MOLECULAR CLOUDS IN NGC 3256

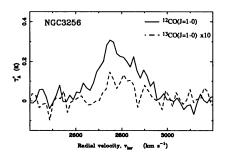
S. AALTO¹, R.S. BOOTH¹, L.E.B. JOHANSSON¹, and N. BERGVALL²

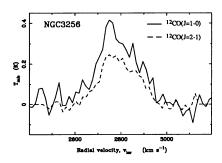
¹Onsala Space Observatory, S-439 00 Onsala, Sweden

²Astronomiska Observatoriet, Box 515, S-751 20 Uppsala, Sweden

ABSTRACT. A spectacular morphology , including two diffuse tidal tails, and high infrared luminosity suggest that the starburst NGC 3256 is a merger of two gas-rich disk galaxies. NGC 3256 exhibits strong and extended 12 CO emission. A conventional interpretation of the observed 12 CO and 13 CO line ratios yields contradictory results.

Observations and Results


We have mapped NGC 3256 in the J=1-0, J=2-1 transitions of 12 CO, and measured single positions in the J=1-0, J=2-1 transitions of 13 CO, using the Swedish-ESO Submillimetre Telescope (SEST) at La Silla, Chile. Examples of profiles are shown in the figure.


The observed line ratios imply unusual properties of the H₂ clouds:

- i) The ratio of main beam brightness temperatures in ^{12}CO (2-1)/(1-0) ~ 1.0±0.1, suggests optically thick emission.
- ii) The unusually large value of $^{12}CO/^{13}CO$ in J=1-0, 30±5, conventionally implies optically thin emission.
- iii) The corresponding ratio in the J=2-1 line is smaller, $^{12}CO/^{13}CO \sim 12\pm 4$.

When the four lines are interpreted in terms of an LVG model, they fail to constrain a narrow region of parameter space.

These data provide further clues to the mechanism by which a strong interaction modifies the properties and dynamics of molecular gas

281

F. Combes and F. Casoli (eds.), Dynamics of Galaxies and Their Molecular Cloud Distributions, 281.
© 1991 IAU. Printed in the Netherlands.