such that

$$
\begin{aligned}
\|f\|_{m, \infty} & =\inf \{\sup \{\|f(x)\|: x \notin N\}:|m|(N)=0\} \\
& =\inf \{c>0:|m|(\{x \in S:\|f(x)\|>c\})=0\}<\infty
\end{aligned}
$$

Consider the product linear space $\prod\left\{L_{\infty}\left(|m|, A^{* *}\right): m \in M W\left(S, A^{*}\right)\right\}$. An element $f=\left(f_{m}\right)_{m \in M W\left(S, A^{*}\right)}$ in this product is called a generalized function on S provided
(i) $\quad\|f\|=\sup \left\|f_{m}\right\|_{m, \infty}: m \in M W\left(S, A^{*}\right)<\infty$,
(ii) if $\mu, v \in M W\left(S, A^{*}\right)$ are such that $|\mu| \ll|\nu|$, then $f_{\mu}=f_{v}|\mu|$-a.e.

Here $|\mu| \ll|\nu|$ means $|\mu|$ is absolutely continuous with respect to $|\nu|$. It is easy to see that condition (ii) above is meaningful for the equivalence classes of functions.

Let $G L\left(S, A^{* *}\right)$ denote the linear subspace of $A^{* *}$-valued generalized functions on S. It is easy to verify that $G L\left(S, A^{* *}\right)$ is a Banach space with norm $\|f\|=\sup \left\{\left\|f_{\mu}\right\|_{\mu, \infty}: \mu \in M W\left(S, A^{*}\right)\right\}$.

DEFINITION. Let $\mu, v: \mathscr{B}(S) \rightarrow A^{*}$ be in $M W\left(S, A^{*}\right)$. If $\lim _{|\mu|(E) \rightarrow 0} v(E)=$ 0 , then ν is called $|\mu|$-continuous and is denoted by $\nu \ll|\mu|$.

THEOREM 1. for each bounded linear functional $F \in M W\left(S, A^{*}\right)^{*}$, there is a unique generalized function $f \in G L\left(S, A^{*}\right)$ such that

$$
F(\mu)=\int f_{\mu} d \mu \quad\left(\mu \in M W\left(S, A^{*}\right)\right)
$$

and $\|F\|=\|f\|$.
Proof. For $\mu \in M W\left(S, A^{*}\right), F$ induces a bounded linear functional F_{μ} on

$$
L_{1}\left(|\mu|, A^{*}\right)=\left\{\nu \in M W\left(S, A^{*}\right): v \ll|\mu|\right\}
$$

since A^{*} has the Radon-Nikodým property. Let $v \leftrightarrow f^{\nu}$ be the corresponding mapping. Now, since $A^{* *}$ has the Radon-Nikodým property, we see that $L_{1}\left(|\mu|, A^{*}\right)^{*}=L_{\infty}\left(|\mu|, A^{* *}\right)$ and that there is $f_{\mu} \in L_{\infty}\left(|\mu|, A^{* *}\right)$ such that

$$
F_{\mu}(v)=F(v)=\int\left\langle f^{v}, f_{\mu}\right\rangle d|\mu|
$$

for any $v \in L_{1}\left(|\mu|, A^{*}\right)[6$, pages $98-99]$. Since

$$
v(E)=\int_{E} f^{v} d|\mu|
$$

and the countably valued functions in $L_{\infty}\left(|\mu|, A^{* *}\right)$ are dense in $L_{\infty}\left(|\mu|, A^{* *}\right)$ (see [6, p. 97], for example), we see that

$$
\int\left\langle f^{\nu}, f_{\mu}\right\rangle d|\mu|=\int f_{\mu} d \nu
$$

In particular $F(\mu)=\int f_{\mu} d \mu$.
We shall show that $f=\left(f_{\mu}\right)_{\mu \in M W\left(S, A^{*}\right)}$ is a generalized function. Let $\mu, v \in$ $M W\left(S, A^{*}\right)$ such that $|\mu| \ll|\nu|$. For $\gamma \in L_{1}\left(|\mu|, A^{*}\right)$, we have $\gamma \ll|\mu|$, $\gamma \ll|v|$. Hence

$$
\int f_{\mu} d \gamma=F_{\mu}(\gamma)=F(\gamma)=F_{\nu}(\gamma)=\int f_{\nu} d \gamma
$$

Thus $f_{\mu}=f_{v}|\mu|$-a.e. Also, for $\mu \in M W\left(S, A^{*}\right)$,

$$
\left\|f_{\mu}\right\|_{\mu, \infty}=\left\|F_{\mu}\right\|=\sup \left\{\left|F_{\mu}(\nu)\right|: v \in L_{1}\left(|\mu|, A^{*}\right),\|\nu\| \leq 1\right\} \leq\|F\| .
$$

On the other hand,

$$
\begin{aligned}
\|F\| & =\sup \left\{|F(\nu)|: v \in L_{1}\left(|\mu|, A^{*}\right),\|v\| \leq 1\right\} \\
& =\sup \left\{\left|\int f_{v} d \nu\right|: v \in L_{1}\left(|\mu|, A^{*}\right),\|v\| \leq 1\right\} \\
& \leq \sup \left\{\left\|f_{v}\right\|_{\nu, \infty} \cdot\|v\|\right\} \leq\|f\| .
\end{aligned}
$$

Hence $f \in G L\left(S, A^{* *}\right)$ and $\|F\|=\|f\|$.

Let i be the identity of A. It is shown in [4, Lemma 2.4] that $\left(1_{S} \otimes i\right)$ is the identity of $C_{0}^{* *}(S, A)$. Let $I=\left(I_{\mu}\right)_{\mu \in M W\left(S, A^{*}\right)}$ be defined by $I_{\mu}=i$ for all $\mu \in M W\left(S, A^{*}\right)$. Then I is the identity in $G L\left(S, A^{* *}\right)$.

THEOREM 2. Let $T: G L\left(S, A^{* *}\right) \rightarrow M W\left(S, A^{*}\right)^{*}$ be defined by

$$
T f(\mu)=\int f_{\mu} d \mu \quad\left(\mu \in M W\left(S, A^{*}\right), f \in G L\left(S, A^{* *}\right)\right)
$$

Then T is an isometric isomorphism of $G L\left(S, A^{* *}\right)$ onto $M W\left(S, A^{*}\right)^{*}$ and $T I=\left(1_{S} \otimes i\right)$.

Proof. Let $f \in G L\left(S, A^{* *}\right)$. For $\mu, \nu \in M W\left(S, A^{*}\right)$, we see $|\mu|,|\nu| \in$ $M(S)$. Let x^{*} be any element in A^{*} with $\left\|x^{*}\right\|=1$. Set $\tau=(|\mu|+|\nu|) x^{*}$. Then $\tau \in M W\left(S, A^{*}\right)$. Clearly $|\mu+\nu| \ll|\tau|,|\mu| \ll|\tau|,|\nu| \ll|\tau|$. Hence

$$
\begin{aligned}
T f(\mu+v) & =\int f_{\mu+\nu} d(\mu+v)=\int f_{\tau} d(\mu+v) \\
& =\int f_{\tau} d \mu+\int f_{\tau} d v \\
& =\int f_{\mu} d \mu+\int f_{\nu} d v \\
& =T f(\mu)+T f(v)
\end{aligned}
$$

and, for $\alpha \in \mathbb{C}$,

$$
\begin{aligned}
T f(\alpha \mu) & =\int f_{\alpha \mu} d(\alpha \mu)=\alpha \int f_{\alpha \mu} d \mu \\
& =\alpha \int f_{\mu} d \mu=\alpha T f(\mu)
\end{aligned}
$$

since $|\mu| \ll|\alpha \mu|$. Thus $T f$ is linear. Now

$$
\begin{aligned}
\|T f\| & =\sup \left\{|T f(\mu)|: \mu \in M W\left(S, A^{*}\right),\|\mu\| \leq 1\right\} \\
& \leq \sup \left\{\left\|f_{\mu}\right\|_{\mu, \infty} \cdot\|\mu\|:\|\mu\| \leq 1\right\} \leq\|f\|
\end{aligned}
$$

Thus $T f$ is a bounded linear functional on $M W\left(S, A^{*}\right)$. Since T is onto, Theorem 1 shows that it is an isometric isomorphism.

Furthermore, for $\mu \in M W\left(S, A^{*}\right)$,

$$
\begin{aligned}
(T I)(\mu) & =\int I_{\mu} d \mu=i(\mu(S))=\mu(S) i \\
& =\mu^{* *}\left(1_{S} \otimes i\right)=\left(1_{S} \otimes i\right)(\mu)
\end{aligned}
$$

(the above first equality is implicitly implied in the proof of [2, Theorem 2.2]). Thus $T I=1_{S} \otimes i$.

3. Arens regularity of $C_{0}(S, A)$

Although $L_{\infty}\left(|\mu|, A^{* *}\right)$ consists of equivalence classes of functions, the next lemma shows that we can view each element in $L_{\infty}\left(|\mu|, A^{* *}\right)$ as an element in $C_{0}^{* *}(S, A)$.

Lemma 3. Every element f in $L_{\infty}\left(|\mu|, A^{* *}\right)$ can be considered as an element f in $C_{0}^{* *}(S, A)$. If $F, G \in C_{0}^{* *}(S, A)$, then $\mu^{* *}(F)=\mu^{* *}(G)$ if and only if F and G agree on $L_{1}\left(|\mu|, A^{*}\right)$, where $\mu^{* *}$ is the second adjoint of μ, as a linear functional on $C_{0}^{* *}(S, A)$.

Proof. Since A^{*} and $A^{* *}$ have the Radon-Nikodým property,

$$
\begin{aligned}
L_{\infty}\left(|\mu|, A^{* *}\right) & =L_{1}\left(|\mu|, A^{*}\right)^{*} \\
L_{1}\left(|\mu|, A^{*}\right) & =\left\{\nu \in M W\left(S, A^{*}\right): v \ll|\mu|\right\} \\
& \subseteq M W(S, A)=C_{0}^{*}(S, A)
\end{aligned}
$$

Thus by the Hahn-Banach theorem, each $f \in L_{\infty}\left(|\mu|, A^{* *}\right)$ can be extended to an element in $C_{0}^{* *}(S, A)$. For simplicity we again use f to denote the extension. Note that the extension is not unique and that all these extensions agree on $L_{1}\left(|\mu|, A^{*}\right)$.

Suppose now that $F, G \in C_{0}^{* *}(S, A)$ agree on $L_{1}\left(|\mu|, A^{*}\right)$. Then, for any complex number α,

$$
\mu^{* *}(F)(\alpha)=F\left(\mu^{*}(\alpha)\right), \quad \mu^{* *}(G)(\alpha)=G\left(\mu^{*}(\alpha)\right)
$$

Now for every $h \in C_{0}(S, A), \mu^{*}(\alpha)(h)=\alpha \mu(h)$. We conclude that $\mu^{*}(\alpha) \ll$ $|\mu|$, and so

$$
\mu^{* *}(F)(\alpha)=F\left(\mu^{*}(\alpha)\right)=G\left(\mu^{*}(\alpha)\right)=\mu^{* *}(G)(\alpha) .
$$

Thus $\mu^{* *}(F)=\mu^{* *}(G)$.
On the other hand, suppose now that $\mu^{* *}(F)=\mu^{* *}(G)$. Let $f, g \in$ $G L\left(S, A^{* *}\right)$ such that $T f=F, T g=G$. Then,

$$
T f(\mu)=\int f_{\mu} d \mu, \quad T g(\mu)=\int g_{\mu} d \mu
$$

Let $v \in L_{1}\left(|\mu|, A^{*}\right)$. Then $\nu \ll|\mu|$ and so

$$
\begin{aligned}
F(\nu) & =T f(\nu)=\int f_{\nu} d \nu \\
& =\int f_{\mu} d v \quad(|\nu| \ll|\mu|) \\
G(\nu) & =T g(\nu)=\int g_{\nu} d v \\
& =\int g_{\mu} d \nu \quad(|v| \ll|\mu|)
\end{aligned}
$$

Since $\mu^{* *}(F)=\mu^{* *}(G)$, we see that $f_{\mu}=g_{\mu}|\mu|$-a.e. Now $\nu \in L_{1}\left(|\mu|, A^{*}\right)$ implies that $f_{\mu}=g_{\mu}|\nu|-$ a.e. Thus

$$
F(v)=\int f_{\mu} d v=\int g_{\mu} d v=G(v)
$$

completing the proof.

REMARKS 4.

(1) If f and g belong to the same equivalence class in $L_{\infty}\left(|\mu|, A^{* *}\right)$, they must agree on $L_{1}\left(|\mu|, A^{*}\right)$.
(2) For $\mu \in M W\left(S, A^{*}\right), f \in G L\left(S, A^{* *}\right)$, Theorems 1 and 2 imply, in view of Lemma 3, that

$$
\begin{aligned}
\mu^{* *}\left(f_{\mu}\right) & =f_{\mu}(\mu) \\
& =\int f_{\mu} d \mu \quad\left(L_{\infty}\left(|\mu|, A^{* *}\right)=L_{1}\left(|\mu|, A^{*}\right)^{*}\right) \\
& =T f(\mu)
\end{aligned}
$$

Conversely, if $h \in C_{0}^{* *}(S, A)$ and $f \in G L\left(S, A^{* *}\right)$ are such that $T f=h$, then

$$
\mu^{* *}(h)=h(\mu)=T f(\mu)=\int f_{\mu} d \mu=\mu^{* *}\left(f_{\mu}\right)
$$

From Lemma 3, we see that $f_{\mu}=h$ on $L_{1}\left(|\mu|, A^{*}\right)$ for each $\mu \in M W\left(S, A^{*}\right)$.
DEFINITION. For $F, G \in C_{0}^{* *}(S, A)$, there are $f, g \in G L\left(S, A^{* *}\right)$ such that $T f=F, T g=G$ by Theorem 2. For $\mu \in M W\left(S, A^{*}\right)$, define $F \times \mu \in$ $C_{0}^{* * *}(S, A)$ by

$$
(F \times \mu)(h)=\mu^{* *}\left(h f_{\mu}\right), \quad\left(h \in C_{0}^{* *}(S, A)\right)
$$

Then $F \times \mu \in C_{0}^{*}(S, A)$ in particular. Note that the above definition is independent of the extension of f_{μ} to $C_{0}^{* *}(S, A)$. In fact, if $F=F^{\prime}$ and $G=G^{\prime}$ on $L_{1}\left(|\mu|, A^{*}\right)$, then $F G=F^{\prime} G$ and $F G=F g^{\prime}$ also on $L_{1}\left(|\mu|, A^{*}\right)$ because $G \mu$ is in $L_{1}\left(|\mu|, A^{*}\right)$ and $G \mu=G^{\prime} \mu$ (since $\mu f \in L_{1}\left(|\mu|, A^{*}\right)$ for $f \in C_{0}(S, A)$). Let $F \times G$ be the element in $M W\left(S, A^{*}\right)$ defined by

$$
(F \times G)(\mu)=F(G \times \mu), \quad\left(\mu \in M W\left(S, A^{*}\right)\right)
$$

Theorem 5. Let $F, G \in C_{0}^{* *}(S, A)$. Then $F \times G=F G$, where $F G$ is the left Arens product in $C_{0}^{* *}(S, A)$.

Proof. For $\mu \in M W\left(S, A^{*}\right),(F \times G)(\mu)=F(G \times \mu)$ and $(F G)(\mu)=$ $F(G \mu)$. For any $h \in C_{0}(S, A)$,

$$
(G \times \mu)(h)=\mu^{* *}\left(h g_{\mu}\right)=\left(h g_{\mu}\right)(\mu)=h\left(g_{\mu} \mu\right)=\left(g_{\mu} \mu\right)(h),
$$

and

$$
\begin{align*}
(G \mu)(h) & =G(\mu h)=T g(\mu h)=\int g_{\mu h} d(\mu h) \\
& =\int g_{\mu} d(\mu h) \quad(|\mu h| \ll|\mu|) \\
& =(\mu h)^{* *}\left(g_{\mu}\right)=g_{\mu}(\mu h)=\left(g_{\mu} \mu\right)(h) \tag{2}
\end{align*}
$$

Thus $F \times G=F G$.
Similarly, for $\mu \in M W\left(S, A^{*}\right)$ define $\mu \otimes F \in C_{0}^{* * *}(S, A)$ by

$$
(h)(\mu \otimes F)=\mu^{* *}\left(f_{\mu} h\right), \quad\left(h \in C_{0}^{* *}(S, A)\right)
$$

Then $\mu \otimes F \in C_{0}^{*}(S, A)$ in particular. Define $F \otimes G \in C_{0}^{* *}(S, A)$ by $(\mu)(F \otimes G)=G(\mu \otimes F)$. Then $F \otimes G=F \cdot G$, the right Arens product in $C_{0}^{* *}(S, A)$.

THEOREM 6. $C_{0}(S, A)$ is Arens regular if and only if A is Arens regular.
Proof. We shall show that $F \times G=F \otimes G$ for $F, G \in M W\left(S, A^{*}\right)^{*}$. Let $f, g \in G L\left(S, A^{* *}\right)$ be such that $T f=F, T g=G$. For $\mu \in M W\left(S, A^{*}\right)$,

$$
\begin{aligned}
(T f \times T g)(\mu) & =T f(T g \times \mu)=\int f_{T g \times \mu} d(T g \times \mu) \\
& =\int f_{\mu} d(T g \times \mu) \quad(|T g \times \mu| \ll \| \mu \mid) \\
& =(T g \times \mu)^{* *}\left(f_{\mu}\right) \quad(\text { Remark } 4(2)) \\
& =(T g \times \mu)\left(f_{\mu}\right)=\mu^{* *}\left(f_{\mu} g_{\mu}\right)
\end{aligned}
$$

On the other hand, $T(f g)(\mu)=\mu^{* *}\left(f_{\mu} g_{\mu}\right)$, by Remark 4(2). Thus $T f \times T g=$ $T(f g)$.

Now we shall show that $T f \otimes T g=T(f \cdot g)$,

$$
\begin{aligned}
(\mu)(T f \otimes T g) & =T g(\mu \otimes T f)=\int g_{\mu \otimes T f} d(\mu \otimes T f) \\
& =\int g_{\mu} d(\mu \otimes T f) \quad(|\mu \otimes T f| \ll|\mu|) \\
& =\left(g_{\mu}\right)(\mu \otimes T f)=\mu^{* *}\left(f_{\mu} g_{\mu}\right)
\end{aligned}
$$

On the other hand, $T(f \cdot g)(\mu)=\mu^{* *}\left(f_{\mu} \cdot g_{\mu}\right)$ by Remark 4(2). Thus $T f \otimes T g=$ $T(f \cdot g)$.

Since A is Arens regular and $f \cdot g$ take values in $A^{* *},(f \cdot g)(x)=(f g)(x)$. We conclude that $C_{0}(S, A)$ is Arens regular if A is. The rest of the proof of the theorem is clear.

4. Representation theorems

It is easy to verify that if $F_{1}, F_{2} \in C_{0}^{* *}(S, A)$ agree on $L_{1}\left(|\mu|, A^{*}\right) \subset$ $C_{0}^{*}(S, A)$, then the left and right Arens products satisfy $F_{1} \mu=F_{2} \mu, \mu F_{1}=\mu F_{2}$ respectively. Thus if $h \in L_{\infty}\left(|\mu|, A^{* *}\right)$ and we consider it as an element in $C_{0}^{* *}(S, A)$ by Lemma 3, then the left and right Arens products, $h \mu$ and μh, are well-defined.

Similarly, if $G_{1}, G_{2} \in C_{0}^{* *}(S, A)$ agree on $L_{1}\left(|\mu|, A^{*}\right)$ then $G_{1} F_{1}(\mu)=$ $G_{2} F_{2}(\mu)$ and $(\mu) G_{1} \cdot F_{1}=(\mu) G_{2} \cdot F_{2}$, respectively. Thus if $f, g \in L_{\infty}\left(|\mu|, A^{* *}\right)$, the values of the Arens products $(\mu) f \cdot g$ and $f g(\mu)$ are uniquely determined.

Definition. For $\mu \in M W\left(S, A^{*}\right), h \in L_{\infty}\left(|\mu|, A^{* *}\right)$, define $\mu_{h} \in M W\left(S, A^{*}\right)$ by

$$
\int g d \mu_{h}=\int h g d \mu \quad\left(g \in C_{0}(S, A)\right)
$$

by the Riesz Representation Theorem.
Theorem 7. Let $h \in L_{\infty}\left(|\mu|, A^{* *}\right)$. Then $\mu_{h}=\mu h$.
Proof. Let $g \in C_{0}(S, A)$ and let π be the canonical embedding of $C_{0}(S, A)$ into $C_{0}^{* *}(S, A)$. Then

$$
(g) \mu h=(g \mu) h=h(\pi(g) \mu)=h \pi(g)(\mu)=\mu^{* *}(h \pi(g)),
$$

since $g \mu=\pi(g) \mu$.
On the other hand, we see from Remark 4(2) that $\mu_{h}(g)=\int h g d \mu=$ $\mu^{* *}(h g)$. Thus $\mu_{h}=\mu h$.

Theorem 8. For $g, h \in L_{\infty}\left(|\mu|, A^{* *}\right), \int g d(\mu h)=\int h \cdot g d \mu$, where $h \cdot g(s)$ is defined by the right Arens product in $A^{* *}$, that is,$h \cdot g(s)=h(s) \cdot g(s)$ for $s \in S$.

Proof. We see that from Remark 4(2) that

$$
\begin{aligned}
\int g d(\mu h) & =(\mu h)^{* *}(g) \\
& =(\mu h) g=(\mu) h \cdot g \\
& =\mu^{* *}(h \cdot g)=\int h \cdot g d \mu
\end{aligned}
$$

Similarly, let ${ }_{h} \mu \in M W\left(S, A^{*}\right)$ be defined by

$$
\int g d\left(_{h} \mu\right)=\int g h d \mu \quad\left(g \in C_{0}(S, A)\right)
$$

Then we have
THEOREM 9. Let $\mu \in M W\left(S, A^{*}\right)$ and let $g, h \in L_{\infty}\left(|\mu|, A^{* *}\right)$. Then ${ }_{h} \mu=$ $h \mu$ and

$$
\int g d(h \mu)=\int g h d \mu
$$

where $g h(s)$ is defined by the left Arens product in $A^{* *}$.
REMARKS 10.
(1) Since the $A^{* *}$-valued simple functions are in $L_{\infty}\left(|\mu|, A^{* *}\right)$ it is not difficult to verify that Theorems 8 and 9 hold for $g \in L_{\infty}\left(|\mu|, A^{* *}\right), h \in$ $L_{1}\left(|\mu|, A^{* *}\right)$ or vice versa.
(2) If $h \in C_{0}^{* *}(S, A)$ and $f \in G L\left(S, A^{* *}\right)$ are such that $h=T f$, then $h=f_{\mu}$ on $L_{1}\left(|\mu|, A^{*}\right)$ by Remark $4(2)$. Thus $\mu h=\mu f_{\mu}$ and $h \mu=f_{\mu} \mu$ respectively. Hence Theorems 8 and 9 are valid for $h \in C_{0}^{* *}(S, A)$, that is,

$$
\int g d(\mu h)=\int f_{\mu} \cdot g d \mu, \quad \int g d(h \mu)=\int g f_{\mu} d \mu
$$

(3) Theorems 8 and 9 are not valid for general $g, h \in L_{1}\left(|\mu|, A^{* *}\right)$, since $h g$ need not be in $L_{1}\left(|\mu|, A^{* *}\right)$ even for $A=\mathbb{C}$.

References

[1] J. Batt and E. J. Berg, 'Linear bounded transformations on the space of continuous functions', J. Funct. Anal. 4 (1969), 215-239.
[2] J. K. Brooks and P. W. Lewis, 'Linear operators and vector measures', Trans. Amer. Math. Soc. 192 (1974), 139-162.
[3] M. Cambern and P. Grein, 'The bidual of $C(X, E)$ ', Proc. Amer. Math. Soc. 85 (1982), 53-58.
[4] S. T. L. Choy, 'Extreme operators on function spaces', Illinois J. Math. 33 (1989), 301-309.
[5] ——, 'Positive operators and algebras of dominated measures', Rev. Roumaine Math. Pures Appl. 34 (1989), 213-219.
[6] J. Diestal and J. J. Uhl, Vector measures, Math. Surveys 15 (Amer. Math. Soc., Providence, R. I., 1977).
[7] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Math. 92 (Springer, New York, 1984).
[8] N. Dinculeanu, Vector measures (Pergamon Press, New York, 1967).
[9] J. Duncan and S. A. R. Hosseinium, 'The second dual of a Banach algebra', Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309-325.
[10] T. Husain, 'Amenability of locally compact groups and vector-valued function spaces', Sympos. Math. 16 (1975), 417-431.
[11] A. Ülger, 'Arens regularity of the algebra $C(K, A)$ ', to appear.
[12] J. C. Wong, 'Abstract harmonic analysis of generalized functions on locally compact semigroups with applications to invariant means', J. Austral. Math. Soc. (Series A) 23 (1977), 84-94.

National University of Singapore Republic of Singapore

The University of Calgary
Canada, T2N 1N4

[^0]: (C) 1994 Australian Mathematical Society $0263-6115 / 94 \$ \mathrm{~A} 2.00+0.00$
 ${ }^{\dagger}$ Deceased.

