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On Homotopy Invariants of Combings of
Three-manifolds

Christine Lescop

Abstract. Combings of compact, oriented, 3-dimensional manifolds M are homotopy classes of no-
where vanishing vector fields. The Euler class of the normal bundle is an invariant of the comb-
ing, and it only depends on the underlying Spinc-structure. A combing is called torsion if this Euler
class is a torsion element of H2(M; Z). Gompf introduced a Q-valued invariant θG of torsion comb-
ings on closed 3-manifolds, and he showed that θG distinguishes all torsion combings with the same
Spinc-structure. We give an alternative definition for θG and we express its variation as a linking num-
ber. We define a similar invariant p1 of combings for manifolds bounded by S2. We relate p1 to the
Θ-invariant, which is the simplest configuration space integral invariant of rational homology 3-balls,
by the formula Θ = 1

4 p1 + 6λ(M̂), where λ is the Casson–Walker invariant. The article also includes
a self-contained presentation of combings for 3-manifolds.

1 Introduction

1.1 Preamble: Conventions and Notations

Unless otherwise mentioned, all manifolds are oriented. Boundaries are oriented
by the outward normal first convention. Products are oriented by the order of the
factors. More generally, unless otherwise mentioned, the order of appearance of co-
ordinates or parameters orients chains or manifolds. When C is a manifold, (−C)
denotes the manifold obtained from C by reversing its orientation. The fiber Nx(A)
of the normal bundle N(A) to an oriented submanifold A of C at x ∈ A is oriented so
that Nx(A) followed by the tangent bundle Tx(A) to A at x induces the orientation of
C . The orientation of Nx(A) is a coorientation of A at x. The transverse preimage of
a submanifold under a map f is oriented so that f preserves the coorientations. The
transverse intersection of two submanifolds A and B in a manifold C is oriented so
that the normal bundle Nx(A∩B) to A∩B at x ∈ A∩B is oriented as (Nx(A)⊕Nx(B)).
If the two manifolds are of complementary dimensions, then the sign of an intersec-
tion point is +1 if the orientation of its normal bundle coincides with the orientation
of the ambient space, which is if TxC = NxA⊕ NxB (as oriented vector spaces); this
is equivalent to TxC = TxA⊕TxB. Otherwise, the sign is−1. If A and B are compact
and if A and B are of complementary dimensions in C , their algebraic intersection is
the sum of the signs of the intersection points; it is denoted by 〈A,B〉C . The link-
ing number of two rationally null-homologous disjoint links in a 3-manifold is the
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algebraic intersection of a rational chain (i.e., a Q-linear combination of surfaces)
bounded by one of the links and the other link.

1.2 Introduction

In this article, M is an oriented, connected, compact, smooth 3-manifold. The
boundary ∂M of M is either empty or identified with the unit sphere S2 of R3. In
the latter case, a neighborhood N(∂M) of ∂M in M is identified with a neighbor-
hood of S2 in the unit ball of R3. The tangent bundle of M is denoted by TM, and the
unit tangent bundle of M is denoted by U M. Its fiber is UmM = (TmM \ {0})/R∗+.

It has long been known that M is parallelizable. (For a proof, see [11, p. 46]
or [20, Section 6.2].) All considered parallelizations τ : M × R3 → TM of M are
assumed to coincide with the parallelization induced by the standard parallelization
τs of R3 over N(∂M), and all sections of U M are assumed to be constant with respect
to this parallelization over N(∂M). Homotopies of parallelizations or sections satisfy
these assumptions at any time. When ∂M = ∅, the parallelizations of M also induce
the orientation of M.

A combing of M is a homotopy class of such sections of U M. According to Turaev
[26], a Spinc-structure on M may be seen as an equivalence class of sections of U M,
where two sections are in the same class if and only if they are homotopic over the
complement of a point that sits in the interior of M.

The Euler class of a combing [X] represented by a section X, is the Euler class of the
normal bundle X⊥ = TM/RX. The Euler class of [X] is denoted by e(X⊥). It belongs
to H2(M; Z) (here, H2(M; Z) = H2(M, ∂M; Z)). The Euler class is the obstruction
to the existence of a nowhere zero section of X⊥ that is defined in Lemma 2.15. The
Euler class e(X⊥) only depends on the Spinc-structure of the combing.

A torsion combing of M is a combing whose Euler class is a torsion element of
H2(M, ∂M; Z). A torsion section of U M is a section that represents a torsion combing.
A torsion Spinc-structure is a Spinc-structure represented by torsion combings.

For a section X of U M, −X denotes the opposite section. When a parallelization
τ of M is given, a section of U M is nothing but a map from M to S2 that is constant
on ∂M, and two sections X and Y of U M induce a map (X,Y ) : M → S2 × S2. Two
sections X and Y are said to be transverse if the induced maps (X,Y ) and (X,−Y ) are
transverse to the diagonal of S2×S2, that is if their graphs in M×S2×S2 are transverse
to the product of M and the diagonal of S2 × S2. This is generic and independent of
τ . (Genericity and transversality are explained in [7].) For two transverse sections
X and Y , let LX=Y be the preimage of the diagonal of S2 × S2 under the map (X,Y ).
Thus LX=Y is a link in the interior of M. It is oriented as follows with respect to the
conventions of Subsection 1.1.

The sphere S2 is oriented as the boundary of the unit ball of R3. The diagonal of
(S2)2 inherits an orientation from S2. It is therefore also cooriented in (S2)2, which is
equipped with the product orientation. The map (X,Y ) pulls back the coorientation
of (S2)2 to a coorientation of LX=Y , which, in turn, orients LX=Y . Note that

LX=Y = LY =X = −L−X=−Y .

In Subsection 3.2, we prove the following theorem with elementary arguments.
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Theorem 1.1 Let X be a fixed section of U M. Two sections Y and Y ′ of U M transverse
to X represent the same Spinc-structure if and only if the links LY =−X and LY ′=−X are
homologous.

A section Y of U M transverse to X is a torsion section if and only if the homology
class ([LY =X] + [LY =−X]) is a torsion element of H1(M; Z).

If X and Y are transverse torsion sections, then the links LY =−X and LY =X are ratio-
nally null-homologous in M.

If X is a torsion section, then two torsion sections Y and Y ′ of U M transverse to X
represent the same combing if and only if the links LY =−X and LY ′=−X are homologous,
and lk(LY =−X, LY =X) = lk(LY ′=−X, LY ′=X).

This theorem is a variant of a Pontrjagin theorem recalled in Subsection 2.1, which
treats the case when X extends to a parallelization. It might be already known. I thank
Patrick Massot for pointing out to me that Dufraine proved similar results in [3].

The first Pontrjagin class induces a canonical map p1 from the set of paralleliza-
tion homotopy classes of M to Z. When ∂M = ∅, the map p1, denoted as δ(M, · ), is
studied by Hirzebruch in [8, §3.1], and Kirby and Melvin studied p1 under the name
Hirzebruch defect in [10], where they denote it as h. This map p1 is studied in [16,20]
when ∂M = S2 and H1(M; Q) = 0. The definition of p1 and some of its properties
are recalled in Subsection 4.1.

The main original result of this article is the following theorem. It is proved in
Subsection 4.2.

Theorem 1.2 There exists a unique map

p1 : {Torsion combings of M} → Q

such that

• for any section X of U M that extends to a parallelization τ , p1([X]) = p1(τ ), and
• for any two transverse torsion sections X and Y of U M,

(1.3) p1([Y ])− p1([X]) = 4lk(LX=Y , LX=−Y ).

The map p1 satisfies the following properties:

• For any section X, p1([X]) = p1([−X]).
• For a Spinc-structure ξ, let C(ξ) denote the set of combings that represent ξ. For any

torsion Spinc-structure ξ, the restriction of p1 to C(ξ) is injective.

The variation of p1 under simple operations on torsion combings is presented in
Subsection 4.4.

The image of p1 is determined by the following theorem, which is proved in Sub-
section 4.2.

Let ` : Torsion(H1(M; Z)) → Q/Z denote the self-linking number (which is the
linking number of a representative and one of its parallels). View an element a of
Q/Z as its class (a + Z) in Q so that 4`(Torsion(H1(M; Z)) is a subset of Q , invariant
by translation by 4.
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Theorem 1.4 Let τ be a parallelization of M inducing a section X of U M. For any
torsion section Y of U M transverse to X,

p1([Y ]) ∈ (p1(τ )− 4`([LY =−X])),

p1({Torsion combings}) = p1(τ )− 4`(Torsion(H1(M; Z)).

Here p1(τ ) is an integer whose parity is determined in Theorem 4.3. Note that
the image of p1 is not an affine space in general. (When H1(M; Z) = Z/3Z,
4`(Torsion(H1(M; Z)) is either 4Z ∪ ( 4

3 + 4Z) or 4Z ∪ ( 8
3 + 4Z). )

In Subsection 4.3, we prove that the invariant p1 coincides with an invariant θG

defined by Gompf in [4] when ∂M = ∅. The Gompf invariant is denoted by θ in
[4], and it is denoted in this article by θG to prevent confusion with Θ.

In [24, Section 2.6], Ozsváth and Szabó associate a Spinc-structure with a gener-
ator x of the Heegaard Floer homology ĤF. Gripp and Huang refine this process in
[5] in order to associate a combing g̃r(x) with such a generator x, and they relate the
Gompf invariant to the absolute Q-grading gr of Ozsváth and Szabó for the Hee-
gaard Floer homology of 3-manifolds equipped with torsion Spinc structures of [25].
According to [5, Corollary 4.3],

gr(x) =
2 + θG(g̃r(x))

4
.

An integer homology 3-sphere (resp. an integer homology 3-ball) is a smooth, com-
pact, oriented 3-manifold with the same homology as the sphere S3 (resp. as a point),
with coefficients in Z. A rational homology 3-sphere (resp. a rational homology 3-ball)
is a smooth, compact, oriented 3-manifold with the same homology as the sphere S3

(resp. as a point), with coefficients in Q .
The work of Witten [28] pioneered the introduction of many rational homology

3-sphere invariants, and Witten’s insight into the perturbative expansion of Chern–
Simons theory led Kontsevich to outline a construction of invariants associated with
graph configuration spaces in [12]. In [13], G. Kuperberg and D. Thurston applied
the Kontsevich scheme to show the existence of such an invariant ZKKT of rational ho-
mology 3-spheres, which is equivalent to the LMO invariant ZLMO of Le, Murakami,
and Ohtsuki [15] for integer homology 3-spheres. Both ZKKT and ZLMO dominate
all finite type invariants of integer homology 3-spheres. The invariant ZKKT is in
fact constructed as a graded invariant of parallelized rational homology 3-balls M.
Its degree one part is called the Θ-invariant. Here, we denote it by ΘKKT . Gluing
a standard 3-dimensional ball along the boundary of a rational homology 3-ball M
provides a well-defined rational homology 3-sphere M̂.

According to a Kuperberg–Thurston theorem [13] generalized to rational homol-
ogy 3-spheres in [17, Theorem 2.6 and Section 6.5], for a rational homology 3-ball
M equipped with a parallelization τ ,

ΘKKT(M, τ ) = 6λ(M̂) +
p1(τ )

4
,

where λ is the Casson–Walker invariant, normalized as in [1, 21] for integer homol-
ogy 3-spheres, and as λW

2 for rational homology 3-spheres, where λW is the Walker
normalization in [27].
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In Section 5, we define an invariant Θ of combings [X] in a rational homology
3-ball M from an algebraic intersection in a two-point configuration space. This
invariant Θ satisfies the same variation formula as 1/4p1 (Formula (1.3)) so that
Θ(M, [X])− (p1([X]))/4 only depends on the rational homology 3-ball M. When X
is the first vector of a trivialization τ , the definition of Θ(M, [X]) agrees with the def-
inition of ΘKKT(M, τ ) as an algebraic intersection of three chains in a two-point con-
figuration space, which can be found in [17, Section 6.5] and in [18, Theorem 2.14]
so that Θ(M,X) = 6λ(M̂) + 1

4 p1([X]).

2 Combings

This section is devoted to a general presentation of combings of our fixed manifold
M. Their constructions with respect to a fixed section of U M are described in Sub-
section 2.1. The affine structure over H1(M; Z) (or dually over H2(M, ∂M; Z)) of the
set S(M) of Spinc-structures of M, and the properties of the Euler classes of Spinc-
structure are presented in Subsection 2.2. Finally, the action of π3(S2) = Z on the set
of combings, which equips each set C(ξ) of combings with underlying Spinc-struc-
ture ξ, with an affine structure, is presented in Subsection 2.3. Our presentation,
which centers around links of type LX=±Y , contains lemmas that will be used in the
sequel.

2.1 Generalization of a Pontrjagin Construction in Dimension 3

A framing of a link L of M is a homotopy class of sections of the unit normal bundle
to L. Pushing L in the direction of such a section yields a parallel L‖ of L up to isotopy
in N(L) \ L, where N(L) is a tubular neighborhood of L. Since this isotopy class of
L‖ determines the framing, a framing of L can equivalently be defined as an isotopy
class of parallels of L.

A framed cobordism from (L, L‖) to another framed link (L′, L′‖) is a cobordism Σ

from {0} × L to {1} × L′, properly embedded in [0, 1] × M, and equipped with a
homotopy class of unit normal sections to TΣ in T([0, 1]×M) that induce the given
framings of L and L′. Two framed links are framed cobordant if and only if their exists
a framed cobordism from one to the other one.

When a parallelization of M is fixed, the Pontrjagin construction, which is re-
called in Theorem 2.9 below, identifies combings with framed links up to framed
cobordism. In this subsection, we present a generalized version of this construction
referring to a fixed section of U M rather than to a fixed parallelization.

Let [X]c denote the Spinc-structure of M represented by a section X of U M.

Lemma 2.1 Combings are generically transverse. For two transverse sections X and
Y of U M, the homology classes of LY =X and LY =−X only depend on the Spinc-structures
[X]c and [Y ]c.

Proof When X extends as a parallelization, this parallelization identifies U M with
M × S2, so that Y may be seen as a map from M to S2, and a homotopy of Y is a
map from [0, 1] ×M to S2, for which X is a regular value, for a generic homotopy.
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In particular, the preimage of X under such a homotopy h yields a cobordism from
LY0=X and LY1=X , and the homology class of LY =X only depends on the homotopy
class of Y , when X is fixed. Since any X locally extends as a parallelization, the local
transversality arguments hold for any X so that the above proof may be adapted to
any X by using a homotopy (Yt ,X) valued in S2 × S2 (with respect to some reference
trivialization) and the preimage of the diagonal under this homotopy. Similarly, the
homology class of LY =−X only depends on the homotopy classes of X and Y . When
X (resp. Y ) is changed to some section X′ (resp. Y ′) that coincides with X (resp. Y )
outside a ball B3 embedded in M, the homology classes of LY =−X and LY =X are un-
changed. Thus the homology classes of LY =−X and LY =X only depend on [X]c and
[Y ]c.

Definition 2.2 Let X be a section of U M. Let NL be the normal bundle to
a link L in M. Let S(NL, (−X)⊥) denote the space of homotopy classes of sec-
tions of the bundle Isom+(NL, (−X)⊥) over L whose fiber over x is the space of
orientation-preserving linear isomorphisms from the fiber NxL ∼= TxM/TxL of NL
to (−X(x))⊥ = TxM/R(−X(x)). An X-framing of L is an element of S(NL, (−X)⊥).

Any section Y of U M transverse to X yields an X-framing

σ(Y,X) ∈ S(NLY =−X, (−X)⊥)

of LY =−X , which is naturally induced by the restriction to LY =−X of the tangent map
to Y : M → U M. (The tangent map to Y at x ∈ LY =−X maps TxM into TxM⊕UxM.
Since its composition with the projection onto UxM maps TxLY =−X to RX(x), this
composition induces a map from NxLY =−X to TxM/R(−X(x)). Our transversality
assumptions and our orientation conventions imply that this map is an orientation-
preserving isomorphism.)

Equip M with a Riemannian structure (all of them are homotopic). Note that the
normal bundle X⊥ is canonically isomorphic to the bundle of planes orthogonal to
X so that our notation X⊥ for the normal bundle is not too abusive.

Remark 2.3 Let L be a link of M and let σN be a unit section of NL. The sec-
tion σN and the Gram–Schmidt process induce a bundle retraction by deformation
from Isom+(NLY =−X, (−X)⊥) to the S1-bundle of orientation-preserving isometries
from NxLY =−X to TxM/R(−X(x)). (These quotients are equipped with their metrics
induced by the canonical isomorphisms that identify them with orthogonal comple-
ments.)

Let [σ] ∈ S(NL, (−X)⊥) be an X-framing of L represented by an isometry
σ : NL → (−X)⊥. Set Z(σ, σN )(x) = σ(x)(σN (x)). Then Z(σ, σN ) is a section
of (−X)⊥. Note that [σ] is determined by the homotopy classes of σN and Z(σ, σN ),
where the homotopy class of σN may be replaced with the isotopy class of the parallel
L‖ of L induced by σN . Therefore, elements of S(NL, (−X)⊥) can be thought of as
pairs (L‖,Z(σ, σN )), up to simultaneous twists of L‖ and Z(σ, σN ).

Definition 2.4 A section X of U M and a link L of M equipped with an X-framing
[σ] represented by an isometry σ : NL → (−X)⊥ induce the following section
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C(X, L, σ) of U M (up to homotopy). Let N(L) be a tubular neighborhood of L.
The fiber Nx(L) of N(L) at x is seen as {uv; u ∈ [0, 1], v ∈ NxL, ‖v‖ = 1}. Regard X
as a map to S2 with respect to some trivialization such that X is constant on Nx(L) for
all x ∈ L. Let [−X(x),X(x)]σ(v) denote the geodesic arc of UxM ∼= S2 from (−X(x))
to X(x) through σ(v) ∈ (−X(x))⊥. Then [−X(x),C(X, L, σ)(uv)] is the subarc of
[−X(x),X(x)]σ(v) of length uπ starting at −X(x). This defines C(X, L, σ) on N(L),
and C(X, L, σ) coincides with X outside N(L).

Lemma 2.5 Let X and Y be two transverse sections of U M. Then Y is homotopic
to C(X, LY =−X, σ(Y,X)). Furthermore, the Spinc-structure of Y is determined by [X]c

and LY =−X .

Proof Outside LY =−X , there is a homotopy from Y to X. When Y (m) 6= −X(m),
there is a unique geodesic arc [Y (m),X(m)] with length (` ∈ [0, π[) from Y (m)
to X(m). For t ∈ [0, 1], let Yt (m) ∈ [Y (m),X(m)] be such that the length of
[Y (m) = Y0(m),Yt (m)] is t`. Let D2 be the unit disk of C. Write N(LY =−X) as
D2 × LY =−X , and let χ be a smooth increasing bijective function from [0, 1] to [0, 1]
whose derivatives vanish at 0 and 1. Set Ỹt (m) = Yt (m) if m /∈ N(LY =−X) and

Ỹt (v ∈ D2, ` ∈ LY =−X) =

{
Yχ(|v|)t (v, `) if v 6= 0,

Y (0, `) if v = 0.

Then Ỹ1 is homotopic to Y , and when N(L) is small enough, it is easy to see that Ỹ1

is homotopic to C(X, LY =−X, σ(Y,X)), too.
Let us prove that [Y ]c = [C(X, LY =−X, σ(Y,X))]c does not depend on the X-fra-

ming σ(Y,X) of LY =−X . Two representatives σ1 and σ2 of any two X-framings of
a link may be assumed to coincide over the link except over one little interval for
each link component. Thus, the associated C(X, LY =−X, σ1) and C(X, LY =−X, σ2)
coincide outside a finite union of balls, which embeds in a larger ball. Then [Y ]c is
determined by X and LY =−X . Now, for a fixed L, changing X inside its homotopy
class or changing X over a ball does not affect [C(X, L, · )]c.

Let (−X)⊥ also denote the pull-back of (−X)⊥ under the natural projection from
[0, 1] × M to M. Let Σ be a properly embedded surface in [0, 1] × M, which is
equipped with the product Riemannian metric. Let S(NΣ, (−X)⊥) denote the space
of homotopy classes of sections of the bundle over Σ whose fiber over x is the space of
orientation-preserving isomorphisms from the fiber NxΣ = Tx([0, 1]×M)/TxΣ of
NΣ to (−X(x))⊥. Again, this bundle deformation retracts onto the S1-bundle over Σ
whose fiber over x is the space of orientation-preserving linear isometries from NxΣ
to (−X(x))⊥, so that S(NΣ, (−X)⊥) is canonically isomorphic to the space of homo-
topy classes of sections of the latter bundle, which is an S1-bundle. An X-framing of
Σ is an element of S(NΣ, (−X)⊥).

Two X-framed links L and L′ are X-framed cobordant if and only if there exists an
X-framed cobordism Σ (which is a cobordism equipped with an X-framing) properly
embedded in [0, 1]×M, from {0} × L to {1} × L′ that induces the X-framings of L
and L′.
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Theorem 2.6 Let X be a section of U M. Two sections Y and Z of U M transverse to
X are homotopic if and only if (LY =−X, σ(Y,X)) and (LZ=−X, σ(Z,X)) are X-framed
cobordant.

Proof View a homotopy Yt from Y = Y0 to Z = Y1 as a section Yt of the pull-
back of U M under the natural projection from [0, 1] ×M to M, and assume with-
out loss that (Yt ,−X) is transverse to the diagonal of S2 × S2 (with respect to some
parallelization). Then the preimage Σ of the diagonal is a cobordism from LY =−X

and LZ=−X , which is canonically X-framed by an X-framing that induces those of
LY =−X and LZ=−X . Conversely, an X-framed cobordism Σ from (LY =−X, σ(Y,X))
to (LZ=−X, σ(Z,X)) induces a section C(X,Σ) of the pull-back of U M under the
natural projection from [0, 1] × M to M, which is defined as C(X, L, σ) in Defi-
nition 2.4, so that the restriction Ct of C(X,Σ) on {t} × M defines a homotopy
from D0 = C(X, LY =−X, σ(Y,X)) to D1 = C(X, LZ=−X, σ(Z,X)), and, according to
Lemma 2.5, Y and Z are homotopic.

Remark 2.7 In [14, 1.4], François Laudenbach proves a similar result for nowhere
zero sections of a cotangent bundle of a manifold of arbitrary dimension. This result
can easily be adapted to any other real bundle over a manifold of the same dimension.
Again, I thank Patrick Massot for pointing out this reference to me.

Corollary 2.8 Let X be a section of U M. The Spinc-structure of a section Y of U M
transverse to X is determined by [X]c and by the homology class [LY =−X] of LY =−X in
H1(M; Z).

A parallelization τ with X as first vector identifies X-framings of links with fram-
ings of links as follows. The second vector X2 of τ is a section of (−X)⊥, and τ
identifies an X-framing [σ] ∈ S(NL, (−X)⊥) represented by σ with the isotopy class
of parallels L‖ of L induced by the section σ−1(X2). Set

C(τ , L, L‖) = C(X, L, σ).

Similarly, a parallelization τ with X as first vector identifies X-framings of cobor-
disms with framings of cobordisms.

This allows us to state the following Pontrjagin theorem [22, Section 7, Theorem
B] as a corollary of Lemma 2.5 and Theorem 2.6.

Theorem 2.9 (Pontrjagin construction) Let τ be a parallelization of M. Any section
of U M is homotopic to C(τ , L, L‖) for a framed link (L, L‖) of the interior of M. Two
sections C(τ , L, L‖) and C(τ , L′, L′‖) are homotopic if and only if (L, L‖) and (L′, L′‖)
are framed cobordant.

Pontrjagin proved generalizations of this theorem to every dimension. See [22,
Section 7].

Let ΣM be an embedded cobordism from a link L to a link L1 in M. The graph
of a Morse function f from ΣM to [0, 1] such that f−1(0) = L and f−1(1) = L1

yields a proper embedding Σ of ΣM into [0, 1] × M. The positive normal to ΣM

in M at m seen in T( f (m),m){ f (m)} ×M frames Σ. This framing of Σ identifies the
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X-framings of Σ with homotopy classes of unit sections of (−X)⊥ over Σ. When ΣM

is connected, and when K is a boundary component of Σ, any X-framing defined on
∂Σ \ K extends as an X-framing of Σ, and the extension of the X-framing over K is
determined by the restriction of the X-framing to ∂Σ \ K.

Embed a sphere S with three holes in M, the 3 boundary components of S are 3
knots K1, K2 and−K1]bK2 of M, which are framed by the embedding of S.

S

K1]bK2

K1 K2

Then K1]bK2 is a framed band sum of K1 and K2, it is framed cobordant to the
union of K1 and K2. Note that any X-framed link is X-framed cobordant to an X-
framed knot by such band sums. Similarly, any framed link is framed cobordant to a
framed knot.

Lemma 2.10 Two framed links (L, L‖) and (L′, L′‖) in a rational homology 3-sphere
or in a rational homology 3-ball are framed cobordant if and only if the homology classes
of L and L′ in H1(M; Z) coincide and lk(L, L‖) = lk(L′, L′‖).

Proof When the framed links are framed cobordant, they are homologous and
lk(L, L‖) = lk(L′, L′‖), since lk(L, L‖) is the algebraic intersection of two 2-chains

bounded by L×{0} and L‖×{0} in [−1, 0]×M. Conversely, let (L, L‖) and (L′, L′‖)

be two framed links such that L and L′ are homologous and lk(L, L‖) = lk(L′, L′‖). It
is well-known that homologous links in a 3-manifold are cobordant. (A proof using
triangulations of 3-manifolds, which exist according to [2], can be found in [6, p. 65,
Corollaire]). The links L and L′ are respectively framed cobordant to framed knots
(K,K‖) and (K′,K′‖) such that lk(K,K‖) = lk(L, L‖) and lk(K′,K′‖) = lk(L′, L′‖),

so that lk(K,K‖) = lk(K′,K′‖). There is a connected cobordism from K to K′ that
may be equipped with a framing that extends the framing induced by K‖, and which
therefore induces a framing of K′ corresponding to a parallel K′1 of K′ such that
lk(K,K‖) = lk(K′,K′1). Thus lk(K′,K′1) = lk(K′,K′‖) and K′1 is isotopic to K′‖ in

N(K′) \ K′, so that (K′,K′‖) is framed cobordant to (K,K‖).

2.2 Spinc-structures and Euler Classes

Let P : H2(M, ∂M; Z)→ H1(M; Z) denote the Poincaré duality isomorphism. In this
subsection, we show that the Spinc-structures of M form an affine space S(M) with
translation group H1(M; Z), such that, for any two transverse sections X and Y of
U M, the difference ([X]c − [Y ]c) ∈ H1(M; Z) is the class of LX=−Y in H1(M; Z).

We also study the Euler class and prove that it satisfies

P(e(X⊥)) = [X]c − [−X]c

so that
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• for two transverse homotopic sections X and Y of U M, P(e(X⊥)) is the class of
LX=Y in H1(M; Z), and

• for two combings [X] and [Y ],

P
(

e(X⊥
)
− e
(

Y⊥)
)

= 2([X]c − [Y ]c).

Lemma 2.11 For three pairwise transverse sections X, Y and Z of U M,

[LZ=−X] = [LZ=−Y ] + [LY =−X]

in H1(M; Z).

Proof For two sections X and Z of U M, transverse to Y , up to homotopy, we
can assume that LX=−Y and LZ=−Y are disjoint and pick disjoint tubular neighbor-
hoods N(LX=−Y ) and N(LZ=−Y ) of LX=−Y and LZ=−Y , respectively. Then accord-
ing to Lemmas 2.1 and 2.5 we can assume that Z = C(Y, LZ=−Y , σ(Z,Y )) and that
X = C(Y, LX=−Y , σ(X,Y )) so that Z = Y outside N(LZ=−Y ) and X = Y outside
N(LX=−Y ). Then LZ=−X = LZ=−Y

∐
LY =−X .

Lemma 2.12 There is a canonical free transitive action of H1(M; Z) on the set S(M)
of Spinc-structures of M such that for any two transverse sections Y and Z of U M,

[LZ=−Y ][Y ]c = [Z]c.

Proof Let Y be a section of U M and let [K] ∈ H1(M; Z). Represent [K] by a knot
K and equip K with an arbitrary Y -framing σ.

Define [K][Y ]c as [Z]c with Z = C(Y,K, σ). According to Definition 2.4, K =
LZ=−Y , and according to Corollary 2.8, [Z]c is determined by [Y ]c and [K]. Accord-
ing to Lemma 2.1, if [K][Y ]c = [Z]c, then K is homologous to LZ=−Y . Lemma 2.11
ensures that this defines an action of H1(M; Z). This action is obviously transitive,
since [Z]c = [LZ=−Y ][Y ]c and it is free.

Corollary 2.13 This action equips S(M) with an affine structure with translation
group H1(M; Z). With respect to this structure, for any two transverse sections X and Y
of U M,

[Y ]c − [X]c = [LY =−X].

Remark 2.14 Classically, S(M) is rather equipped with an affine structure with
translation group H2(M, ∂M;π2(S2) = Z). For two Spinc-structures [X]c and [Y ]c,
the element ([Y ]c − [X]c)2 of H2(M, ∂M; Z) such that [Y ]c = ([Y ]c − [X]c)2.[X]c

with respect to the H2(M, ∂M; Z)-affine structure is the following obstruction to ho-
motoping a section Y of U M that represents [Y ]c to a section X that represents [X]c

over a two-skeleton of M. Fix a triangulation of M and homotop Y to a section Y ′

that coincides with X over the one-skeleton of M. Then ([Y ]c− [X]c)2 is represented
by a 2-cochain G that maps each 2-cell ∆ of M to the degree G(∆) of Y ′ regarded as
a map from (∆, ∂∆) to (S2,X) with respect to a trivialization of TM over ∆ with X
as first vector.
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Below, we confirm that the two structures are naturally related by Poincaré’s du-
ality, by proving that for two transverse sections X and Y of U M,

P
(

([Y ]c − [X]c)2

)
= [Y ]c − [X]c = [LY =−X].

Indeed, up to homotopy, there is no loss in assuming Y = C(X, LY =−X, σ(Y,X))
as in Lemma 2.5, for an LY =−X that is transverse to the triangulation of M. Choose
a tubular neighborhood N(LY =−X) that does not meet the one-skeleton of M. Then
the cochain G maps a 2-cell ∆ to its algebraic intersection with LY =−X so that
[LY =−X] is Poincaré dual to ([Y ]c − [X]c)2.

The Euler class e(X⊥) is an obstruction to the existence of a nowhere zero sec-
tion of X⊥. It lives in H2(M; Z), and X extends as a parallelization if and only if
e(X⊥) = 0. We will not give a more precise definition for the standard Euler class,
since Lemma 2.15 below can be used as a definition in our case.

Lemma 2.15 Let X and Y be two homotopic transverse sections of U M, then [LY =X]
is Poincaré dual to e(X⊥). Therefore, P(e(X⊥)) = [X]c − [−X]c.

Proof For a section of X⊥, X may be pushed slightly in the direction of the section.
If Y denotes the obtained combing, then LY =X is the vanishing locus of the section,
which is Poincaré dual to e(X⊥).

Lemma 2.16 Let X and Y be two transverse sections of U M,

2[LX=Y ] = P(e(X⊥) + e(Y⊥))

and 2[LX=−Y ] = P(e(X⊥) − e(Y⊥)). In particular, for two transverse torsion sections
X and Y of U M, LX=Y and LX=−Y represent torsion elements in H1(M; Z).

Proof We have that [LX=Y ] = [X]c − [−Y ]c = [Y ]c − [−X]c so that

2([LX=Y ]) = [X]c − [−X]c + [Y ]c − [−Y ]c = P
(

e(X⊥) + e(Y⊥)
)
.

Lemma 2.17 Suppose X and Y are two transverse torsion sections of U M. Then
lk(LX=Y , LX=−Y ) depends only on the homotopy classes of X and Y .

Proof Fix a trivialization of U M so that sections become functions from M to S2.
Let us prove that lk(LX=Y , LX=−Y ) does not vary under a generic homotopy of X.
Such a homotopy induces two homotopies h+ and h− from [0, 1] × M to S2 × S2,
where h±(t,m) = (Xt (m),±Y (m)). Without loss of generality, assume that h+ and
h− are transverse to the diagonal. There exists a finite sequence 0 = t0 < t1 <
t2 < · · · < tk = 1 of times such that the projections on M of the preimages of
the diagonal under h+|[ti ,ti+1]×M and h−|[ti ,ti+1]×M are disjoint, so that they yield two
disjoint cobordisms in M, one from LXti =Y to LXti+1 =Y , and the other one from LXti =−Y

to LXti+1 =−Y , showing that lk(LXti =Y , LXti =−Y ) = lk(LXti+1 =Y , LXti+1 =−Y ).

Lemma 2.18 Let X be a section of U M that extends to a parallelization τ . The homo-
topy class of a torsion section Y of U M transverse to X is determined by X, by the homol-
ogy class [LY =−X] of LY =−X in H1(M; Z), and by the linking number lk(LY =−X, LY =X).
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Proof After a homotopy, Y reads C(τ , LY =−X, LY =X2 ), where X2 is the second vector
of τ , and, LY =X and LY =X2 are parallel knots as in Theorem 2.9. According to The-
orem 2.9, the combing [Y ] is determined by the framed cobordism class of LY =−X ,
which is determined by [LY =−X] and by lk(LY =−X, LY =X2 ), by Lemma 2.10, since
LY =−X is rationally null-homologous. After another homotopy that makes Y trans-
verse to X2 and X, lk(LY =−X, LY =X2 ) = lk(LY =−X, LY =X).

2.3 Action of π3(S2) on Combings

Notation 2.19 Regard B3 as the quotient of [0, 2π] × S2 where the quotient map
identifies {0} × S2 with a point. Then the map from B3 to the group SO(3) of
orientation-preserving linear isometries of R3 that maps (θ ∈ [0, 2π], x ∈ S2) to
the rotation ρ(θ, x) with axis directed by x and with angle θ is denoted by ρ. It in-
duces the standard double covering map ρ̃ from S3 = B3/∂B3 to SO(3), which orients
SO(3), and identifies π3(S3) with π3(SO(3)) = Z[ρ̃].

The map pS2 : SO(3) → S2 that maps an element φ of SO(3) to the image of the
first basis vector under φ is a fibration of fiber SO(2) ∼= S1. It is easy to prove that pS2

induces an isomorphism from π3(SO(3)) to π3(S2), with the associated long exact
sequence. Let γ be the image of [ρ̃] under this isomorphism. Then π3(S2) = Zγ.

Remark 2.20 The group π3(S2) can also be computed from the long exact se-
quence of the Hopf fibration ΦH : S3 → S2, which maps an element (z1, z2) of the
unit sphere S3 of C2 to its class z1/z2 in the complex projective line CP1 = S2. For
a generic smooth map g from S3 to S2, let lk(g−1(a), g−1(b)) be the linking num-
ber of the preimages of two regular points a and b of S2 with respect to g. Then
[g] = lk(g−1(a), g−1(b))[ΦH] in π3(S2). Lemma 2.21 shows that [γ] = −[ΦH].

Let X be a combing. Extend X to a parallelization (X,Y,Z) on a 3-ball B identified
with B3, and see ρ as a map ρ : (B, ∂B)→ (SO(X,Y,Z), Id). Define γkX as the section
that coincides with X outside B and such that, for any m ∈ B,

γkX(m) = (ρ(m))k(X).

Note that [γkX] is independent of the chosen parallelization. Since M is connected,
any two small enough balls may be put inside a bigger one, and [γkX] is independent
of B. Set γk[X] = [γkX]. Note that γk+k′[X] = γk(γk′[X]). Let X and Y be two
sections of U M that are homotopic except over a 3-ball B3. Up to homotopy, we may
assume that they are identical outside B3. On B3, X extends to a parallelization and Y
reads as a map from (B3, ∂B3) to (S2,X). It therefore defines an element γk of π3(S2),
and [Y ] = γk[X]. Thus, π3(S2) acts transitively on the combings that represent a
given Spinc-structure. In particular, it acts transitively on the combings of an integer
homology 3-sphere.

A positive (or oriented) meridian of some knot K in M is the boundary of a disk
that intersects K once with positive sign.
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Lemma 2.21 Let τ be a parallelization of M and let [X(τ )] denote the induced comb-
ing. Let (U ,U−) be the negative Hopf link, , ( lk(U ,U−) = −1 ). Then, with the
notation before Theorem 2.9, [γX(τ )] = [C(τ ,U ,U−)].

Proof First note that [C(τ ,U ,U−)] reads [γkX(τ )] for an integer k that does not
depend on (M, τ ). We prove k = 1 when M = B3, when τ is the standard paral-
lelization, and when X = X(τ ) is the constant upward vector field, with the help of
Lemma 2.18, by showing that

lk(LγX(τ )=X′ , LγX(τ )=−X′) = lk(U ,U−) = −1

for some constant field X′ near X. Let N be the North pole of S2, (pS2 ◦ ρ)−1(N)
intersects the interior of B3 as the vertical axis oriented from South to North while
(pS2 ◦ ρ)−1(−N) intersects B3 as π × (−E), where E is the equator oriented as a
positive meridian of (pS2 ◦ ρ)−1(N). Then for N ′ near N,

lk
(

(pS2 ◦ ρ)−1(N ′), (pS2 ◦ ρ)−1(−N ′)
)

= −1.

Corollary 2.22 Let τ be a parallelization of M, let (L, L‖) be a framed link of L,
let (U ,U−) be the negative Hopf link in a ball of M disjoint from L, and let (U ,U +)
be the positive Hopf link, , in a ball of M disjoint from L. Then [γC(τ , L, L‖)] =
[C(τ , L ∪U , L‖ ∪U−)] and

(2.23) [γ−1C(τ , L, L‖)] = [C(τ , L ∪U , L‖ ∪U+)].

If L is non-empty, for an integer r, let L‖,r be a parallel of L obtained from L‖ by
adding r meridians of L, homologically in N(L) \ L, then

[γ−rC(τ , L, L‖)] = [C(τ , L, L‖,r)].

Proof Note that (L, L‖,±1) is framed cobordant to (L ∪U , L‖ ∪U±) by band sum.
Thus, Formula (2.23) can be deduced from the fact that the disjoint union of two
oppositely framed unknots is framed cobordant to the empty link.

Corollary 2.24 Let X be a torsion section of U M, let k ∈ Z and let Y be a section of
U M that represents [γkX]. Then lk(LY =X, LY =−X) = −k.

Proof We already know that the linking number lk(LY =X, LY =−X) does not depend
on the transverse representatives of [X] and [Y ]. Furthermore, by Theorem 2.9,
[X] can be represented as C(τ , L, L‖) as in Corollary 2.22. Assume k 6= 0. Let
(
⋃|k|

i=1 U (i),
⋃|k|

i=1U (i)
ε ) denote the union of |k| Hopf links with sign ε = −k/|k| con-

tained in disjoint balls Bi disjoint from N(L), for i = 1, . . . , k. Let Y be obtained

from C(τ , L∪
⋃|k|

i=1U (i), L‖ ∪
⋃|k|

i=1 U (i)
ε ) by a small perturbation, induced by the par-

allelization τ outside N(L∪
⋃|k|

i=1U (i)) so that it is transverse to X, very close to X, and

distinct from ±X outside N(L ∪ (
⋃|k|

i=1 U (i))). Then LY =−X is a parallel of
⋃|k|

i=1 U (i)

and

lk(LY =X, LY =−X) =
|k|∑
i=1

lk(LY =X ∩ Bi , LY =−X ∩ Bi) =
|k|∑
i=1

lk(U (i),U (i)
ε ) = −k.
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Proposition 2.25 Let [X]c be a Spinc structure. The Euler class e(X⊥) ∈
H2(M, ∂M; Z) maps H2(M, ∂M; Z) onto E([X]c)Z for some integer E([X]c). Then the
set C([X]c) of combings with underlying Spinc-structure [X]c is an affine space over
Z/E([X]c)Z, where the translation by the class of 1 is the action of γ.

Proof Again, fix a parallelization τ of M, and an induced combing Y . This identi-
fies the set S(M) of Spinc structures with H1(M; Z) by mapping [X]c to the homology
class [LX=Y ]. Let ξ(τ , [K]) be the Spinc structure corresponding to a given class [K]
of H1(M; Z). The Pontrjagin characterization of the combings (Theorem 2.9) identi-
fies the set C(ξ(τ , [K])) with the set of framed links homologous to [K] up to framed
cobordism. Let K be a knot that represents [K], and let K‖ be a parallel of K; then
C(ξ(τ , [K])) is the set of framed links (K,K‖,r), for all r ∈ Z modulo framed cobor-
dism. According to Corollary 2.22, [γ−rC(τ ,K,K‖,s)] = [C(τ ,K,K‖,s+r)].

When [K] is a torsion element of H1(M; Z), the self-linking number lk(K‖,r,K) =
lk(K‖,K) + r makes sense, and it is a complete invariant of framings of K, up to
framed cobordism. This shows that the action of π3(S2) on the set of combings that
belong to a torsion Spinc-structure is free, and that this set is an affine space over Z.

In general, for two parallels K‖,r and K‖,s of K in a tubular neighborhood N(K) of
K, set lkN(K)(K‖,s−K‖,r,K) = s− r. The homology class of (K‖,s−K‖,r) in N(K) \K
reads lkN(K)(K‖,s − K‖,r,K)[m(K)], where m(K) is the oriented meridian of K. Let B
be a cobordism from 0×K‖,r to 1×K‖,s in [0, 1]×N(K). Then lkN(K)(K‖,s−K‖,r,K) =
〈[0, 1]× K,B〉[0,1]×M .

Let C be a framed cobordism from 0 × K to 1 × K in [0, 1] × M, and let C ′ be
obtained from C by pushing C in the direction of the framing. Assume that ∂C ′ =
1× K‖,s − 0× K‖,r so that C is a framed cobordism from (K,K‖,r) to (K,K‖,s) and

0 = 〈C,C ′〉[0,1]×M = 〈[0, 1]× K + (C − [0, 1]× K),B + (C ′ − B)〉[0,1]×M .

Since (C − [0, 1]× K) and (C ′ − B) are 2-cycles in [0, 1]×M,

〈(C − [0, 1]× K), (C ′ − B)〉[0,1]×M = 0,

and since they are homologous 〈[0, 1] × K, (C ′ − B)〉[0,1]×M = 〈(C − [0, 1] ×
K),B〉[0,1]×M , so that

lkN(K)(K‖,s − K‖,r,K) = −2
〈

[0, 1]× K, (C ′ − B)
〉

[0,1]×M
.

In particular, the framing difference (s − r) induced by C only depends on the ho-
mology class of the projection S of C in M, and it is−2〈K, S〉M . Thus if the framings
induced by K‖,r and K‖,s are framed cobordant, then (s − r) is in 〈2K,H2(M; Z)〉M .
Conversely, for any class S of H2(M; Z), there exists an embedded connected cobor-
dism C that projects on S. Any framing on 0×K can be extended to C , and it induces
a framing on 1 × K such that the framing difference is −2〈K, S〉M . Since the Euler
class of ξ(τ , [K]) is Poincaré dual to 2[K], according to Lemma 2.16, the conclusion
follows.
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3 Towards the Variation Formula (1.3)

3.1 The Key Proposition

In this subsection, which will be useful in our study of the invariant Θ in Section 5,
we prove the following proposition, which is the key to the extension of the map p1

in Section 4.

Proposition 3.1 Let X, Y , and Z be three pairwise transverse torsion sections of U M,

lk(LX=Y , LX=−Y ) + lk(LY =Z , LY =−Z) = lk(LX=Z , LX=−Z).

The first Betti number of M, which is the dimension of H1(M; Q), is denoted by
β1(M). Let (Si)i=1,...,β1(M) be β1(M) surfaces in the interior of M that represent a basis
of H2(M; Q). Consider the 6-manifold [0, 1]×U M. Recall that U M is homeomor-
phic to M×S2. For a section Z of U M, let Z(Si) denote the graph of the restriction of
Z to Si in U M. Let [S] denote the homology class of the fiber of U M in H2(U M; Q),
oriented as the boundary of a unit ball of TxM. Then

H2(U M; Q) = Q[S]⊕
β1(M)⊕

i=1
Q[Z(Si)].

Lemma 3.2 If Y and Z are two transverse sections of U M, then

[Z(Si)]− [Y (Si)] = 〈LZ=−Y , Si〉M[S]

in H2(U M; Q) (and in H2([0, 1]×U M; Q)).

Proof Fix a trivialization of U M so that both Y and Z become functions from M
to S2; then [Z(Si)] − [Y (Si)] = (deg(Z|Si

) − deg(Y|Si
))[S]. If X is a section of

U M induced by the trivialization, then deg(Z|Si
) = 〈LZ=−X, Si〉M . Conclude with

Lemma 2.11.

In particular, according to Lemma 2.16, the subspace HT of H2([0, 1] ×U M; Q)
generated by the [Z(Si)] for torsion combings Z is canonical. Set

H(M) = H2([0, 1]×U M; Q)/HT .

Then H(M) = Q[S].
Let X and Y be two sections of U M. Let X(M) abusively denote the graph of X in

U M. Let ∂(X,Y ) be the following codimension 2 submanifold of ∂([0, 1]×U M). If
∂M = ∅, then ∂(X,Y ) = {1} × Y (M) − {0} × X(M). If ∂M = S2, recall that τs

identifies U M|∂M with S2 × ∂M; let V (X) and V (Y ) be the elements of S2 such that
X = V (X) and Y = V (Y ) on ∂M. Let P = P(X,Y ) be a 1-chain in [0, 1] × S2 such
that ∂P = {1} ×V (Y )− {0} ×V (X). Then

∂(X,Y ) = ∂(X,Y, P) = {1} × Y (M)− {0} × X(M)− P × ∂M.

Lemma 3.3 For two transverse sections X and Y of U M such that [LY =−X] vanishes in
H1(M; Q), ∂(X,Y ) is rationally null-homologous in [0, 1]×U M. It bounds a rational
chain F(X,Y ) transverse to ∂([0, 1]×U M), which is well determined, up to the addition
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of a chain Σ × ∂M for a 2-chain Σ of [0, 1] × S2, up to the addition of a combination
of {ti} ×U M|Si

for distinct ti , and up to cobordism.

Proof We have that H3([0, 1]×U M; Q) ∼= H1(M; Q)⊗H2(S2; Q) when ∂M = S2.
The direct factor Q[X(M)] should be added when ∂M = ∅. When ∂M = S2, the
class of a 3-submanifold of [0, 1]×U M vanishes in H3([0, 1]×U M; Q) if and only
if its algebraic intersection with the [0, 1]× Z(Si) vanishes, for all i, for some section
Z of U M. For ∂(X,Y ), this algebraic intersection reads〈

[0, 1]× Z(Si), ∂(X,Y )
〉

[0,1]×U M
= 〈Si , LZ=Y − LZ=X〉M
=
〈

Si , [Z]c − [−Y ]c − ([Z]c − [−X]c)
〉

M

= 〈Si , LY =−X〉M = 0.

When ∂M = ∅, the algebraic intersection with [0, 1]×U M|{x}must vanish for some
x ∈ M, too. This is easily verified. Thus, ∂(X,Y ) bounds a rational chain F(X,Y ),

and since H4(U M; Q) =
⊕β1(M)

i=1 Q[U M|Si
], the second assertion follows.

Lemma 3.4 For any two transverse torsion sections X and Y of U M, for any two-cycle
C of [0, 1]×U M, the class of C in H(M) is 〈C, F(X,Y )〉[0,1]×U M[S] for a F(X,Y ) as in
Lemma 3.3.

Proof First note that 〈C, F(X,Y )〉[0,1]×U M[S] only depends on the homology class
of C , for a given F(X,Y ), and that 〈[S], F(X,Y )〉 = 1. Now, it suffices to prove that
〈[Z(Si)], F(X,Y )〉 = 0 for any torsion combing Z, and for any i. Since〈

[Z(Si)], F(X,Y )
〉

=
〈

[Z(Si)],X(M)
〉

U M

=
〈

[Z(Si)],Y (M)
〉

U M
,

〈[Z(Si)], F(X,Y )〉 does not depend on the torsion combings X and Y . In particular,

〈[Z(Si)], F(X,Y )〉 = 〈[Z(Si)], F(−Z,−Z)〉 = 0.

Definition 3.5 In this article, blowing up a submanifold A means replacing it with
its unit normal bundle. Let c be the codimension of A. The total space of the normal
bundle to A locally reads Rc×U for an open subspace U of A. It embeds into the am-
bient manifold as a tubular neighborhood of A. Its fiber Rc reads {0}∪(]0,∞[×Sc−1)
where the unit sphere Sc−1 of Rc is the fiber of the unit normal bundle to A. Then
the blow-up replaces (0 ∈ Rc) with Sc−1 so that the blown-up manifold locally reads
([0,∞[×Sc−1 ×U ). (In particular, unlike the blow-ups in algebraic geometry, our
differential blow-ups create boundaries.)

Topologically, this blow-up amounts to removing an open tubular neighborhood
of A (thought of as infinitely small), but the process is canonical, so that the created
boundary is the unit normal bundle to A and there is a canonical projection from the
blown-up manifold to the initial manifold.

For example, blowing up the origin (0, 0) in R2 replaces it with the circle of half-
lines of R2 starting at (0, 0). Blowing up a codimension two submanifold L with a
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trivial tubular neighborhood R2×L replaces R2×L with the product of the previous
blow-up of R2 at (0, 0) by L.

Proposition 3.6 Let X and Y be two transverse torsion sections of U M. For
any F(X,Y ) and F(−X,−Y ) as in Lemma 3.3, such that the 1-chains P(X,Y ) and
P(−X,−Y ) are disjoint, the class of F(X,Y ) ∩ F(−X,−Y ) in H(M) is

lk(LX=Y , LX=−Y )[S].

Proof Let us first prove that the class of F(X,Y ) ∩ F(−X,−Y ) is well determined
in H(M). When F(X,Y ) is changed to F(X,Y ) + (Σ × ∂M) for a two-chain
Σ of [0, 1]× S2 transverse to P(−X,−Y ), (Σ × ∂M) ∩ F(−X,−Y ) is added to
F(X,Y ) ∩ F(−X,−Y ). Now, (Σ× ∂M) ∩ F(−X,−Y ) is a union of±(t j ,V j)× ∂M,
which bounds since the parallelization τs extends to M. Thus, the class of F(X,Y ) ∩
F(−X,−Y ) in H(M) in unchanged. Since the class of {ti} ×U M|Si

∩ F(−X,−Y ) is
in HT , the class of F(X,Y ) ∩ F(−X,−Y ) is well determined in H(M).

Now we construct an explicit F(X,Y ) by using the homotopy of Lemma 2.5, which
we recall. Assume M is Riemannian. When X(m) 6= −Y (m), there is a unique
geodesic arc [X(m),Y (m)] with length (` ∈ [0, π[) from X(m) to Y (m). For t ∈
[0, 1], let Xt (m) ∈ [X(m),Y (m)] be such that the length of [X0(m) = X(m),Xt (m)]
is t`. This defines Xt on (M \ LX=−Y ).

Observe that this definition naturally extends to the boundary of the manifold
B̀ (M, LX=−Y ) obtained from M by blowing up LX=−Y . Indeed, X induces an orien-
tation-preserving isomorphism from the normal bundle NxLX=−Y to LX=−Y in M at
x to (−Y (x))⊥. Then for a unit element n of NxLX=−Y , Xt (n) describes the half great
circle from X(x) to Y (x) through the image of n under the above map. In particular,
the whole sphere is covered with degree 1 by the image of ([0, 1]× (NxLX=−Y/R∗+)).
Let Gh be the closure of (

⋃
t∈[0,1] Xt (M \ LX=−Y )). Then

Gh =
⋃

t∈[0,1]
Xt (B̀ (M, LX=−Y )).

Define the 3-cycle of U M

p(∂(X,Y )) = Y (M)− X(M)− [V (X),V (Y )]× ∂M,

where [V (X),V (Y )] is the shortest geodesic path from V (X) to V (Y ) in the fiber of
U M over ∂M, which is identified with S2 by τs. Then

∂Gh − p(∂(X,Y )) =
⋃

t∈[0,1]
Xt (−(∂B̀ (M, LX=−Y ) \ ∂M)) = U M|LX=−Y

,

because it is oriented like
⋃

t∈[0,1] Xt (∂N(LX=−Y )). Let ΣX=−Y be a two-chain trans-

verse to LX=Y and bounded by LX=−Y in M. Set G = Gh −
(
U M|ΣX=−Y

)
so that

∂G = p(∂(X,Y )). Let ι be the endomorphism of U M over M that maps a unit
vector to the opposite one. Set

F(X,Y ) = [0, 1/3]× X(M) + {1/3} × G + [1/3, 1]× Y (M)

and

F(−X,−Y ) = [0, 2/3]× (−X)(M) + {2/3} × ι(G) + [2/3, 1]× (−Y )(M).
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Then F(X,Y ) ∩ F(−X,−Y ) reads

[1/3, 2/3]× Y (LY =−X)− {1/3} × (−X)(ΣX=−Y ) + {2/3} × (Y )(ΣX=−Y ).

Using Lemma 3.4 with F(X,X) = [0, 1] × X(M) to evaluate the class of (F(X,Y ) ∩
F(−X,−Y )) in H(M) finishes the proof.

Proof of Proposition 3.1 Compute lk(LX=Z , LX=−Z) by computing the class of
F(X,Z) ∩ F(−X,−Z) in H(M) where F(X,Z) (resp. F(−X,−Z)) is constructed by
gluing shrinked copies of F(X,Y ) (resp. F(−X,−Y )) and F(Y,Z) (resp. F(−Y,−Z))
so that

[F(X,Z) ∩ F(−X,−Z)] = [F(X,Y ) ∩ F(−X,−Y )] + [F(Y,Z) ∩ F(−Y,−Z)].

3.2 Proof of Theorem 1.1

The first assertion of Theorem 1.1 follows from Lemma 2.1 and Corollary 2.8.
The second and third assertions follow from Lemma 2.16. If X and Y are two

transverse torsion sections of U M, then lk(LY =X, LY =−X) only depends on the comb-
ings [X] and [Y ] according to Lemma 2.17 (or to Proposition 3.6). Now assume that
Y ′ is another torsion section of U M such that LY ′=−X is homologous to LY =−X . Then
Y and Y ′ represent the same Spinc-structure and there exists k ∈ Z such that Y ′ rep-
resents [γkY ]. According to Corollary 2.24, lk(LY ′=Y , LY ′=−Y ) = −k. According to
Proposition 3.1,

lk(LY ′=X, LY ′=−X)− lk(LY =X, LY =−X) = lk(LY ′=Y , LY ′=−Y ).

Thus if lk(LY ′=X, LY ′=−X) = lk(LY =X, LY =−X), k = 0, and Y and Y ′ are homotopic.

4 On the Map p1

4.1 The Original Map p1 for Parallelizations

Let M be equipped with a parallelization τM : M × R3 → TM. Let GL+(R3) denote
the group of orientation-preserving linear isomorphisms of R3.

Let C0((M, ∂M), (GL+(R3), Id)) denote the set of maps

g : (M, ∂M) −→ (GL+(R3), Id)

from M to GL+(R3) that send ∂M to the identity Id of GL+(R3).
Let [(M, ∂M), (GL+(R3), Id)] denote the group of homotopy classes of such maps,

with the group structure induced by the multiplication of maps using the multipli-
cation in GL+(R3).

For a map g in C0((M, ∂M), (GL+(R3), Id)), define

ψ(g) : M × R3 −→ M × R3

(x, y) 7−→ (x, g(x)(y)).

Then any parallelization τ of M that coincides with τM on ∂M reads

τ = τM ◦ ψ(g)
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for some g ∈ C0((M, ∂M), (GL+(R3), Id)). Thus fixing τM identifies the set of ho-
motopy classes of parallelizations of M fixed on ∂M with [(M, ∂M), (GL+(R3), Id)].
Since GL+(R3) deformation retracts onto SO(3), the group[

(M, ∂M), (GL+(R3), Id)
]

is isomorphic to [(M, ∂M), (SO(3), Id)]. A map f from (M, ∂M) to (SO(3), Id) has
an integral degree deg( f ), which is the differential degree of f at a regular point of
SO(3) \ Id when f is smooth.

A proof of the following long-known proposition can be found in [20, Lem-
mas 6.1, 6.5, 6.6].

Proposition 4.1 For any compact connected oriented 3-manifold M, the group
[(M, ∂M), (SO(3), Id)] is abelian, and the degree

deg : [(M, ∂M), (SO(3), Id)] −→ Z

is a group homomorphism, which induces an isomorphism

deg : [(M, ∂M), (SO(3), Id)]⊗Z Q −→ Q.

Recall that, when n ≥ 2, πi(SU (n)) = {1} when 0 ≤ i < 3 and π3(SU (n)) =
Z. Indeed, SU (2) is homeomorphic to S3, and, for any n ≥ 2, and for any i ≤
3 the inclusion SU (n) ↪→ SU (n + 1) induces an isomorphism from πi(SU (n)) to
πi(SU (n + 1)) thanks to the long exact sequence of the fibration SU (n + 1)→ S2n+1,
which maps an element of SU (n + 1) to the image of the first basis vector.

Let W be a connected, compact 4-dimensional manifold whose boundary is

∂W =

{
M ∪1×∂M (−[0, 1]× S2) ∪0×S2 (−B3) when ∂M = S2,

M when ∂M = ∅.

When ∂M = S2, W has boundary and corners (that could be more accurately
called ridges, here). It is identified with an open subspace of one of the products
[0, 1[×B3 or ]0, 1] × M near ∂W . For any parallelization τ of M, the tangent vec-
tor Tt [0, 1] to [0, 1], the standard parallelization τs of R3 and τ together induce a
trivialization τ (∂W, τ ) of TW over ∂W , this trivialization reads Tt [0, 1] ⊕ τs or
Tt [0, 1]⊕ τ . The relative Pontrjagin class p1(W, τ (∂W, τ )) is the obstruction to ex-
tending the trivialization τ (∂W, τ ) ⊗ C of TW|∂W ⊗ C across W (with respect to
the trivialization of det(TW ) induced by the orientation of W ). It lives in the mod-
ule H4(W, ∂W ;π3(SU (4))), which is isomorphic to Z since π3(SU (4)) = Z. Under
canonical identifications specified in [16, Section 1.5], the relative Pontrjagin class is
an integral number. Recall that the signature of W is the signature of the intersection
form on H2(W ; R), which is the number of positive entries minus the number of
negative entries in a diagonal matrix of this form. The Pontrjagin number p1(τ ) of τ
is defined by

p1(τ ) = p1(W, τ (∂W, τ ))− 3 signature(W ).

For more details, see [16, Section 1.5] or [20, Proposition 6.13] where the following
classical theorem is proved.
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Theorem 4.2 Let M be a compact connected oriented 3-manifold such that ∂M = ∅
or S2. For any map g in C0((M, ∂M), (SO(3), Id)), for any trivialization τ of TM,

p1(τ ◦ ψ(g))− p1(τ ) = 2 deg(g).

For n ≥ 3, a spin structure of a smooth n-manifold A is a homotopy class of
parallelizations over a 2-skeleton of A (that is, over the complement of a point when
n = 3 and A is connected).

The class of the covering map ρ̃ described in Notation 2.19 is the standard genera-
tor of π3(SO(3)) = Z[ρ̃]. The map ρ can be used to describe the action of π3(SO(3))
on the homotopy classes of parallelizations (τ : M × R3 → TM) of M as follows.
Let B be a 3-ball in M identified with B3. Let τψ(ρ) coincide with τ outside B × R3

and read τ ◦ ψ(ρ) on B × R3. Set [ρ̃][τ ] = [τψ(ρ)]. According to Theorem 4.2,
p1([ρ̃][τ ]) = p1(τ ) + 4. The set of parallelizations that induce a given spin structure
of our M form an affine space with translation group π3(SO(3)).

The Rohlin invariant µ(M, σ) of a smooth closed 3-manifold M, equipped with a
spin structure σ, is the mod 16 signature of a compact spin 4-manifold W bounded
by M so that the spin structure of W restricts to M as a stabilization of σ.

Kirby and Melvin proved the following theorem [10, Theorem 2.6].

Theorem 4.3 For any closed oriented 3-manifold M, for any parallelization τ of M,

p1(τ ) ≡ dimension(H1(M; Z/2Z)) + β1(M) (mod 2).

Let M be a closed 3-manifold equipped with a given spin structure σ. Then p1 is a
bijection from the set of homotopy classes of parallelizations of M that induce σ to

2
(
dimension(H1(M; Z/2Z)) + 1

)
+ µ(M, σ) + 4Z

When M is an integer homology 3-sphere, p1 is a bijection from the set of homotopy
classes of parallelizations of M to (2 + 4Z).

Extend the standard parallelization τs of B3 as a parallelization τ̂s of S3. When
∂M = S2, form M̂ = (S3 \ (B3 \ N(∂M))) ∪N(∂M) M and use τ̂s to extend any
parallelization τ of M to a parallelization τ̂ of M̂. Then it is easy to see that p1(τ ) =
p1(τ̂ )− p1(τ̂s). In particular, according to Theorem 4.3,

p1(τ ) ≡ dimension(H1(M; Z/2Z)) + β1(M) (mod 2)

and, when M is an integer homology 3-ball, the map p1 is a bijection from the set of
homotopy classes of parallelizations of M to 4Z.

4.2 Proofs of Theorems 1.2 and 1.4

Lemma 4.4 Let τ be a trivialization of TM. Let g ∈ C0((M, ∂M), (SO(3), Id)).
Recall that pS2 : SO(3)→ S2 maps a transformation t of SO(3) to t(N), where N is the
first basis vector of R3. Let X and Y be two sections of U M induced by τ and τψ(g),
respectively. Then

lk(LY =X, LY =−X) = lk
(

(pS2 ◦ g)−1(N), (pS2 ◦ g)−1(−N)
)

= −1

2
deg(g).
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Proof The first equality follows from the definition. It implies that

lk(LY =X, LY =−X) = lk
(

(pS2 ◦ g)−1(N), (pS2 ◦ g)−1(−N)
)

= lk′(g)

only depends on g. Then Proposition 3.1 implies that lk′ is a homomorphism from
[(M, ∂M), (SO(3), Id)] to Q . According to Proposition 4.1 it suffices to evaluate
lk′(ρ) for the element ρ regarded as a degree 2 map of C0((B3, ∂B3), (SO(3), Id)).
According to Corollary 2.24, when g = ρ, lk(LY =X, LY =−X) = −1.

Proof of Theorem 1.2 Theorem 4.2 and Lemma 4.4 show that if X and Y extend to
parallelizations τ (X) and τ (Y ), then

p1(τ (Y ))− p1(τ (X)) = −4lk(LY =X, LY =−X).

For any torsion combing [Y ], define p1([Y ]) from a combing [X] that extends to a
parallelization by

p1([Y ]) = p1([X]) + 4lk(LX=Y , LX=−Y ).

Thanks to Proposition 3.1, since this formula is valid for combings that extend to par-
allelizations, this definition does not depend on the choice of X. Now Proposition 3.1
implies that the above formula is valid for all pairs of torsion combings.

Since [−X] = [X] for a section X that extends as a trivialization, we deduce that
p1([−Y ]) = p1([Y ]), for all torsion sections Y of U M, from the above definition.

According to the following lemma, Proposition 2.25 ensures the injectivity of the
restriction of p1 to C(ξ) for any torsion Spinc-structure ξ.

Lemma 4.5 For any torsion combing [X], p1(γ[X])− p1([X]) = 4.

Recall Corollary 2.24.

Proposition 4.6 With the notation of Theorem 2.9, if (L, L‖) is a framed rationally
null-homologous link of the interior of M, then

p1

(
[C(τ , L, L‖)]

)
= p1(τ )− 4lk(L, L‖).

Proof Set Y = C(τ , L, L‖). Assume that τ reads (X,X2,X3) so that L = LY =−X .
Then X and X2 are homotopic sections of U M so that p1(τ ) = p1([X]) = p1([X2])
and, according to Theorem 1.2, p1([Y ]) = p1(τ ) − 4lk(LY =X2 , LY =−X2 ). The link
(LY =X2 , LY =−X2 ) is isotopic to (L, L‖).

Proof of Theorem 1.4 According to Theorem 2.9, any torsion section Y of U M is
homotopic to C(τ , L, L‖), for some L and τ as in Proposition 4.6 and in its proof.
In particular, since L = LY =−X , p1([Y ]) ∈ p1(τ ) − 4`([LY =−X])) and p1([Y ]) ∈
p1(τ ) − 4`(Torsion(H1(M; Z)). Conversely, any element in `(Torsion(H1(M; Z))
reads lk(L, L‖) for some rationally null-homologous link L.

4.3 Identifying p1 with the Gompf Invariant

Let us first recall the definition of the Gompf invariant. An almost-complex structure
on a smooth 4-dimensional manifold W is an operator J such that J2 = − Id, acting
smoothly on the tangent space to W , fiberwise, so that identifying the multiplication
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by J with the multiplication by i transforms the real bundle TW into a bundle with
fiber C2. An almost-complex structure on W induces a combing of ∂W , which is
the class of the image [ Jν = J(ν(∂W ))] under J of the outward normal ν(∂W ) to
W . Gompf showed that all the combings of a 3-manifold appear as combings Jν for
some W [4, Lemma 4.4]. This will be reproved below. The first Chern class c1(TW, J)
of (TW, J) lives in H2(W ; Z). It is the obstruction to trivializing TW over the two-
skeleton of W as an almost-complex manifold (the induced trivialization of TW must
read (X, JX,Y, JY )). (In general, the first Chern class c1 of a complex vector bundle
restricts to real surfaces as the Euler class of the corresponding determinant bundle.)
The restriction of c1(TW, J) to H2(∂W ; Z) is e(( Jν)⊥) so that the boundary of a
chain Σ′ that represents the Poincaré dual Pc1(TW, J) of c1(TW, J) is Poincaré dual
to e(( Jν)⊥). When Jν is a torsion combing, this boundary ∂Σ′ represents a torsion
element of H1(∂W ; Z) so that there exists a rational 2-chain Σ of ∂W such that (Σ′∪
Σ) is a closed rational 2-cycle of W . The algebraic self-intersection of this rational
cycle is independent of Σ and it is denoted by (Pc1(TW, J))2, and the Gompf invariant
θG( Jν), which is denoted by θ( Jν) in [4, Section 4] is

θG( Jν) = (Pc1(TW, J))2 − 2χ(W )− 3 signature(W ),

where χ stands for the Euler characteristic.
In this subsection, where M has no boundary, we prove that θG = p1.

Lemma 4.7 If a combing X of M extends as a parallelization, then θG([X]) =
p1([X]).

Proof For a rank 2k complex bundle ω seen as a rank 4k real bundle ωR, p1(ωR) =
c2

1(ω)−2c2(ω), where c2 denotes the second Chern class, which is the Euler class of ωR

for a rank 2 complex bundle ω. See [23, Definition p. 158 § 14 and Corollary 15.5].
Let (W, J) be an almost-complex connected compact manifold bounded by M such
that X = Jν and let Y be a nowhere zero section of X⊥ ⊂ TM. Consider the
almost-complex parallelization (ν,Y ) inducing the real parallelization (ν, Jν,Y, JY )
of TW|M , and the complex bundle ω over (W ∪M (−W )) that is trivial with fiber
Cν ⊕ CY over (−W ) and that coincides with the initial one over W . Since the char-
acteristic classes p1, c1, and c2 of ωR or ω trivially restrict to H∗(−W ), they come
from classes of H∗(W ∪M (−W ),−W ) ∼= H∗(W,M). Thus, p1(ωR) is the image of
p1(W, ( Jν,Y, JY ))[W, ∂W ] ∈ H4(W, ∂W ), and c2(ω) is the image of c2(TW, ν) ∈
H4(W, ∂W ), which is χ(W )[W, ∂W ], since c2 is the obstruction to extending ν as a
nowhere zero section of TW , which is the relative Euler class of (TW, ν). Similarly,
c1(ω) is the image of a lift c̃1 of c1(TW, J) in H2(W, ∂W ), where Pc̃1 is represented
by a cycle of W that can be constructed as in the definition of (Pc1(TW, J))2 before
Lemma 4.7. The Poincaré dual Pc1(ω) of c1(ω) is the image of this cycle (Σ′ ∪ Σ) in
H2(W ∪M (−W )) and p1(W, ( Jν,Y, JY )) = (Pc1(TW, J))2 − 2χ(W ).

Lemma 4.8 When a combing X of M extends as a parallelization, θG([γX]) =
θG([X]) + 4.

Proof According to Lemma 4.5, p1([γX]) = p1([X]) + 4 for any [X].
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Any closed oriented connected 3-manifold M is the boundary of a 4-manifold

WL = B4 ∪L×D2⊂S3

∐
i=1,...,n

(D2 × D2)(i)

obtained from B4 by attaching 2-handles (D2 × D2)(i)
i=1,...,n along a tubular neighbor-

hood L× D2 of a framed link L = (Ki , µi)i=1,...,n. Such a framed link L is an integral
surgery presentation of WL and M. The Ki are the components of L; the µi are the
surgery parallels Ki × {1} ⊂ Ki × D2 that frame the Ki , and the handle (D2 × D2)(i)

is attached by a natural identification of Ki × D2 ⊂ ∂B4 with ((−S1) × D2)(i) that
restricts to µi as an orientation-reversing homeomorphism onto (S1 × {1})(i).

According to a theorem of Kaplan [9], we can furthermore demand that lk(Ki , µi)
is even for any i in the statement above. In this case, we will say that the surgery
presentation is even.

Lemma 4.9 Let L be an even surgery presentation of M. There is an almost-complex
structure Jb on WL (described below) such that e(( Jbν)⊥) = 0. For any Spinc structure
ξ on M, there is at least one almost complex structure J on WL (described below) such
that the class of Jν belongs to ξ, and if Jν is a torsion combing, then p1( Jν)− p1( Jbν) =
θG( Jν)− θG( Jbν).

Proof We will only consider almost-complex structures J that are compatible with a
given Riemannian metric in the following sense: J preserves the Riemannian metric
and Jx is orthogonal to x for any x. Furthermore, in all the local product decom-
positions below, the Riemannian metric is supposed to be a product metric. Our
almost-complex structures J of 4-manifolds also induce the orientation via local par-
allelizations of the form (X, JX,Y, JY ). Below, B4 is seen as the unit complex ball of
C2 and equipped with the corresponding complex structure, it is equipped with its
usual Riemannian structure. It is also seen as the unit ball of the quaternion field
H = C ⊕ C j, so that S3 is identified with the group of unit quaternions and TxS3 is
the space of quaternions orthogonal to x.

A homotopy

Jν : [−1, 0]× S3 −→ TS3

(t, x) 7−→ Jν(t, x) ∈ TxS3

such that Jν(−1, x) = ix, and ‖ Jν(t, x)‖ = 1 induces a homotopic almost-complex
structure on B4 as follows. The complex structure is unchanged outside a collar
[−1, 0]× S3 of the boundary of B4, and the operator J of the almost-complex struc-
ture maps the unit tangent vector to [−1, 0] × {x ∈ S3} at (t, x) to Jν(t, x). Note
that J is completely determined by these conditions. If such a homotopy is such that
Jν(0, · ) is tangent to Ki×{y} on Ki×D2, then the associated almost-complex struc-
ture J preserves the tangent space to {x}×D2 and it uniquely extends to (D2×D2)(i)

so that J preserves the tangent space to {x}×D2 and J is compatible with the product
Riemannian structure on (D2 × D2)(i). In particular, J maps the outward normal to
(D2 × S1)(i) ⊂ M at (x, y ∈ S1) to the unit tangent vector to ({x} × S1)(i) at (x, y).

Before smoothing the ridges, WL reads (R2\{(x, y); x < −1, y > −1})×(−Ki)×
S1 near Ki×S1. The 4-manifold WL is next smoothed around Ki×S1; the smoothing
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νB4

νD2×D2

B4

(D2 × D2)(i)

νB4

νD2×D2

WL

Figure 1: WL near Ki × S1 before and after smoothing.

adds the product of Ki × S1 by a triangle with two orthogonal straight sides and a
smooth hypothenuse that makes null angles with the two straight sides. See Figure 1.

In the plane of the triangle, the normal ν reads ν = cos(θ)νB4 + sin(θ)νD2×D2

for some θ ∈ [0, π/2]. Extend J on the triangle, naturally, so that Jν reads Jν =
cos(θ) JνB4 +sin(θ) JνD2×D2 and Jν goes from the tangent to Ki×{y} to the tangent to
({x}×S1)(i) on T(x,y)Ki×S1 by the shortest possible way on the smooth hypothenuse.

Then J and Jν are completely determined on WL by the homotopy Jν on [−1, 0]×
S3, and we now study them as a function of this homotopy.

We will consider homotopies induced by homotopies of orthonormal paralleliza-
tions, i.e., homotopies Jν such that there is a homotopy V : [−1, 0] × S3 → TxS3,
where V (t, x) ∈ TxS3, V (t, x) ⊥ Jν(t, x), ‖V (t, x)‖ = 1 and V (−1, x) = jx. Fur-
thermore, our homotopies are such that Jν(0, · ) is tangent to Ki × {y} on Ki × D2,
so that V (0, x) induces a framing of Ki . The linking number of Ki with the parallel of
Ki induced by this framing is denoted by ri . Recall that H1(SO(3); Z) = π1(SO(3)) =
Z/2Z is generated by a loop of rotations (exp(iθ) 7→ ρ(θ,A)) about a fixed arbitrary
axis A.

Sublemma 4.10 The integers ri are odd.

Proof of Sublemma 4.10 Let Σ be a (connected) Seifert surface of Ki . Then TM|Σ
has a trivialization τΣ whose third vector is the positive normal νΣ to Σ and whose
first vector over Ki is obtained from the tangent vector vK to Ki by rotating it (−χ(Σ))
times around the axis νΣ, along Ki . On the other hand, the first vector of the restric-
tion to Ki of the trivialization τ JV induced by Jν(0, · ) and V (0, · ) is vK , and its third
vector is obtained from νΣ by rotating it ri times around vK along Ki . Then τ−1

Σ ◦τ JV

induces a map from Σ to SO(3) whose restriction to Ki represents a trivial homology
class in H1(SO(3)). Since the class of this restriction is (ri + χ(Σ)) mod 2 and since
χ(Σ) is odd, ri is odd, too.

Sublemma 4.11 The integers ri can be changed to any arbitrary odd number by
perturbing the homotopy near Ki × D2.

Proof of Sublemma 4.11 Assume without loss of generality that Jν(0, · ) is tangent
to Ki × {y} on a bigger tubular neighborhood Ki × 2D2. Let e1 denote the first basis
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vector of R3. Consider a map

F : [0, 1]× S1 → SO(3)
(t, exp(iθ)) 7→ Id if t = 1 or θ ∈ 2πZ

ρ(2θ, e1) if t = 0.

Then ( Jν,V, JV )(0, · ) cam be replaced on Ki × 2D2, with the homotopic map that
maps (0, (exp(iθ), u exp(iη))) to

F
(

max(0, u− 1), exp(ikiθ)
)(

( Jν,V, JV )
(

0,
(

exp(iθ), u exp(iη)
)))

for some integer ki . Since this changes ri to ri + 2ki , this shows that ri can be changed
to any odd number.

Now, the obstruction to extending V as a unit vector tangent to the second almost-
complex factor D2 across (D2 × · )(i) is −(ri − lk(µi ,Ki)), and the obstruction to
extending Jν, which is the tangent to Ki × {y}, as a unit vector tangent to the first
almost-complex factor across (D2 × · )(i) is 1. In particular, the Poincaré dual of
the Chern class c1(TWL, J) may be represented by a chain that does not intersect B4

(since H2(B4, S3) = 0) and that intersects (D2×D2)(i) as (1−ri +lk(µi ,Ki))(0×D2)(i).
Let ( Jbν,Vb) be a pair of orthogonal homotopies such that ri = lk(µi ,Ki) + 1. Then
c1(TWL, Jb) = 0 and θG( Jbν) = −2χ(WL)− 3 signature(WL).

Change ri to (ri + 2ki) as in Sublemma 4.11 and denote the obtained almost-
complex structure by J. Compare the induced vector fields and compute L Jν=Vb and
L Jν=−Vb .

The exact sequence of the fibration from pS2 : SO(3) → S2 (defined after Nota-
tion 2.19) allows us to show that composing the map F in the proof of Sublemma 4.11
by pS2 provides a degree ±1 map from ([0, 1] × S1, ∂[0, 1] × S1) to (S2, e1). Thus,
there exists a well-determined ε = ±1 such that L Jν=Vb and L Jν=−Vb are homologous
to ε

∑n
i=1 kimi in (L × D2) \ L, where mi is a meridian of Ki . We can furthermore

assume that L Jν=Vb ⊂ L × uS1 and L Jν=−Vb ⊂ L × u′S1 for two distinct elements
u and u′ of ]1, 2[. Let mi (resp. mi‖) denote a meridian of Ki in L × uS1 (resp. in
L× u′S1).

Since the meridians mi generate H1(M; Z) for any Spinc-structure ξ, there exists
an almost-complex structure J as above such that Jν belongs to ξ. The combing Jν
is torsion if and only if L Jν=−Vb represents a torsion element in H1(M; Z). Assume
that Jν is torsion from now on. According to Theorem 1.2,

p1( Jν)− p1( Jbν) = p1( Jν)− p1(Vb) = −4lk
( n∑

i=1
kimi ,

n∑
i=1

kimi‖

)
.

On the other hand, since the boundary of a representative of Pc1(TWL, J) is homol-
ogous to 2L Jν=−Vb , Pc1(TWL, J) is represented by Σ′ = 2ε

∑n
i=1 ki(0 × D2)(i). Set

Σ′‖ = 2ε
∑n

i=1 ki(x × D2)(i) for x ∈ D̊2 \ {0}, and let (−∂Σ′) and (−∂Σ′‖) bound Σ
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and Σ‖ in M, respectively, so that

θG( Jν)− θG( Jbν)

= (Pc1(TW, J))2 = 〈Σ′ ∪ Σ,Σ′‖ ∪ Σ‖〉WL∪∂WL=0×M [0,1]×M

=
〈

(−[0, 1/2]× ∂Σ) ∪ (1/2× Σ), (−[0, 2/3]× ∂Σ‖) ∪ (2/3× Σ‖)
〉

[0,1]×M

= −〈Σ, ∂Σ‖〉M = p1( Jν)− p1( Jbν).

The previous lemma, Lemma 4.5, and the transitivity of the action of π3(S2) on
the combings of a Spinc-structure reduce the proof that θG = p1 to the proof of the
following lemma.

Lemma 4.12 θG([γX])− θG([X]) = 4 for any combing [X].

Proof We refer to the previous proof. Add a trivial knot U framed by +1 to a
surgery presentation L, such that WL is equipped with an almost-complex structure
J. The structure J is homotopic to a structure J(1) that extends on WL∪U so that
Pc1(TW, J(1)) is represented by (0×D2)(0). Then θG( J(1)ν)−θG( Jν) = 1−2−3 = −4.
The structure J is also homotopic to a structure J(3) that extends on WL∪U so that
Pc1(TW, J(3)) is 3(0 × D2)(0), then θG( J(3)ν) − θG( J(0)ν) = 9 − 2 − 3 = 4. These
two combing modifications sit in a 3-ball of M so that each of them corresponds to
the action of an element of π3(S2) independent of (M, J). According to Lemma 4.8,
[ J(1)ν] = [γ−1 Jν] and [ J(3)ν] = [γ Jν]. Since the above process allows us to induc-
tively represent all the combings [γk Jν], by adding some disjoint trivial knots framed
by +1, and to prove that θG(γk Jν)− θG(γk−1 Jν) = 4, for all k ∈ Z, we are done.

Remark 4.13 For a natural integer k and for a surgery presentation L of M in S3,
let L(k) be the surgery presentation of M obtained from L by adding k trivial knots
framed by +1. On our way, we have proved that for any combing [X] and for any even
surgery presentation L of M, there exist a natural integer k and an almost complex
structure J on WL(k) such that [X] = [ Jν].

4.4 More Variations of p1

In applications, combing modifications often arise as in Definition 4.16 or as in the
statement of Proposition 4.21. We show how Formula (1.3) applies in these settings
to yield other useful variation formulas.

Lemma 4.14 Let M be equipped with a torsion section X of U M. Let L be a rationally
null-homologous link in the interior of M. Let Z be a section of U M orthogonal to X,
such that Z is defined on L and ∂M. Extend Z as a section Z̃ of the R2-bundle X⊥ so
that Z̃ is transverse to the zero section. Let L(Z ⊂ X⊥) be the zero locus of Z̃ cooriented
by the fiber of X⊥. Then L(Z ⊂ X⊥) is a link of M \ L that represents the Poincaré dual
of the relative Euler class of (X⊥,Z), and L(Z ⊂ X⊥) is homologous to the Poincaré
dual of e(X⊥).
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Remark 4.15 Lemma 4.14 can be taken as a definition of the relative Euler class in
this case. The obstruction to extending Z as a section of U M ∩ X⊥ across a 2-cycle
of (M, L ∪ ∂M) is the algebraic intersection of the 2-cycle with L(Z ⊂ X⊥).

Definition 4.16 Let X be a section of U M. Let L be a link in the interior of M and
let Z be a section of U M|L orthogonal to X. Let η = ±1, let L‖ be a parallel of L,
and let N(L) be a tubular neighborhood of L where Z is extended as a section of U M
orthogonal to X. Let ρ(θ,X) denote the rotation with axis X and angle θ. Let D2 =
{u exp(iθ); u ∈ [0, 1], θ ∈ [0, 2π]} be the unit disk of C. Define D(X, L, L‖,Z, η)
(up to homotopy) as the section of U M that coincides with X outside N(L) and that
reads as follows in N(L), which is trivialized with respect to L‖ so that it reads D2×L:
• D(X, L, L‖,Z, η)(0, k ∈ L) = −X(0, k),
• when u ∈]0, 1], [−X,D(X, L, L‖,Z, η)(u exp(iθ), k)] is the geodesic arc of length

uπ of the half great circle [−X,X]ρ(ηθ,X)(Z) from (−X) to X through ρ(ηθ,X)(Z),
where X and Z stand for X(u exp(iθ), k) and Z(u exp(iθ), k), respectively,

so that
D(X, L, L‖,Z, η)(1/2, k) = Z(1/2, k).

Note that the homotopy class of D(X, L, L‖,Z, η) can also be defined by the following
formula:

D(X, L, L‖,Z, η)(u exp(iθ), k) = ρ
(
π(1 + u), ρ(ηθ − π/2,X)(Z)

)
(X)(u exp(iθ), k).

Remark 4.17 With the notation of Remark 2.3,

C(X, L, σ) = D
(

X, L, L‖,Z(σ, σN ),−1
)
.

Proposition 4.18 Under the assumptions of Lemma 4.14, let η = ±1, let L‖ be a
parallel of L, and let N(L) be a tubular neighborhood of L where Z is extended as a
section of U M orthogonal to X. For the section D(X, L, L‖,Z, η) of Definition 4.16,

p1

(
[D(X, L, L‖,Z, η)]

)
− p1([X]) = 4lk

(
L, ηL(Z ⊂ X⊥

)
− L‖).

Proof Set Y = D(X, L, L‖,Z, η). Let τ be the parallelization of N(L) with first
vector X and second vector Z. Then τ−1 maps Y (D2/∂D2 × k) to the sphere S2 with
degree (−η) so that LY =−X = −ηL and LX=−Y = ηL. In order to use Theorem 1.2,
deform X to X̃ to make it transverse to Y using Z̃ as follows. Let

N1/3(L) = {(u exp(iθ), k ∈ L) ∈ N(L); u ∈ [0, 1/3]},
N2/3(L) = {(u exp(iθ), k) ∈ N(L); u ∈ [0, 2/3]}.

Consider a smooth function χ : M → [0, 1] that maps (M\N2/3(L)) to 1 and N1/3(L)
to 0. Let ε be a very small positive real number; set

X̃ =
1

‖ X + εχZ̃ ‖
(X + εχZ̃)

so that X̃(M) is now transverse to Y (M). Outside U M|N(L), X̃(M) ∩ Y (M) reads

Y (L(Z ⊂ X⊥)), whereas on U M|N(L), Y (M)∩X̃(M) reads Y (−ηL‖), because Y covers
S2 with degree (−η) along a fiber of N(L).
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We have the two immediate corollaries.

Corollary 4.19 Under the hypotheses of Proposition 4.18, when Z extends as a section
of the unit bundle of X⊥ on M,

p1

(
[D(X, L, L‖,Z, η)]

)
= p1([X])− 4lk(L, L‖).

Corollary 4.20 Under the hypotheses of Proposition 4.18, let

K = {K(exp(iκ) ∈ S1)}
be a component of L, let r ∈ Z, and let Zr = Z on L \ K and Zr(K(k = exp(iκ))) =
ρ(rκ,X)(Z)(k). Then

p1

(
[D(X, L, L‖,Zr, η)]

)
− p1

(
[D(X, L, L‖,Z, η)]

)
= 4ηr.

Note that under the hypotheses of Proposition 4.18, when X is tangent to L, if Z is
induced by L‖, then D(X, L, L‖,Z, 1) is independent of Z and L‖.

The following combing modification also arises in the study of combings associ-
ated with Heegaard diagrams.

Proposition 4.21 Let M be equipped with a torsion section X of U M. Let K be a
rationally null-homologous knot in the interior of M. Write a tubular neighborhood
N(K) of K as N(K) = (D2 × I)/∼, where I = [0, 1], D2 is the unit disk of C, and
∼ identifies (u exp(iθ), 1) with (u exp(iθ + rπ), 0) for (u, θ) ∈ [0, 1] × [0, 2π], for
some integer r. Let K(2) be the satellite K(2) = {(± 1

2 , t); t ∈ I} of K in N(K), which
is connected if and only if r is odd. Let s be the involution of K(2) such that s( 1

2 , t) =

(− 1
2 , t). Regard X as a function from N(K) to S2 with respect to some trivialization

of U M|N(K), and assume that X is constant with value X(t) on {(z, t); z ∈ D2}, for
every t. Let Z be a section orthogonal to X of the restriction of U M to K(2), such that
Z(s(κ)) = −Z(κ), for all κ ∈ K(2). Define D(X,K,K(2),Z,−1) as follows:

• D(X,K,K(2),Z,−1)(0, t ∈ I) = −X(0, t),
• when u ∈]0, 1], [−X,D(X,K,K(2),Z)(u exp(iθ), t)] is the geodesic arc of length

uπ of the half great circle [−X,X]ρ(−θ,X)(Z(1/2,t)) from (−X(t)) to X(t) through
ρ(−θ,X(t))(Z(1/2, t)),

so that D(X,K,K(2),Z,−1)(1/2, t) = Z(1/2, t). Let f be a smooth (not strictly) in-
creasing surjective function from the interval I to [0, π], that is constant near the ends of
I. Let k ∈ Z. Define

Tk : D2 × I −→ D2 × I(
u exp(iθ), t

)
7−→

(
u exp

(
i(θ + k f (t))

)
, t
)

so that T is a half-twist. Define Tk
∗(Z) on the satellite T(k)(K(2) ∩ (D2×]0, 1[)) of K so

that for ε ∈ {−1,+1},

Tk
∗(Z)

(( ε
2

exp(ik f (t)), t
))

= ρ(k f (t),X)
(

Z
(( ε

2
, t
)))

.

Then

p1

(
[D(X, L,Tk(L(2)),Tk

∗(Z),−1)]
)
− p1

(
[D(X, L, L(2),Z,−1)]

)
= −4k.
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Proof The variation of a section under some Tk sits inside a ball D2 × [ε, 1 − ε].
Therefore, the corresponding variation of p1 may be read in this ball. It does not
depend on the trivialization of the ball induced by X and Z, since all of them are
homotopic. Therefore, it only depends on k, linearly. The coefficient is obtained by
looking at the effect of the twist T2 on a D(X,K,K‖,Z,−1) as in Proposition 4.18.

5 The Θ-invariant of Combings

In this section, we present a definition of the invariant Θ of combings of rational
homology balls. This definition is deeply inspired from the definition of ΘKKT that
can be found in [17, Section 6.5] and in [18, Theorem 2.14]. It also appears in [19].
Finally, we prove that Θ = 6λ(M̂) + p1

4 .

5.1 On Configuration Spaces

Recall that blowing up a submanifold A means replacing it with its unit normal bun-
dle. See Definition 3.5.

In a closed 3-manifold R, we fix a point ∞ and define C1(R) as the compact
3-manifold obtained from R by blowing up {∞}. This space C1(R) is a compact-
ification of Ř = (R \ {∞}).

The configuration space C2(R) is the compact 6-manifold with boundary and cor-
ners obtained from R2 by blowing up (∞,∞), and the closures of {∞}×Ř, Ř×{∞}
and the diagonal of Ř2, successively.

Then ∂C2(R) contains the unit normal bundle to the diagonal of Ř2. This bundle
is canonically isomorphic to U Ř via the map

[(x, y)] ∈
Tr Ř2

diag
\ {0}

R∗+
7→ [y − x] ∈ TrŘ \ {0}

R∗+
.

Since ((R3)2 \ diag) is homeomorphic to R3×]0,∞[×S2 via the map

(x, y) 7→
(

x, ‖ y − x ‖, 1

‖ y − x ‖
(y − x)

)
,

((R3)2\diag) is homotopy equivalent to S2. In general, C2(R) is homotopy equivalent
to (Ř2 \ diag). When R is a rational homology 3-sphere, Ř is a rational homology R3

and the rational homology of (Ř2 \ diag) is isomorphic to the rational homology of
((R3)2 \ diag). Thus, C2(R) has the same rational homology as S2, and H2(C2(R); Q)
has a canonical generator [S] that is the homology class of a fiber of U Ř ⊂ C2(R),
oriented as the boundary of the unit ball of a fiber of TŘ. For a 2-component link
( J,K) of Ř, the homology class [ J × K] of the image of J × K in H2(C2(R); Q) reads
lk( J,K)[S], where lk( J,K) is the linking number of J and K, see [20, Proposition 1.6].

5.2 On Propagators

When R is a rational homology 3-sphere, a propagator of C2(R) is a 4-cycle F of
(C2(R), ∂C2(R)) that is Poincaré dual to the preferred generator of H2(C2(R); Q)
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that maps [S] to 1. For such a propagator F, for any 2-cycle G of C2(R),

[G] = 〈F,G〉C2(R)[S]

in H2(C2(R); Q).
Let B and 1/2B be two balls in R3 of respective radii ` and `/2, centered at the

origin in R3. Identify a neighborhood of∞ in R with S3\(1/2B) in (S3 = R3∪{∞})
so that Ř reads Ř = M∪]`/2,`]×S2 (R3 \ (1/2B)) for a rational homology ball M whose
complement in Ř is identified with R3 \ B. There is a canonical regular map

p∞ : (∂C2(R) \U M)→ S2

that maps the limit in ∂C2(R) of a converging sequence of ordered pairs of distinct
points of (Ř \M) to the limit of the direction from the first point to the second one.
See [16, Lemma 1.1]. Recall that τs : R3 × R3 → TR3 denotes the standard paral-
lelization of R3. Also recall that the sections X of U M that we consider are constant
on ∂M, i.e., they read τs|∂M×{V (X)} for some fixed V (X) ∈ S2 on ∂M. Let X be
such a section and let X(M) abusively denote its graph in U M. Then the propagator
boundary bX associated with X is the following 3-cycle of ∂C2(R)

bX = p−1
∞ (V (X)) ∪ X(M)

and a propagator associated with the section X is a 4-chain FX of C2(R) whose bound-
ary reads bX . Such an FX is indeed a propagator, because the algebraic intersection in
U M of X(M) and a fiber is one.

5.3 On the Θ-invariant of a Combed Rational Homology 3-sphere

Theorem 5.1 Let X be a section of U M (which is constant on ∂M) for a rational
homology 3-ball M, and let (−X) be the opposite section. Let FX and F−X be two associ-
ated transverse propagators. Then FX ∩F−X is a two-dimensional cycle whose homology
class is independent of the chosen propagators. It reads Θ(M,X)[S], where Θ(M,X) is
a rational–valued topological invariant of (M, [X]).

Proof Recall that C2(R = M ∪]`/2,`]×S2 (S3 \ (1/2B))) has the same rational homol-
ogy as S2. In particular, since H3(C2(R); Q) = 0, there exist propagators FX and F−X

with the given boundaries bX and b−X . These propagators may be chosen transverse.
Without loss of generality, assume that F±X ∩ ∂C2(R) = b±X . Since bX and b−X do
not intersect, FX ∩ F−X is a 2-cycle. Since H4(C2(R); Q) = 0, the homology class of
FX ∩ F−X in H2(C2(R); Q) does not depend on the choices of FX and F−X with their
given boundaries. It reads Θ(M,X)[S]. Then it is easy to see that Θ(M,X) ∈ Q is a
locally constant function of the section X.

When R is an integer homology 3-sphere, a combing X is the first vector of a
unique parallelization τ (X) of Ř that coincides with τs outside M, up to homotopy.
When R is a rational homology 3-sphere, and when X is the first vector of a such a
parallelization τ (X), this parallelization is again unique. In this case, according to
[17, Section 6.5] (or [18, Theorem 2.14]), the invariant Θ(M,X) is the degree 1 part
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of the Kontsevich invariant of (M, τ (X)) [12, 13, 16] and

(5.2) Θ(M,X) = 6λ(M̂) +
p1(τ (X))

4

with the notation of the introduction where M̂ = R.
With our extension of the definition of p1 to combings, we prove that Formula

(5.2) also holds for combings.

Theorem 5.3 Let M be a rational homology 3-ball. Let X and Y be two transverse
sections of U M. Then

Θ(M,Y )−Θ(M,X) = lk(LX=Y , LX=−Y ).

In particular,

Θ(M,X) = 6λ(M̂) +
p1([X])

4
.

Proof Let us prove that Θ(M,Y ) − Θ(M,X) = lk(LX=Y , LX=−Y ). This can be
done as follows. Let F−1(±X,±Y ) be the chain F(±X,±Y ) of Lemma 3.3 trans-
lated by −1 and seen in a collar [−1, 0] × U M of U M in C2(R). Assume that
FX and F−X behave as products [−1, 0] × ∂F±X in [−1, 0] × U M. Then replac-
ing these parts with F−1(X,Y ) and F−1(−X,−Y ), respectively, and making the ap-
propriate easy corrections in C2(R) \ C2(M) transforms FX and F−X into chains FY

and F−Y so that [FY ∩ F−Y ] = [FX ∩ F−X] + [F−1(X,Y ) ∩ F−1(−X,−Y )] where
[F−1(X,Y )∩F−1(−X,−Y )] = lk(LX=Y , LX=−Y )[S] according to Proposition 3.6.
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