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ON THE BOUNDARY CONDITION OF TRANSPORT

SEMIGROUP
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To Professor K. Ono on the occasion of his 60th birthday

Let S be the product space of finite interval [—r, r\ and two points

θ = {θάzl}. We denote by C(S) the Banach space of continuous functions

on S with norm ||/|| = max \f(x,θ)\. Let A be a differential operator of
(x,θ~)<=S x

the first order defined on S as the following:

Au{x, θ) = θa{x, θ) -j— u(%, θ) — b{x, θ)u(x, θ) + c(x9 θ)u{x, -0).1)

A strongly continuous and positive contraction semigroup {Tt9 t^:0} on

C(S) is called transport semigroup if its infinitesimal generator is a suitable

restriction of A

The purpose of this paper is to study the question of the most general

supplementary condition which restricts the given operator A to a infinite-

simal genereator of a transport semigroup. We first try to find the lateral

(boundary) condition which is satisfied by all smooth functions in the do-

main of the infinitesimal generator of the given transport semigroup, fol-

lowing the method in A.D. Wentzell [14] (Theorem 1. 1). We next show

that such a condition is sufficient to determine the semigroup whose infinite-

simal generator is a restriction of A (Theorem 5. 2).

Similar problems have been studied by W. Feller [3]-[β] in case of one-

dimensiόnal diffusion (see also K. Ito, H.P. Mckean. Jr [10] and A.D. Went-

zell [16]), and by P. Courrege [1], N. Ikeda [8], K. Sato, T. Ueno [11] and

A.D. Wentzell [14]-[15] in case of multi-dimensional diffusion.

In §1 of this paper, we show that any continuously differentiable func-

tion belonging to the domain of the infinitesimal generator satisfies the

following boundary condition:

Received February 10, 1969
χ) Precise definition is given in § 1.
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220 TOITSU WATANABE

Lu{rΘ9Θ) = 0, (rθ,θ) is a boundary point of S:

Lu{rd, θ) = r(rθ, θ)u(rθ, θ) + δ{rθ, θ)Au{rθ, θ)

>)).υ

In section 2, we define the Green operator G™in of the transport process

with absorbing barriers and the harmonic operator HΛ of A. We, in section

3, give the semigroup S* on Banach space C{dS), consisting of all of func-

tions on the boundary dS = {(r, 1)}U{(—r, —1)}, whose infinitesimal generator

is LHa. In section 4, we construct analytically the transport process with

regular boundary (see Section 2) which is determined by A and L, com-

bining the Green operator G™in and the semigroup S* on C{dS), similarly

to K. Sato and T. Ueno [11]. In section 5, we investigate the transport

process with non-regular boundary.

Appendix is devoted to the investigation of the convergence of trans-

port process to Brownian motion under some additional assumptions.

The author wishes to express his hearty thanks to Professor H. Kunita

who gave him various advice and constant encouragement.

§1. WentzelΓs boundary condition. Let 5 be the product space

of finite interval [— r9r\ and the two points set Θ ^ {θ = ± 1}, dS be the

boundary of S which consists of two points {{rθ,θ): #=±1}* Put S° = S—dS,

= [—r,r)x {1} U(—r,r]x { —1}. Let C(S) be the space of all real valued con-

tinuous functions defined on S with morm ||/|| = max \f{x,θ)\. We call

a system of linear operators {Tt, t^O] acting on C{S) a strongly continuous

and positive contraction semigroup, or simply a semigroup, on C{S) if it

satisfies TtTs = Tt+S, To = the identity operator, | | Γ f | | ^ l , lim \\TJ - / | | = 0

for any / G C ( S ) , and T c / ^ 0 for any / ^ 0 . The infinitesimal generator

% of a semigroup {Tt, *^0} is defined for such / that the right hand side

of

2) By limwn = « or un-+u> we mean lim \\un—u\\ = 0.
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TRANSPORT SEMIGROUP 221

exists. The domain of © is denoted by

Let a in C(S) be a function, non-negative on S and positive' in S°.

Define the monotone function m(x,θ) by:

m
-

0

Let C1(m)(S) be the subspace of C{S) consisting of function whose deri-

vative with respect to m also belongs to C(S), i.e.,

REMARK. If 0 ̂  0 at (a, 0) e S, then - ^ - f(χ, θ) = θa(x, θ) -4— f(x, θ).
dm ax

We now define the differential operator A on C1(m)(5) as follows:

(1. 1) Au(x9θ) = -~-u{x9θ) — b(x,θ)u(x,θ) + c(x,θ)u{x,-θ)9 {x,θ)^S9

where b and c are non-negative functions in C(S) such that b^c.

We introduce the boundary condition as the following:

(1. 2) Lu{rθ, θ) = T(rθ, θ)u{rθ, θ) + δ{rθ, θ)Au{rθ, θ) + μ(rθ, θ) -f- u(rθ, θ)

+ \ My, -9)) - u{rθ, θ)1v{rd β ) (d(y, -9)) = 0, {rθ, θ) s 95.
J S '

)^0, -L

is a (T-finite measure on S such that

(1.3) »C r M

\ ξ{rβ (
JU(rθ,θ)

where U(rθt β^ is a neiborhood of the point (rθ, θ) and

m(rθ, θ) — m(y, θ) if -9 = θ

1 if $ ψ θ

3) -τ l i m
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222 TOITSU WATANABE

Further if r(rθ, θ) = δ(rθ9 θ) = μ(rθ9 θ) = 0, then vCrθ> β ) (S - {(rθ, 0)}) = oo.

Then we have the following

THEOREM 1.1. Suppose that \m(rθ, 0)\ < oo and Tt is a {transport) semi-

group with an infinitesimal generator % which is a restriction of A, Then there is

a condition of type (1. 2) which is satisfied at (rθ, θ) by all functions u c

Proof For u e S)(®), we have, at {rθ9θ)^3S such that \m{rθ9θ)\ <oo9

(1. 4)

= lim 4 - {Ttu{rθ, θ) - u{rθ, 0))

= lim-^(( u(y,$)P(t,(rθ,β), d(y,ΰ))~ u(r0, Θ))

= lϊm\r(t)u(rθ,θ)+ \ ^(y'ϋ)-u(rθθ) β{t)N{t,d{y,

where r(ί) = -y- (P(ί, (r^, 6>), S) — 1) ^ 0,

ff) (2/, #) P{t, (rθ, 0), d(y, $)),

N(t, E) = - 7 ^ - J ^ ^ (2/, β) P(t, (rθf 0), d(y9«)), J?

Putting

„(„ Q\ - u(y9<9) — u(rθ9θ)

we have

R{u,(y,-9)) being continuous on S - {(rθ,θ)} and o(ξirθθ)(y,8)) around (rθ,θ),

the second summand of v(y, Ό) can be continuouly extended on S.

Formula (1. 4) may now be rewritten in the form

(1. 5) Au(rθ,θ) = \im[r(t)u(rθ9θ) + β(t)[ v{y, &)N{t, d(y, $))\

is the topological Borel field of S.
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Let us select a sequence {t(k)} converging to zero so that we have the fol-

lowing: a) the sequences {7{t{k))}, {β{t(k))} converge and b) the sequences

of measures of N{t(k)) weakly converges to a measure N; i.e.,

,«) N(t(k\ d(y,£)) -* \sf(y, $) N(d(y,

for any function f <Ξ C{S). If both of the limits of {ϊ(tw)}9 {β{tw)} are

finite, then we obtain a boundary condition of the form:

(1. 6) Au{rθ, θ) = ΐu {rθ, θ) + β [ v{y, $) N{d(y, $)).
JS

But if not both of these sequences have not finite limits, then one of them

tends to infinity faster than the other. If we divide the expression after

the "lim" sign in (1. 5) by its absolute value, then we obtain a boundary

condition of the form:

(1. 7) 0 = ru(rθ, θ)+β \sv(y, £) N(d(y, $)).

We must yet rewrite these conditions so that they will be of the form

(1. 2). To do this it is sufficient to put r(rθ,θ) = ϊ^0, μ{rθ,θ) = βN{{(rθ,θ)})^:0,

and δ{rθ,θ) = 1 or 0, depending on whether formula (1. 6) or (1. 7) holds:

The fact that the measure β N is non-negative and finite guarantees that

the measure v^rβ e^ is non-negative and that condition (1. 3) is fulfilled. We

prove that the condition obtained does not take the form 0 = 0. In fact, if

7(rθ, θ) = δ{rθ, θ) = vCrθ> β ) (S - {{rθ, θ)}) = 0,

then β>0 and condition (1. 7) has the form:

Since

N(S) = [ l N(d(y, £)) = limf 1-N(t(k\ d{y,Q)) = 1,

we have

μ(rθ, θ) = β\{(rθMN(d(y^)) = β>0.
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224 TOITSU WATANABE

Thus the form 0 = 0 does not take place.

We finally prove that, if r(rΘ,Θ) = δ{rθ,θ) = μ{rθ,θ)=O, then v(rM)(S-{(r0,0)}) =

If it is not true, then we have

u (rθ, θ) = - — ^ - \u{y9 9\rdt θ) (d(y, $)).

Taking u = aGJ (f e C{S))9 where Gα is the Green operator of Tt, and so

letting α->oo, we have

f{rθ, θ) = L ^ \ f(y,

since « G β / - > / . Hence, (y ( r θ >^ (S))"1 v(r l? j(?) is the delta measure with mass

1 only at {rθ,θ), which contradicts the definition of V(rθ>θy Therefore
v(re 0)(S) = °° Thus it has been proved.

§2. Minimal Green operator and harmonic operator. We first

classify the boundary point {rθ9θ) as follows:

{rθ,θ) is regular, if \m(rθ,θ)\ < oo and \m(rθ, — θ)\ < oo:

{rθ,θ) is exit, if |m(r6>,6>)i < oo and \m{rθ,—θ)\ = oo:

(r^,^) is entrance, if |w(r0,0)| = oo and \m{rθ, —θ)\ < oo:

(r^,^) is natural, if |w(r^,^)| = oo and |w(r0,0)| = oo.

Let us define the differential operator on S by

(2. 1) A'u(xθ) = - ^ «(», 0) - δ(&, W α , 6/),

where m and ft are in (1. 1).

Then we have

LEMMA 2. 1. i) For any constant cc^O and / e C(S), the solution u in

CUm)(S) of

(2. 2) {a-A')u{x, θ) =

«(r^, θ) = 0, (/-#, ̂ ) e= 55.

exists. Such u is unique and we denote it by Glf.

ii) GJ is linear, non-negative and bounded; | |Gάl l^ l/α (α > 0 ) .

iii) For any f e C(S) β̂ rf (a?,̂ ) e S°,
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Mm aG'J{x9θ) = f{x,θ).
<χ—κx>

Moreover, if f vanishes on 3S,

lim aG'vf = / .

iv) For a,

G'a-Gβ + ia- β) Gl G'β = 0.

v) If a boundary point (rθ, θ) is exit or natural,

G Λf{rθ, -θ) = 0.

If {rθ, θ) is entrance or natural,

G'af{rθ,θ) = 0.

Proof It is known (e.g. [7]) that we have

a,

and the Green operator G; have the properties i) — v).

LEMMA 2. 2. Tfe operator A with domain C1(m){S) is closed in C{S).

Proof is easily obtained by noting that Au{x,θ) = f{x,θ) is equivalent to

u{x, θ) = κ(0, ̂ ) + Γ ,^ . [ft(y, ^)«(y, ̂ ) - c{y, θ)u{y, -θ)

Jo f/Cί(y9σ)

+ f(V,0)ldy.
THEOREM 2. 1. i) For any constant a > 0 α/zrf / e C(S), the solution in

C1(m)(S) of

(2. 4) (α - A) u(x, θ) = f(x, θ), {x, θ) e S°

u(rθ,θ) = 0, {rθ,θ)<= 3S

exists and such u is unique. We denote it by G™inf.

ii) G™in, considered as an operator in C(S), is linear, nonnegative and bounded;

iii) For any f e C(S) and {x, θ) e S°,

lim aG™inf{x, θ) = f{x, θ).
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Further, the convergence is uniform in {x,θ) e S, if f vanishes on dS.

iv) For a, β>0,

G™in — Gfin + {a — β) G™inGfin = 0.

v) If a boundary {rθ, θ) point is exit or natural, then

G™ίnf{rθ, -θ) = 0.

If {rθ, θ) is entrance or natural, then

G™nf{rθ, θ) = 0.

Proof Putting U f{x,θ) = c{x,θ)f{r,—θ), we define Gf i n by

(2. 5) Gtnf = G'af + GlU Gaf + G'aU G'.U G;/ +

Then G™in is well-defined for α > | | C | | and has properties ii), iii) and v),

except that \\GTn\\ ^1/α. Because of the closedness of A Λ

defined and

^njr '- "

(a - A) GTnf

w=0

= lim [ Σ (U G;) ( " '/ - u G;( Σ (U G Γ '
N w=0 »=0

Hence GTnf is a solution of (2. 4).

To prove the uniqueness of the solution, we have only to show that

w = v — G™inf becomes identically zero, if v is an another solution. Since

w satisfies the following:

{a - A) w(x9 θ) = 0, {x, θ) e S°

w{rθ, θ) = 0, (rθ, θ) €= δS,

and <x~A = a — A' — U, we have w = GlUw. This leads us zί; = (G; U){n)w.

Therefore | |w| |<| |(G; ^7)(w)^|| <(||c||/α)n||t(;|| ->0, and so w = 0.

5) (if G;)Cn) means the w-fold operation of (U G;).

https://doi.org/10.1017/S002776300001343X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001343X


TRANSPORT SEMIGROUP 227

It follows from the positive maximum principle of A that

m a x aGTnl{%, θ) = aG™inl(Xo, θ0)

i.e., | |G? l i n l l^l/«(«> Ikll). By Hille-Yosida's Theorem, Gfin can be ex-

tended for all a > 0 and so has properties ii) — v). Thus we complete the

proof.

To construct the harmonic function of (a — A), we prepare a following

lemma.

LEMMA 2. 3. i) For a>0 and φ e C(dS)V such that φ(rθ,θ) = 0 if {rθ,θ)

is an exit or natural boundary, the solution u in CKm){S) of

(2. 6) (a - A') u{x,θ) = 0, (x,θ) e S°,

u{rθ, θ) = φ{rθ, θ), {rθ, θ) e 3S

uniquely exists. We denote it by Hiφ.

ii) Hi is linear, non-negative and bounded; ||if;||

iii) If (rθ, θ) is an exit or natural boundary, then

If (rθ, θ) is entrance or natural, then.

Hlφ(rθ,θ) = 0.

Proof As is well-known, H'aφ(x,θ) is given by

(2.7,

which has the properties i) — iii).

THEOREM 2. 2. i) For any a>0 and φ e C(dS) suck that φ(rθ,θ) = 0 if

(rθ,θ) is an entrance or natural boundary, the solution u in C1(m)(S) of

(2. 8) (a - A) u(x, θ) = 0, (x, θ) e= S°

u(rθ, θ) = φ(rθ, θ), (rθ, θ) e 3S

6) C(dS) is the space of bounded functions on dS with sup-norm.
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exists. Such u is unique and we denote it by Ha.

ii) Ha9 considered as a mapping from C{3S) into C{S), is linear, non-negative

and bounded; | | £ Γ β | | ^ l .

iii) Haφ does not take a positive maximum in S°.

iv) If {rθ, θ) is exit or natural, then Haφ{rθ, —θ) = 0.

If {rθ,θ) is entrance or natural, then HΛφ{rθ,θ) = 0.

Proof Assigning

(2. 9) HΛφ-Hiψ + G™nU Hlφ for φ <Ξ C(dS)9 we have

(a - Λ)Haφ = (a-A - U)H'aφ + {a - A) G™nU Hiφ

= -UHiφ + U H'aφ = 0

and

Haφ(rθ,θ) = H'aφ(rθ,θ) = φ(rθ9θ).

Hence, Haφ is a solution of (2. 8). Let v be an another solution and put

w = v — H*φ. Then w is a solution of

(a - A)w(x, θ) = 0, (x, θ) e S°

w(rθ, θ) = 0, {rθ, θ) e dS,

and so w = G?in0 = 0, implying the uniqueness of the solution.

It follows from the definition that HΛ is linear, non-negative, bounded

and satisfies the property (iv). To prove (iii), we suppose that there exists

the point (#o,0o)eS° such that Haφ(xo,θo) = max H0.φ{x,θ)>Q. Haφ satisfies

O,0)eS

A Huφ{x09β0) = a Haφ{%o>βo)>O;

but the left hand side is non-positive, which is the contradiction. Hence

H*φ does not take a positive maximum in S°. Moreover, HΛl{x,θ)^l, i.e.,

HiZαll^l. Thus the proof is completed.
PROPOSITION 2. 1. Let {Tt, ί^>0} be the {strongly continuous and positive

contraction) semigroup with the infinitesimal generator A. Then both of boundary

points {rθ, θ), θ = ± 1, are regular.

Proof Put

GJ = Γ e-^TJ dt for all / e C(S).
Jo
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Then v = Gaf — G™inf satisfies the following

(a-A)υ{x,θ) = 0, (&,0)e 5°,

v{rθ, θ) = GJ{rθ, θ), {rθ, θ) G dS.

If (r#, (9) is an entrance or natural boundary, then Gaf{rθ, θ) must be zero

by Theorem 2. 2. Hence

f{rθ, θ) = lim aGJ{rθ, θ) = 0,

which contradicts the arbitariness of / e C(S).

If {rθ, θ) is exit, then

where [Gα/]9)S is a restriction of G β / to dS.

Hence, it follows from Theorem 2. 1 and 2. 2 that

/(r0, -^) = lim aGJ{rθ, -θ)

= WmaGTnf{rθ, -θ) + lim HJLaG9f]ds{rθ, - θ)
α — > o o <χ—>oo

= 0.

This is also a contradiction. Thus (rθ9θ) is regular, implying the proof.

We define the function \U]QS on dS induced by the function u on S by

Wds{rθ, θ) = u{rθ, θ), {rθ, θ) e dS.

Then we have

PROPOSITION 2. 2. C1(m)(S) = {̂ : υ = G™nu + fl.9, u e C(S), 9 e C(aS)}.

f. Let u e C1(TO)(S). Noting that M — //αMas vanishes on 3S and

i^G™11) = {u e C1(m)(S): ^(r#,#) = 0}, we can select the element w of C(S)

such that U—H<XU\QS= G™mw> i.e., « e {z;: υ - G™inu + Haφ}. The converce

is evidently true, since G™inu and H^φ belong to C1(m)(S). Thus we finish

the proof.

PROPOSITION 2. 3. Let ζί9 f ^ G C(δS) έ^ the functions defined as follows:

1, if θ = 1 and {r, 1) w regular or exit,

0, z/ otherwise,
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1, if θ = — 1 and (—r, — 1) is regular or exit,

0, if otherwise.

Then it holds that

Haφ{x9θ)= 2 <P{r$9$) H*ζA%>θ).
t?=±l

Pro*/ is evident on account of the uniqueness of the solution of the

equation (2. 8).

§3. Semigroup on C(dS). In this section, we always assume that

boundary points {rθ9θ)9 θ — ± 1, are regular, i.e. \m(rθ9θ)\ < oo. Let A and

L be the operator defined by (1. 1) and (1. 2) in §1. Then L Haφ is well-

defined for φ <Ξ C{dS) by noting that H«φ e C1(m)(S). Thus we have

LEMMA 3. 1. 77^r£ exists a number ^ ^ 0 JWCΛ that

(3. 1) U - L Ha)φ{rθ, θ) = ψ(rθ, θ\ {rθ, θ) e 5S

Λ^ <2 solution φ e C(5S) /or ^̂ Λ ^ e C(dS).

Proof On account of Proposition 2. 3, the equation (3. 1) can be

changed to the form:

U HMrO, Θ)-L HMrθ, θ)} φ(r, 1)

Jζ-άrθ θ) - L Haζ^(rθ9θ)}φ(-r, -1) = ψ(rθ,θ), θ = ±1.

Hence, solving this system of linear equation, we can obtain the function φ.

Thus the proof is finished.

LEMMA 3. 2. If φiε C(dS) takes a positive maximum at {rθ09θ0) e 3S9 then

L Haφ{rθO9θQ)^O.

Especially, L Hal(rθf θ)<0 for each (rθ9 θ) e dS.

Proof Since Haφ takes a positive maximum at (rθQ9θQ) as a function on

S by Theorem 2. 2, we have

j ^ j 09 θ0) ̂  0

and
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Therefore, noting that Haφ — φ on 3S and {a — A)Haφ = 0, we have

L Haφ(rθ0,θ0) = T{rθO9θo)φ{rθO9θo)

, θ0)]

Since Hal is not a constant function and does not take a positive maxi-
mum in S°9 -4— H«l{rθ9θ)<0 and [Hal{y9>9)-HΛl(rθfθ)]<0 for each (y,<9)^S°.

an
Hence, L Hal{rθ9 θ) < 0. Thus the proof is completed.

THEOREM 3. 1. For a > 0, L HΛ is the infinitesimal generator of a semigroup

on C{dS).

We call the semigroup on C{dS) with infinitesimal generator L HΛ the

semigroup on C[dS) of order a9 and denote it by {S?, £^0} The Green

operator of {S?, £i>0} is denoted by

, ;k>0.

Proof Noting that L H* is closed because of the boundedness of H^

and the closedness of -^—Ha9 our result is directly obtained from [11, Theo-
dn

rem 1. 2] by virtue of Lemma 3. 1-3. 2.

COROLLARY. For each ψ e C(3S)9

(3. 2) L H»φ = φ

has a unique solution and hence {L H*)'1 is well-defined on C{3S). —{L Ha)'1 is non-

negative and bounded.

We sometimes write Kl for — (L HΛ)~ι.

Proof Since constant 1 belongs to SD(L HΛ) and L HJ.l{rθ9θ)<0 at each

{rθ,θ)£dS for a>0 by Lemma 3. 1, L Ha+Ίc is the infinitesimal generator

of a contraction semigroup on C{3S) by [11, the corollary of Theorem 1. 1],

where —k = max L H*l (rθ, θ). Thus, — L HaΨ = [k — {L HΛ + k)}φ = ψ has

a unique solution φ for each ψ^C(3S) by Hille-Yosida's theorem. —(LHa)"1

is clearly non-negative and \\—(L H^W^k'1, completing the proof.
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§4. Construction of transport semigroup with regular bound-

ary. In this section, we also assume that all of boundary points (rθ9θ)

(0 = ±1) are regular.

Let us denote by ^(ΛL-λ) the subspace ( « e C 1 ( Λ ) ( S ) : (L — X) u{rθ, θ) = 0}

of C(S). We consider the operators AL~χ and G^ defined by

(4. 1) AL-λ = A\®(AL-λ) (a restriction of A to %>(AL-λ))

and

(4. 2) G\u = GTnu + H*K*λL G™nu, u e C(S).

Then we have the following:

THEOREM 4. 1. Suppose that both of {rθ, θ) (0 = ±1) αr# regular, i.e.,

Im(r0,0)| < ° ° . T%^ ^4L_Λ is the infinitesimal generator of a semigroup on C{S)

for 2^0. The Green operator is given by G£.

We call this semigroup the transport semigroup with regular boundary.

To prove the theorem, we prepare a few lemmas.

LEMMA 4. 1. i) G\u is the unique solution of

(a — A)v — u

contained in ^){AL^λ).

ii) G* is non-nogative.

Proof Since G™in and Ha are the mappings from C(S) to C1(m)(S) and

U ~ L) Gλ

au = (λ-L) G™*u + (λ-L) HJί\L G™™u

= - L G™nu + U - Z, HΛ) K\L

= - L GTnu + L GTnu = 0,

therefore Gλ

a belongs to SCAL-J). Thus G\μ is the solution of (a — A)υ = u

in 3 ) ( A L - Λ since (a — A) G\u = (a ~ A) G™inu + (a — A) HΛK*L G?inu =? u.

Let υ be an another solution. Then w = t; — G ^ satisfies (α — 4̂)w = 0.

Hence z<; = HJ_w]ds* Further, w satisfies {λ — L) w{rθ, θ) — {λ — L)HΛ[w]ds == 0.

Thus it follows from Theorem 3. 1 and its corollary that w = 0, implying

the uniqueness.

https://doi.org/10.1017/S002776300001343X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001343X


TRANSPORT SEMIGROUP 233

follows from evident inequalities G™in^0, Ha>:0, K*λ^0 and

L G^in^0. Thus we complete the proof.

LEMMA 4. 2. | |G^| |^ l/α.

Proof We note that the following equality holds:

since the boundary values of the both sides coincide and we have the same

value when we apply a — A on the both sides. Hence we have

= λ + aL GTnl - L I - L G™n(c - b)

since Ll + L G™in(c — b)^0 because of b>c. Then, applying K\ on the

both ends, we have

I — A ^{λ — L, iJaίji =^ OίJ\ χ L, G« J-

This, combined with a G™]nl + H^l ^ 1, imply

aGλ

al = « G ? i n l + aH^K^L G™inl ^ 1>

completing the proof.

L E M M A 4. 3. For any ε > 0, there exists the function wθ in C1(TO)(S) such

that:

i) IKIKε,

ii) A wQ{rθ, θ) = - 1,

iii) -^-wβ(rθ,θ) = l,

iv) ( 6 9 J )
v S

( ε' if v(rθ

v)
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vi) —-— w(—rθ, —θ) = 0,

vϋ) i [w6(y,$) — wθ{—rθ,—θ)]v(_rθi_θ)d{y,

Proof. We assign wθ by

~_r κζ,θ) ^

θa{z, θ)

0 $ ψθ.

We now choose the function / in C(S) which is 1 near {rθ, θ) and 0 outside

of the neighborhood of {rθ, θ). Then wd is the function which is desired

for us.

LEMMA 4. 4. ©(At-*) is dense in C{S).

Proof. For u e C1(m)(S), we set

v = u + a1w1 + oc-i W-Λ,

where wθ are in Lemma 4. 3. Then for any ε > 0 , we can select a19 a-x

such that (λ — L)v{rθ,θ) = 0 and \\u — v\\ = 0(l)ε, completing the proof.

The proof of Theorem 4. 1 is the direct consequence of Hille-Yosida's

Theorem by virtue of Lemma 4. 1, 4. 2 and 4. 3.

Combining the last theorem with Theorem 1. 1 and Proposition 2. 1,

we have the following main theorem.

THEOREM 4. 2. Suppose that the operator B on C(S) with domain %){B) is

a restriction of A. Then B is an infinitesimal generator of a [strongly continuous

and positive contraction) semigroup on C(S) if and only if

i) both of boundary points {rθ, θ), θ = ± 1, are regular,

§5. Transport semigroup with non-regular bounday In this

section, we show without precise argument that the transport semigroup

with non-regular boundary can be constructed.

We introduce some subspaces and operators:

(5. 1) C{S) = [u e C(S): u{rθ9 — 0) = 0, if (rθ, θ) is an exit or natural
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boundary; u{rθ,θ) = 0, if {rθ,θ) is entrance or

natural},

(5. 2) C(dS) = ((5S C{dS): φ(rθ,θ) = 0, if {rθ,θ) is entrance or natural},

(5. 3) WAL-X) = [u e C1(m)(S): Π C(S): U - L)u(rθ,θ) = 0, if (r0,0) is regular

or exit} U^O),

(5.4) i 4 w = i4|Φ(ilL^) U^O),

(5. 5) Ha(a>0): the mapping from C(dS) to C(S) such that, for <pt=C(dS),

HΛφ(rθ, θ) = φ{rθ, θ), (rθ, θ) e dS,

(5. 6) K\ U ^ : 0 , α > 0 ) : the mapping from C(55) to C(5S) such that,

for φ GΞ C(3S),

if (r^,^) is regular or exit:

K°λφ(rθ,θ) = 0,

if otherwise,

(5. 7) G SU^O, α > 0 ) : the mapping from C{S) into itself defined by

Then we have the following:

THEOREM 5. 1. For each Λ^>0, AL-X is the infinitesimal generator of a

semigroup on C(S). The Green operator is given by Gλ

a.

We call this semigroup the transport semigroup with the regular, exit, entrance

or natural boundary if (rθ, θ) is regular, exit, entrance or natural, respectively.

THEOREM 5. 2. Suppose that the operator B with domain S)(J3) on C(S) is

a restriction of A.

In order that B be the infinitesimal generator of a (strongly continuous and posi-

tive contraction) semigroup on C(S) it is nessesary and sufficient that ©(£) = ©(AL).

APPENDIX

In this appendix, we consider the convergence of the transport process

with regular boundaries to the Brownian motion with regular boundaries.^

From now on, we always assume the following:

*> cf. [9] and [13].
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a{x,θ) = a (positive constant)

Then the operator A becomes of the form:

(1) A u{x,θ) = θa-j- u{x, θ) - a2 u{x, θ) + a2u{x, -θ).
&x

1. Concrete form and convergence of minimal Green operator

G™in and hamonic operator JEΓα. O n account of Theorem 3. 1 and 3. 2,

G™inf(f e C{S)) is the unique solution of

(2) a u(x, θ) - θa -f- u(x, θ) + a2u{x, θ) - a2u{x, θ) = f{x, θ)9 {x, θ) e S°,
dx

u{rd, θ) = 0, (rθ, θ) e as,

and Ha.φ{φ^C{3S)) is the unique solution of

(3) a u{x, θ) - θa -f- w(a?, 6>) + a2u{x, θ) - a2u{x, - θ) = 0, (a, 0) e S°,

By solving the equations (2) and (3), we have

PROPOSITION 1. i) For f e C(S) and a > 0,

+-5-+i) - ^ L K «+(i+-Sr - 4

β = 4/20: + - ^ - > 0, C βfti Z> βr^ determined by
V #2
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+ + 44

ii) For φ(=C(dS) and a>0,

HM*, -1) = E (l + -±r - -§-)«* + F (l + -J- + 4 ) ^ ^

β — J2a -\—— > 0 , E and F are determined by
V a2

e$r E + e~$r F = φ(r, 1)

( + -?" + Ίr)eβr F = ^ (~ r' " 1 ) β

Now let -~~ Δ be the Laplacian operator on / = [—r, r], i.e.,
Δ

As is well-known, the minimal Green operator Gαmin a n d the harmonic

operator Hi, corresponding to — Δ, is given as follows:

(4) Gί m i n/(«) = CΔ eft** + DΔ e~^x

a?e(-r,r) , /eC(7),

where CJ and Z)J are determined by

i/2a
* y dy - e . _

/2a J-
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e~J2ΪrQA _{_ el/Ur J)Δ — Q.

(5) HM%) = EΔ e^x + FΔ e~^x,

where EΔ and FΔ are determined by

ef2ϊ r EΔ Λ e~&*r FΔ = φ(r)9

37= M U { - r } .

We now define the mapping from C(7) (C(a/)) to C(S) {C(dS)) as the fol-

lowing :

P: fix) -

φ(rθ) -

Then we have

PROPOSITION 2. i) For / e C ( 7 ) , if M ώ ί/k£, <2ί α->oo*>,

1) G™inPf-> P Gί'minf

2) _^_ G^ i n P/ -> - ~ P Gί m i n /

3) moreover, if / e C1(7)**),

dx*°« J dx* " }'

ii) For φ <= C(dl), it holds that, as α->-oo,

2)

3) ^ 2 H
} dx2 ndx2 n ^ ψ ^ dx2

§2. Convergence of K*. Let L J be the operator on dl as follows:

(6) LΔ u(rθ) = 0,

*} a is the coefficient in the definition of A.
**) CΊ(/) is the subspace of C(I) of continuously difFerenciable functions.
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LΔ u{rθ) = 7{rθ) u{rθ) + δ{rθ) -ί- Δu{rθ) + μ{rθ) -f- u{rθ)

+ \ l(u(y)-u{rθ)lvrβ(dy),

where 7, δ, —μ are non-positive and v is a o -finite measure on / satisfying:

vrθ{{rθ)} = 0,

J7(1 Λ (r + 2/) Λ (r - y))vrθ(dy) < oo,

i^(/) = co, if r = * = j« = 0.

Then there exists the Green operator KΔ* {λ^.0) corresponding to LΔ HΔ

(see. §3).

Let L be the boundary condition defined in §1. We assume that the

operators L and LΔ satisfy the followings:

r(rθ) = r(rθ,θ),

δ(rθ) = (̂r6>, θ),

μ{rθ) =

Then we have from Proposition 2

LEMMA 1. L Ha Pφ->P LΔ Hiφ as β->oo for φ

Thus, by virtue of Trotter's theorem [12, Theorem 5. 2], it follows

LEMMA 2. For pεC(3/) Λ»rf ^ ^ 0 ,

KΔφ as β->co.

§3. Convergence of transport process. Suppose that C2(/) is the

subspace C(7) of each of which is twice continuously diίferentiable: for Λ:>0,

let D(ΔLΔ-λ) be the subspace {UΪΞC2{I): {LΔ - λ)u{rθ) = 0, θ = ± 1} and

—^-ΔLΔ_λ be a restriction of the Laplacian operator -=—Δ to D(ΔLJ-λ).

By the same argument in §4, we have

PROPOSITION 3. -\-ΔLΛ-λ is the infinitesimal generator of a semigroup on
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C(/) The Green operator is given by

Gλ

a = Gf'm i n + Hi Kf LΔ Gt>mϊn.

Combining this with Proposition 2 and Lemma 2, we have

LEMMA 3. For u e C(/), α > 0 dwrf Λ>0,

G\Pu-± PGΔ>λu as α->oo.

Thus we obtain the following main result.

THEOREM. Suppose that both conditions ( j y ) β̂ rf (jg^) αr^ satisfied. Then

the transport {Tt, t^O} semigroup with regular boundary condition (L) converges,

in Trotter's sence, to the semigroup {Tf, t^O] of the Brownian motion with regular

boundary condition (LΔ) when a in condition {sf) grows up indefinitely, i.e.,

TtPf-+PTif as a^™ for / e C ( / ) .
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