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Abstract. In this paper we study the group K;’:’“)(F ) where F is the function field of a complete,
smooth, geometrically irreducible curve C over a number field, assuming the Beilinson—Soulé
conjecture on weights. In particular, we compute the Beilinson regulator on a subgroup of
K;’,’,“)(F ), using the complexes constructed in Compositio Math. 96 (1995), pp. 197-247.We study
the boundary map in the localization sequence for n = 2 and n = 3. We combine our results
with results of Goncharov in order to obtain a complete description of the image of the regulator
map on Kf)(C) and Ké‘”(C) (which have the same images as K4(C) ®7 Q, and K¢(C) ®7 Q,
respectively), independent of any conjectures.
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1. Introduction

Let C be a smooth, proper, geometrically irreducible curve over a number field k. We
want to consider K,,(C) for m > 0, and would specifically like a more concrete
description of this group rather than the abstract definition. The case m =0 is
classical, and we shall assume m > 1 from now on. For C as above, there are regu-
lator maps from K,,(C) to Deligne cohomology groups. More precisely, for C as
above, K, (C) ®7 Q = @™ K(C), where the K®(C) are the weight n subspaces
of K,(C)®7 Q, which are eigenspaces for particular operators, the Adams
operations. Let C,, be the analytic manifold associated to C ® C. Cy, is a disjoint
union of [k : Q] Riemann surfaces of genus the genus of C. C,, has an involution
o coming from complex conjugation on C. There are regulator maps to Deligne
cohomology,

reg : KY(C) — HE " (Can; R(n)),

where R(n) = (2ni)'R c C. For m>1, the only nonzero K{(C) is
Kfl)(C) ~k*®;, Q. For nx=2  HZ"(Cu;R(n) is isomorphic to
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Hﬁ” "=1(Can; R(n — 1)). The most interesting case for n > 2 for the target is there-
fore the case m = 2n — 2, so that we land in HdR. Replacing n with n 4 1 to simplify
notation somewhat in the rest of the paper, we are interested in the groups
Ké’:f“(C) for n = 1. For n =1, the group K(z)(C) can be described in terms of
the exact localization sequence

0 n n n il n
o | KRG > K0 — KSTVFE) > ][ K k() — -

xeCh xeCh

where C is the set of codimension 1 (i.e., closed) points of C. Because K, (k(x)) is
torsion for n > 0 as k(x) is a number field, the map Kf)(C) — Kf)(F) is injective.
Kéz)(F ) = K>(F) ®7 Q, and K;(F) can be described completely in terms of generators
and relations by Matsumoto’s theorem. The boundary map d is described in terms of
the tame symbol. Similarly, because the map K§Z+1)(C) — Ké’:fl)(F ) is always
injective for n > 1, one can try to describe Ké’f”(C) by describing Ké’fIH)(F ) and
computing the boundary map to the Kéﬁll(k(x)) in the localization sequence. This
is the approach taken in this paper.

In order to construct elements in K§Z+1)(F ) we use (cohomological) complexes
constructed in previous work by the author for n+ 1 > 2. Those complexes exist
for any field F of characterlstlc zero. Let us write F for F* ®7 Q. There is a
cohomological complex /\/l(n +n(F) in degrees 1, ..., n + 1,

n—1 n+1

M1(F) = Moy(F)® Fy — - — Mp(F)® [\ Ff, —> \ F.

with ]\Nl(k)(F ) a (Q-vector space generated by symbols [f']; for f in F*. The maps are
given by

difli®@gai A Agui) =[f 1.1 ®F NG A Agnoiti
for [ #2, and

dfLegiAn--Ag1) =0 =/)ALAGUA- - Agui

for / =2, with d([1l, ® g1 A+ A ga—1) = 0. There is a map

HP (M, (F) > KyH - (F)

from the cohomology groups to the K-theory of the field, at least assuming a stan-
dard conjecture in K-theory that certain weight parts of K-groups vanish, see Section
2 for more details. The map is natural only up to sign, which will result in some
statements up to sign below. We shall be mostly interested in the case p = 2, so
we get a map to K;ZH)(F). In this case the map corresponding to Kf)(F) exists
without assumptions. For Ké4)(F) we can also work without assumptions, but
the situation is a bit more delicate. The complex /F\\/,l(‘n +1)(F ) is a quotient of a complex

MG, 1) (F). Without assumptions, there is a map H? (M{y)(F)) to a quotient of
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Ké4)(F ), and the natural map H 2(/\/l('4)(F ) — H 2(/A\;l('4)(F )) is surjective. More details
are given in Section 2.

For the sake of exposition, however, we state our results here usually assuming the
Beilinson—Soulé conjecture, while referring to the more technical statements in the
body of the paper for the corresponding statements without this assumption.

On the images of the maps to K;ZH)(F ) we compute the regulator map by pairing
the 1-form that is the image of the regulator map in H}; with a holomorphic 1-form
and integrating over the analytic manifold C,,. The image of KEZH) (C) under the
regulator map is contained in the subspace Hly (Can; R(1))" of Hig(Cyn; R(n)) con-
sisting of the forms y such that o ¢ = i, where ¢ is the involution on C,,. Wedging
such a form with a holomorphic 1-form on C,;, and integrating gives a perfect pairing
between Hly(Can; R(1))"and holomorphic 1-forms on C,, satisfying w o ¢ = @, so
this completely describes the regulator map. The formula we find corresponding
to the symbols [f],_; ® g (see Theorem 3.5) has the form conjectured by Goncharov
for such elements, see [4, §7].

The following is part of Theorem 3.5 below, to which we refer the reader for the
statement without assumptions, see also Remark 3.7.

THEOREM 1. Suppose the Beilinson—Soulé conjecture holds for fields of character-
istic zero, so there is a map

HY (MG, (F) = Kyl (F).

Let w be an element in H*(Cyy; Q) such that w o 6 = @, where o is the involution on Cyy
obtained by letting complex conjugation act on C. Fix an orientation on Cy, such that
g reverses the orientation. Iij ¢lfjl, ® gj is an element of HZ(M(‘HH)(F)), then the
composition of maps

~. reg Jew™®
H(M,1)(F) — Ky (F) = Hig (F: Rm)* —=— R(1)
is given by mapping [f], ® g to

+n2"
n+1

/C log lg]log" 2 |f|(log |1 — £ dlog |f] — log |f| dlog |1 — /) A @.

Also, on the image of H 2(/’{;1(-” +n(F)) in Ké’ff“(F ) we compute an approximation to
the boundary map 9 in the above localization sequence, in terms of the complexes
M{n +n(F) and /W('n)(k(x)), where x is a closed point of C. This can be carried
out completely for n = 2 and n = 3, corresponding to Kf)(F ) and Kg”(F ), and could
probably be done for all Ké’:’l)(F ), but the combinatorics get rather complicated
already for Kg”(F), so we restrict ourself to the cases Kf)(F) and Ké4)(F). For
the cases n = 2 and 3 we prove the following result (which for the sake of exposition
is again formulated assuming the Beilinson—Soulé conjecture, see Theorem 4.6
for the result for n = 3 without this assumption). If x is a closed point of C,
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one can define a map d, : H2(/A\;l('n+l)(F)) — Hl(/A\;l('n)(k(x))) by mapping [f ], ® g to
ord,(g)[f (x)],, with the convention that [0], and [oo], are zero.

THEOREM 2. Let 6 =[], 0x. Then, assuming the Beilinson—Soulé conjecture for
n =3, the diagram

HY(M?, 1) (F)) K{D(F)

B :

HzeC(l)H (M (k( )))—’Hzecm K2n 1(k(2))

commutes forn = 2 or 3, up to sign and up to 8(K§:'l)_1(k) U Ffp)in the lower right hand
corner.

It turns out that the results we obtain for the regulator maps on Kf)(F) and
Ké4)(F ), as well as the boundary maps in those cases, can be very effectively combined
with work of Goncharov. In order to state the results, we introduce the complex
/\71(',, +1(C) as the total complex of the following double complex.

M) 5 My(F) @ F}, S Mo N ) S
! 5l 51
0 = L Mpke) > L ek @k, -
where both coboundaries have degree 1 and the total complex is a cohomological
complex with A~4(,,+1)(F) in degree 1. The map J in the diagram is determined
by the requirement that O.([f];®g A - Agur1) equals ord,(g)[f(x)];®
22(X) A+ - A gyi11(x) if none of the g;(x) is zero orco fori =2,...,n— [+ 1, again
putting [0 =[cc]; =0. There is an obvious inclusion HZ(M(n (0) —
H? (M(n +1)(F)), and Theorem 2 above implies that (assuming the Beilinson-Soulé
conjecture) under the map HZ(M(,M)(F)) K{"D(F) above, HZ(M(,,H)(C)) is
mapped to K("“)(C) + Ké:) (k) U Fy inside K%"Jr )(F). Tt also turns out that
K(C0) + K;’é 1 (k) U F s actually a dlrect sum K("H)(C) @ K" (k) U F3, so that
we can use the projection onto the first factor to get a map

HY M, ,,(C) — K&D(C).
We call the composition of this map with the map
reg : K3, "(C) > Hig(Cun; R))*

the regulator on HZ(M(HH)(C)). If we combine it with the map

/ A Hig(Can; R()T — R(1)
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for an element w of H%(C,y,; Q) such that w o ¢ = @, then this composition is still
given by the formulae in Theorem 1 above, see Proposition 3.4.

In [4, §6], Goncharov defined the following complexes I'(F, n) (in degree 1, ..., n),
given by

n—2 n
Bu(F) — Bn—l(F)®EE) — ... BZ(F)®/\F6 — /\Fa

and, for each x € CV, I'(k(x),n — 1) (in degrees 1,...,n — 1), given by

n—3 n—1
By i(k(x) = ... = Ba(k() ® [\ k()5 = N\ k()5

Here for any infinite field F, By(F) is a Q-vector space generated by elements {f},
with f € F U {oo}, modulo certain (inductively defined) relations, which include
{0}, = {00} = 0. The maps are given by

Uhegin Agnmi—=> {1 ®FfAgiA - Agu
if / > 2, and by

hea A Agia—> 0= IANfAgIAAgpo.

There is a map

L(F.n)— [ Tk(x).n—D[-1]
xeCh
given by
Fheg A Agni—>{f(0)} ® (g1 A+ Agni)
with 9, the unique map \" Fj, — AN k(x)j, determined by

Tx AULA -+ Aj— = up(X) A -+ Aw—1(x)

Uy A---Aui—0

if all u; are units at x and 7, is a uniformizer at x. I'(C, n) is defined as the mapping
cone of the maps of complexes above. Goncharov also defines complexes
I''(F,n), I'"(k(x),n — 1) for n = 3 and 4, and constructs maps of the corresponding
complexes as above. The complexes I'"" have the same shape as the complexes I" with
the same maps between them, but the B,(F) are replaced by B, (F), generated by
F U {oo}, but with explicit relations between the generators. I''(C, n) is defined as
the mapping cone, defined by the corresponding I complexes. Goncharov also con-
structs a map

K> (C) — H*T'(C,n+ 1))

for n = 2 or 3, and shows that the Beilinson regulator factors through this map. We
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summarize part of his results (especially [3, Theorems 5.5 and 5.9]) in a form suitable
for our needs.

THEOREM 3 (Goncharov). For n =2 or 3, the regulator map
K3, "(C) = Hig(Can: R

can be extended over the map K§Z+1)(C) — H*T'(C,n+1)) to a map
H*(I'(C,n+ 1)) - Hix(Can; Rn))*. For o a holomorphic 1-form satisfying
woa =, the composition

[ D)
Can

H*(I'(C, n+ 1))—> Hir(Can; R(n))" —— R(1)
is given by mapping {f}, ® g to

6, [ loglellog 2 |/ilog 1 ~fldlog /] ~ oz /dlog |1 —f) A
for some nonzero rational constant c,.

We compare the images under the regulator map of K("H)(C) H>(T'(C,n+1))
and H 2(/\/1(” +1y(C)) by showing that there is a map B)(F) — M )(F) given by sending
{x}, to [x],. This gives us maps

KP(C) — HAT'(C,3)) — HX (M (C) — K(C),

such that if we take the regulator to Hly(Can; R(2))" from all those groups, the
resulting diagram commutes up to nonzero rational factors. For Ké‘”(C ) the situation
is again somewhat more complicated, but comparing the formulae for the regulators
of elements in H>(I"'(C, 4)) and H 2(/f\v/l('4)(C)) we can get the following result without
assuming the Beilinson—Soulé conjecture, see Corollaries 5.5 and 5.8.

THEOREM 4.

(1) Forn =2 the groups K(3)(C) H*(I''(C, 3)) and Hz(/\A;l('3)(C)) have the same image
in HdR(Can, RQ2)" under the regulator map.

(ii) Forn = 3 the groups K(4)(C) H*(I''(C, 4)), and HZ(M(4)(C)) have the same image
in HdR(Can, RO3)' under the regulator map.

It should be stressed here that the results of Theorem 4 hold without any
assumptions about the Beilinson—Soulé conjecture. Those results in the cases
p =2 and n =3 or 4 strongly corroborate a conjecture of Goncharov that there
is an isomorphism H*(I'(C, n)) = Ké’;)_p(C) for all p and n, see [4, §6].

Such a description of the image of the regulator map is important for the following
reason. The Beilinson conjectures for C as above predict the following.
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(D K;ZH)(C) has Q-dimension r = genus (C)[k : Q] for n = 2 (for n = 1, which we
shall not study here, the (Q-dimension could be larger, depending on the
reduction of the curve).

(2) For n = 2, the Beilinson regulator induces an isomorphism

K0 @0 R = HA(Cans R4 1)* = Hl (Cans R(n))*,

where the + indicates the part of the cohomology where the involution formed by
the combination of complex conjugation ¢ on the space C,, and complex con-
jugation on the coefficients R(n + 1) (resp. R(n)) acts as the identity.

(3) Ifay,...,a is a Q-basis of KZEH)(C), let 4 be the matrix obtained by writing
reg(ay), . . ., reg(e,) with respect to a basis of H'(Can; Q(n))™ = Q. Note that
det(A) is determined up to multiplication by an element in Q*. Assume that
the L-function L(C, s) of C can be analytically continued to the entire complex
plane. Then det(A4)/L*(C, 1 — n) is an element in Q*, where L*(C, z) is the first
nonvanishing coefficient in the power series expansion of L(C, s) around s = z.

Clearly, for those conjectures it is important to have a good description of the
image of the K-theory under the regulator map, which is one of the aims of this
paper. The regulator det(4) in (3) above is described in this paper in terms of a
determinant of integrals of reg(«;) A @; over C,, for holomorphic 1-forms w; on
C, and using the periods of the w;’s, see Proposition 3.2 below.

As a concluding remark we mention that according to the Beilinson conjectures for
C as above, one should have K,,(C)®7 Q = Ké’ff“(C), and the regulator map
should give an injection K5,(C) ®7 Q = K§Z+1)(C) — Hlx(Can; R(n))" for n>2,
so that conjecturally we get closer to a description of the even K-groups of C.
On the other hand, the regulator vanishes on all Kgf(C) withj £ n+ 1ifn > 1. Hence
Theorem 4 above also gives a complete description of the image of the regulator of
K4(C)®z O and K6(C) ®7 Q.

The paper is organized as follows. We review the description and the construction
of the complexes from [7] in Section 2 below, state some of their properties, and take
the opportunity to prove some loose ends needed in the rest of the paper. The
cohomology groups of these complexes map to the K-theory of the field F, and
in Section 3 we prove a version of Theorem 1 above. We also prove that there
is a duality between certain holomorphic 1-forms and a subspace of H}iR containing
the image of the regulator map, given by pairing the two forms and integrating over
the curve. Thus we get a description of the image of the regulator in terms of what
we call regulator integrals. Section 4 contains the proof of Theorem 2 above (or
rather of its incarnation without assumptions about the Beilinson-Souleé conjecture),
and is by far the longest. We give most of the proof for general n, but somewhere
along the road the combinatorics simply become too complicated and we restrict
ourselves to the cases corresponding to Kf)(F) and Ké4)(F). Even so, the reader
may feel the proof is a bit tedious and messy. Yet the order of the acts is planned,
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and the end of the way inescapable. Finally, in Section 5 we relate our work with that
of Goncharov as quoted in Theorem 3 above, proving Theorem 4 above. This way we
obtain a complete combinatorical description of the image of Kf)(C) and Ké4)(C)
(and as explained above, of K4(C) ®z Q and K¢(C) ®z Q) under the regulator map,
independent of any conjectures. We conclude the section by indicating how such
results could be obtained for higher n, but all this would depend rather heavily
on conjectures in algebraic K—theory.

Notation.The following notation will be fixed throughout the paper. k is a number
field. C is a smooth, geometrically irreducible, proper curve over k. F = k(C) is the
field of rational functions on C. C™" will denote the set of points of C of codimension
one, i.c., the set of closed points of C.

In all sections except Section 2, n is a fixed integer at least equal to two. For an
Abelian group 4, Ag = A7z Q. Q(m) = 2ni)"Q C C and similarly for R(m).
In the decomposition C = R(n — 1) @ R(n) we let ©,_; denote the projection onto
the R(n — 1)-part. If S is a subset of a vector space V/, we shall mean by (S) (resp.
(S)r) the Q (resp. R) subspace spanned by the elements of S.

Throughout the paper, in integrals and cohomology groups, we write simply C for
Can, which is the analytic manifold associated to C ®g C. Note that by our
assumptions, this is a disjoint union of [k : Q] copies of a Riemann surface of genus
the genus of C. Similarly, we shall write H}(F) for lim HéR(Uan), where the limit
is over all Zariski open subsets of C. vec

2. Some Preliminary Results

This section contains a description of the complexes Mg, (F) and M{n)(F ), together
with the maps (pfm from their H? to Kg?f H(F) under suitable assumptions, as they
were constructed in [7]. Apart from that, we also prove or state some results in this
context that are useful for the rest of the paper. ~

We briefly recall the construction of the complexes MG, (F) and MG, (F) in [7,
Section 3], where F is a field of characteristic zero. Let Y = Spec (F), or more gen-
erally a Noetherian, quasi-projective separated regular scheme. For convenience,
we shall refer to such a scheme as a reasonable regular scheme. Let ¢ be the standard
affine coordinate on P', and let Xy = Ply \{t=1}. In [7] a formalism of
‘multi-relative’ K-theory with weights is developed. To fix ideas, look at the exact
sequence in relative K-theory

— K% ((t=0,00)) = K9(Xy; {t=0,00)) = KO(Xy) — ....

One has KV (Xy) = KY(Y) by the homotopy property for K-theory of a reasonable
regular scheme, and the map K9(Xy) — K9 ({t = 0, 00}) = K¥(¥)®? is the diagonal
map. From this, one gets isomorphisms KV (Xy; {t = 0, co}) = K,(l’ll(Y). (We shall
apply this isomorphism only in case Y is a Zariski open part of a smooth curve
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over a number field, the Spec of its function field, or the Spec of a number field, in
which case all conditions are satisfied.) Iterating this idea one gets ‘multi-relative’
K-theory, by taking relativity step by step. Let #; be the coordinate on the i-th copy
of X in X". Writing (1" for {f; =0, 00},...,{t, =0, 00}, we have a long exact
sequence in relative K-theory

— K% ({ty = 0,00,0"") — KQ(X:0") —

m

KDy 0" — KD({1, = 0,005:0"1) — -+

and as before it follows from the homotopy property for K-theory of a reasonable
regular scheme Y that KV (X%;[O0") = KXLI(X?,*I; 0" ') for m > 0. Repeating this,
we get KO(X7%:0") = KY,,(Y) for m > 0. Note that there is no obvious choice
of this isomorphism, which will result in statements up to sign below.

Let Y = Spec (F), but drop Y from the notation. Let U C F* \ {1} be finite. Write
Xt =X"\{ti=uw, uje U, i=1,...,k}. One has a fourth quadrant spectral
sequence

B =] [k nxpm 0 ) =
n n—1. —n—=1y ~
K® (xhOh =Kk (F) 2.1)

which, if we write K, for K(X{:[0'), looks like

m

(n) (n=1) (n=2)
K:lq71.,171 ]_[ K—nq72,n72 ]_[ Kfan3,n73

(n) (n—=1) (n—=2)
K—q,n—l ]_[ K—q—l,n—Z ]_[ K—q—2,n—3

(n) (n—1) (n—2)
K—q+1,n—1 ]_[ K—qﬁn—Z ]_[ K—q—l,n—3

Here the coproduct for Xl'(’):l_” corresponds to the codimension p hyperplanes given
by p equations of type #; = u;, u; € U. If K9(Y) = 0 for 2j < m, m > 0, all the terms
below the row with ¢ = —n vanish, [7, page 221]. Hence if we view this lowest
row with the differential of the spectral sequence as a cohomological complex
(depending on U)

Chy K,(:',)l_l — ]_[K("_]) , = ]_[K,(l"__22,),_3 — ...

n—1,n—

in degrees 1 through n, we get a map

(anl, Dn—l ) i~ K(rt)

o (n)
H'(C,) — K" o

n—p+1 (F)

This procedure works more generally for Y a reasonable regular scheme, and
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U cT(Y, 0"\ {1} such that for all 4, and u; in U, u; — u; and u; — 1 are invertible
on Y if they are not identically zero. Let G = Spec(Q[S, S~!, (1 — S)~']). From
the localization sequence

- = KIYD(Spec(Q)®? — KAL) — KV(G) — KV~ "(Spec(Q)®? —

and the facts that K}P(A,IQ) =~ KV(Q)and KY(Q) = O unless n = 2j — 1 forj > 1, one
gets that the conditions about weights above are satisfied for G. One can use the
spectral sequence above, with G instead of Y, and U = {S}, to construct elements
[S], € K\(xg,t 0" 'Y for n > 2, satisfying d[S], = 27;11(—1)"[5],77”,,:& where
we put [S];=1-S. With some more care, one sees that actually
[S], € K\ (XE o O O0""). Anyu € F* \ {1}, or more generally any u € (Y, O*) such
that 1 — u is also invertible on Y, yields a map Y — G, and hence yields an element
[ul, € KX 0" ') by pulling back, with boundary d[u],, _Z;’:_II(—l)j[u]n,lltjzu
in C7,).

We now return to the case Y = Spec(F), U C F*\ {1} 1 finite, X} as before. Write
K, for K(P)(X Y. IOC,D” ). For the construction of M(,,)(F) one starts with the

complex C( ) (starting in degree 1)

o("1") o("5") (1)
K(,,) — (]_[K(n_])) g <]_[K(n_2)) — (]_[K(])) .
U U2

yn—1

The @(” 1 here corresponds to the number of ways of putting p of the coordinate 1y
to a constant in U. For any u € U, we have [u], € K®(X7-';0""). The element
[u], has boundary (1 u)I, _,, and for n>=3 |[u4], has Dboundary
Z;’:_]l(—l)j[u]n_m/:u Moreover, Cj, ) carries an action of S,_; by permuting the
coordinates, and [u], is in fact in the alternating part for this action. Let

(1+D"= K{l)(Xloc: ), which can be described more explicitly as
{F(t) = l_[(t — x;)"(t — 1)™ such that x; € U and Hx;.“ = l}
i i [6)

There are m — 1 cup products

(1 +I)*UK(m 1)(Xm 2, Dm—Z) N Kr(’:n)(Xm 1. Dm—l)

loc > loc

depending on which of the coordinates on X{"~! we use for the (1 4 I)*-factor. We let

1+ UK,S:"II)(X{SC 2,[0"?%) denote the span of the images of all possibilities.
Define

symb, = ([ul) + (1 +1)* U F}, €KY (Xioe: 0)
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and forn >3

Symbn = <[u]n) +(1+ I)*o Syrnbn_1 C Klgn)(anl. D”_l).

loc °

We get a subcomplex Cp) |, of C7,,
(1) (") (-
symb,, — (]_[ symbn_1> — (]_[ symbn_2> — < ]_[ F6> .
v U2 yn-!

The subcomplex J3, of Cp ., given by
. . o("")
(1 + 1)*0symb, | — d(...) + (]_[(1 + 10 symbn_z) N

n—1
n—=2

d(...)+...—>...—>d(...)+(]_[(1+1)*0F5)®( Y4

is acyclic, and we can form the quotient complex C, 1,./J;,- Because S, acts on
Cly)10g and J§, is stable under the action, we can take the alternating part of this
quotient complex, and we get the complex
M(.n)(F)I M(n)—>M(n,1)®<U>—)
n—2 n—1

o Moy \(U) = Fy® \(U),

where (U) is the (multiplicative) subspace of F; spanned by U, and

B symby,
~ (14+D)*Usymb, ;|

My,

(In [7] and [8] we wrote the factors in the tensor product the other way round. We
change this notation here to conform with the notation used by Goncharov.) Finally,
by taking direct limits over U we get the complex

MO(F) : Muy(F) = M1 (F)® Ffy — -+
n—=2 n—1
> Mo(F)® )\ Fiy = Fy© \ Fo,.

So M;(F) is generated by symbols [f]; with f € F*\ {1}, and the differential is given
by

dlifl®gi A Agn-t) =11 ®F ANgUA -+ ANgu
if [ >3 and
(1 _f)®f/\g1 ARRRRAY

if / = 2. The symbol [1]; also exists, with the relation [1], = 2/~'([1], + [—1],), see [7,
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Proposition 6.1]. In particular d[1]; =0 for all k£ > 2. By construction, if the
Beilinson-Soulé conjecture holds for F, there are maps

@, « HY (MG, (F)) — KY) (F)
as the composition of

HP(M(.VI)(F)) < HP(C(.n),log(F)all)

— HP(C}, 100 (F)) — HP(C},(F)) — K (F).

Finally, the complex Mzn)(F ) is obtained by quotienting out the complex M, (F) by
the subcomplex

([, + (=D /ul,) = ([ + (=D [l ) @ Ff — -
n_2 (2.2)
s ([l + [/ul) © [\ Fy — dC.).

We get the complex /T;l(.n)(F )
n—2 n

M(n)(F) — M(n_l)(F) ®Fa - = ]\7[(2)(}7) ® /\FES — /\Fa

where Z\Nl(l)(F) = My(F)/{[ul; + (=1)'[1/u];). The subcomplex (2.2) is acyclic in
degrees n — 1 and n ([7, Remark 3.23]) and is acyclic everywhere if the Beilinson-
—Soulé conjecture is true (not just for F but for more schemes, see [7, Proposition
3.20]). Note that now the differential at the (n — 1)-th place is given by

d([f]2®gl/\"'/\gn)Z(I—f)/\f/\gl/\.../\gn

with the other differentials unchanged. If the Beilinson—Soulé conjecture holds more
generally, we therefore get a map

Py + H(MG,(F) — KY)(F)

as the composition of

HP(M,(F)) & HP(M;,(F)) &
H(Cly10g(F)™") = HP(Cly(F)) — K3 (F)

Here the leftmost arrow is an isomorphism if the Beilinson-Soulé conjecture is true
in general, and the rightmost arrow exists if the Beilinson-Soulé conjecture is true
for the K-theory of F. By construction, all arrows from left to right are injective
for p = 1, if they exist.

The reader may check that, if the Beilinson—Soulé conjecture is true in general,
then for an element o in H?(Mg, (F)) (resp. H 2(/F\V/l:n)(F ), (pfn)(oc) (resp. (I)fn)(oc)) nat-
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urally lives in Kg?_ ,(U) for U some Zariski open subset of a reasonable regular
scheme Y with function field F. This is because the lift of such an element will involve
only finitely many elements in F, and the spectral sequence (2.1) will involve only
finitely many #; = u;’s. But then this spectral sequence exists for a suitable open part
of Y as well, by leaving out the closed part where u; = u; for all i,j such that
u; # u;. Moreover, the Beilison—Soulé conjecture implies that the localization
map Kéz)_ (U) - Ké’r’l)_ ((F) is an injection, which allows one to check that the cor-
responding map of the complex for the Zariski open part U to the corresponding
complex for F is an injection, see [7, Remark 3.17]. We shall only apply this to
the case that U is a Zariski open part of the curve C, in which case the injection
above is guaranteed by a localization sequence

RSV — KL (U) > KD () > -

because Kgﬁ:ll)(k(x)) =0 as k(x) is a number field.

In this paper we shall be mainly interested in the case p =2 and n =4, i.e., the
target is Kg‘)(F ). The leftmost arrow here is a surjection without any assumptions
because of the acyclicity of the complex (2.2) in degree 3. The rightmost arrow exists
to a quotient Ké“)(F )/N, which is as follows. In the spectral sequence (2.1) all higher
differentials leaving Ezl”4 are zero, as they land in Kél)(F )’s or outside the range
of the spectral sequence. So Ey ~* = EZ'* and we get a map H*(Cy\(F)) = EZM,
a subquotient of Ké4)(F ). In order to determine this more precisely, note that we
have a long exact localization sequence

s [EVE) - kPG D) > KP X ) > | [K@F) - -+
As Kél)(F) and Kél)(F) are both zero, we get
KP (Koo ) = KP(X:0) = KP(F).

Therefore EZ'* ¢ KY'(F)/N with N generated by K{”(F)U K{*(F), and we get a
map

HX(My(F) — EL* — KP(F)/N

which does not depend on any assumptions.
In Proposition 4.1 below, we shall introduce maps 6 = []J, with

Syt My (F) — MG,y (k(o)[1]
given by

5.x([/“]nfl ®gINA-A gl) = Spnfl,x([f]nf[) ® 8l,x(gl ARERIAN gl)

in degrees 1 through n—1, and by the map —9,, in degree n, where
SPu_1x( 1) = [F ()], if f(x) # 0 or oo, 0 otherwise, and 9; , the unique map from
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N F to A" k(x)f, determined by

T AU A - Aj_1 1> U1 (X) A - A up_1(x)

Uy A Aupi—0

if all u; are units atx and 7, is a uniformizer at x. This map obviously gives rise to a
map M( )(F ) — M(n n(k(x)[1] by composition with the natural projection
MGy (F) — M(hlg,F) Following Goncharov ([4, §6]), we introduce the complexes
M) (€) and M, ;) (C), defined to be the total complexes of

d d d
Muin(F) = MuF)QF, -  MenP)@NFy -

\ 5 5
0 > UMpke) S L Meoyke) @k; > -
and
M (F) > Mu(F) ® F, L Mn(F) e N\ Fy 4
\ o 5l
0 — UMeke) S 1 Meoyk) @k >

where both coboundaries have degree 1 and the total complexes are cohomological
complexes with Mg, ,,,(F) and M e (F) In degree 1. There are obvious inclusions
of Hz(M(nH)(C)) into Hz(M(nH)(F)) of HZ(M(,,H)(C)) into HZ(./\/l(nH)(F)) so that
the maps (P(n+1) (resp. (p(n+1)) obviously extend to maps on the cohomology of those
complexes.

In [7] regulator maps

KOXY 00" = Hy (XY 00" R(g)

to relative Deligne cohomology were defined. We recall that the Deligne cohomology
group H}(X; E; R(g)) can be described as the quotient

(s $n) With @, in FY(DY", s, in j,.S% (g — 1) such
that w, g =0, s,z =0 and ds, = 7,10,

(dwnfl» Tg—1Wp—1 — dsnfl) with Wp—1 in Fq(D)nila
Sp—1 in j,S%%(q — 1) such that w,_1z =0 and
Sn—1|E = 0

(See [7, p. 218].) Here the notation means the following. We write X etc. for the
underlying topological complex manifold consisting of the closed points of
X Xspec(0) Spec(C). X is a compactification of X with complement D such that
D and DUE are a system of divisors with normal crossings. j is the imbedding
of X into X. S%(¢) is the complex of R(g)-valued C*-forms on X, FY(D)* the
complex of C-valued C®-forms on X of type (p, r) with p > ¢ and with logarithmic
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poles along D. (So locally on U C X an element in F4(D)" is a sum of elements of the
form ¢ Ay with ¢ € Q%(D N U) of degree p > ¢, and y € C*"7(U).) Note that if
g > dim X, we get a natural isomorphism H}A(R(g)) = Hix'(R(g — 1)).

The regulator lands in the invariant (or plus) part of Deligne cohomology with
respect to the involution given by the combined action of complex conjugation
on the underlying topological space (through the action on C in
X Xspec() Spec(C)) and on the coefficients R(g) C C. This involution acts similarly
on HgEI(R(q — 1)), and the plus-space in Deligne cohomology is isomorphic to
the plus-space in Hyg if ¢ > dim X.

The regulator of a cup product in K-theory is given by the cup products of the
regulators, (see [7, (22) and (40)], but (40) is flawed by typographical errors).
For (wp, s,) in HAH(R(K)), (0, s4) in HH(R(])), we get that in Hp(R(k + 1))

(0p, 8p) U(0y, Sq) = (0p A g, 5p AT + (— 1) (Tew)) A sq) (2.3)
As for the regulator of [S],, it is given by (w,, €,), with

th—1— S
tio1 —1

oy = (—l)”fldlogtll;f/\---/\dlog Adlog(l — S). (2.4)
| —

Here ¢, is an R(n — 1)-valued (n — 1)-form such that de¢, = m,_1»,. (Unfortunately
the signs in equation (41) in [7] were wrong, so the formula for w,;; on page
237 needs a sign (—1)°. This does not change the results of the paper, as it only
introduces a similar sign in [7, Proposition 4.1], which was stated up to sign anyway.
The correct statement including sign of that Proposition is that the integral
evaluated there for ¢, using the orientation dx; Ady; A--- Adx,_; Ady,_1 equals
(=" V2N — 1) Py 706(2).)

Finally, we have to introduce some polylogarithm functions and state their
relations with the present constructions.

Let Lij(z) = Y00 z”/m! for [ > 1 and z € C, |z| < 1. Then Li;(z) = —Log(l — z)
and dLi;y (z) = Lij(z)dlogz for /> 1. The functions Li; can be continued to
multi-valued holomorphic functions on Pi; \ {0, 1, oo}. Let the Bernoulli numbers
B, be defined by

= — X
X |
er—1 =1

It is well known that the functions (called P, resp. P, z., in [7] and [8])

n—1, !
Pn,Zag(Z) = Tp—1 (Z(lol—%|2|)]—fin—l(z))

=0
and

n—1 ]

2'B, .
PRoYz) = m, (Zn’log’ |z|L1n_1(z))

=0
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extend to single valued functions on ]P’é;\{(), 1,00} with values in R(# — 1),
see [I11]. The functions P™°d satisfy the functional equations Pj,m’d(z)+
(—1)"Pmd(z=1) = 0, and extend to continuous functions on Pf, with Pm°d(0) =

P;“Od(oo) =0.
We have the following relations between the functions P, za,:

LEMMA 2.1.

log" |z
dPy 7ag(2) = Pu—1,7ag(2)d 1 arg z + (—1)"Hnn_1dlog(l —2)

Proof.
APy 70(2) = Ty (Z( log || Lin_l_/(z)dlogz)+

—1 -
I (—%dlog(l - z))—

n—1 -1

log|z .

. 1( (= g|1|))' Li,_s(z)d log |z|>
=1

1
(Z - log 12D Li,_1_/(z)di arg z> +

n—1
z
(g 1')"nn,ld1og(1 —2)

As in [11, §7] one checks that we have the relations

+ (=1

log” 2] _od
Pn.Zag(Z) = 2:02 (z )-
PINCETI

LEMMA 2.2. Let C be a complete, smooth, irreducible curve over C with function
field F = C(C). If f1, ..., f1 are elements of F*, and c; are rational numbers such that

!
D ali® 8@ (Al -f)=0
=1
in Sym"~ 2FQ ® /\ 0 then the function

/
2> Y PR (f(2)
J=1

is constant on C.
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Proof. This is done by Zagier in the proof of [11, Proposition 3] for C = P}C, which
works just as well for any curve as in the statement of the Lemma.

Because By =0, By = —1 and B, =, we have
P3 706(2) = P°%(2) — ,1og |zl log |1 — z|. (2.5)

Propositions 4.1, 5.1, Remark 5.2 and Theorem 5.3 of [7] contain the following
result.

THEOREM 2.3. Let k be a number field and let 1, . . ., o, be all embeddings of k into
C. Then the maps (pfn) and (prn) exist without assumptions. They are injective forp = 1,
and isomorphisms for (p, n) equal to (1,2) or (1,3). Moreover, the composition

(*')

H' (MG, (k) = K3 (k)=
Hx(Spectk @ C); R(n — )" = (@,R(n —1),)"

is given by mapping [x], to £(n — 1)! (PmOd(a(x))J).

Finally, we shall need the following result of Borel [1], to which we shall refer as
Borel’s theorem. Namely, for a number field k the regulator

K3 (k) — H(Spec (k) ®; C; R(m)" = (@R — 1),)"
is an injection for n > 2, and induces an isomorphism
KW (k) ®o R 3 (@R —1),)" (2.6)

Heres o runs through all embeddings of k into C as in Theorem 2.3 above.
We shall want the following theorem for the computation of the boundary map
under localization.

THEOREM 2.4. We have a commutative diagram (up to sign)

KX < xpohon)

loc

KM (xn o)

lg lg

KO0 00— K 00

and the image of 3, ¢[fil, ® g; in K{"V(X"; 0") under the map
q0(211+l) : HZ(M('HH)(F)) — Kr(l’”l)(Xn; 0" = K§Z+l)(F)

gets mapped to £} ¢lfil,Ug in Kr(,ﬁl)(/\%cl’ "N, up to terms in

(14 I*OK" (X2 0" 2)

loc
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Proof. The proof is rather analogous to the proof of [8, Proposition 3.2].

For computing the image under the regulator map we use integration. Because we
shall be integrating forms on non-compact varieties, we need some results about the
dependence of the result on the explicit representative chosen for a particular class.
This problem was dealt with in Proposition 4.6 of [8], which we now proceed to
recall.

Let Y be an algebraic variety of dimension n with compactification Y such that the
complement of Y is given by D, a divisor with normal crossings. Suppose moreover
that there is another divisor D’ on Y such that the union of D and D' is a divisor
with normal crossings. We want to say something about the behaviour close to
D of forms on Y that vanish on Y N D'. Suppose that locally in a compact subset
of Y, Dis given by ]_[i-‘zl x; = 0. Letr; = |x;], 0; = arg x;. We will consider differential
forms f on Y that satisfy the following condition on the compact subset of the chosen
neighbourhood of D.

p vanishes on D' N Y and can be written as sums
of products of logr;, dlogr;, df;, bounded C*-
functions on Y and the restriction of C*-forms
onY to?Y.

2.7)

PROPOSITION 2.5. Let Y, Y, D and D' be as above. Suppose that B, and f, are two
closed n-forms on Y as in (2.7) that represent the same class in relative de Rham
cohomology H"(Y; D'; R(j)). Let w be a holomorphic or anti-holomorphic n-form
on Y, possibly with logarithmic poles along D'. Then

/yﬁl/\wzfyﬁ2/\w'

We conclude this section with some remarks on orientations and standard
integrals, to be used throughout the paper.

We shall always use the following orientations for the integrals involved: with
t = x + iy the standard parameter on Al c P!, P! or open parts have orientation
given by dx Ady = 5—}dt A dz. On (P')" or open parts, we use the orientation given
by stdfyAdiiA---AFHdE, AdT,. On X3 =X"x S' we take the product
orientation of the above on X” with the standard counterclockwise orientation onS'.

Using Stokes’ theorem and the fact that dlog((t —¢)/(t — 1)) Adlogt =0 for
c e C, we find

t— t—
/diarg c/\d 10g|t|:—/d log —f Adiargt = 2nilog]|c|
X t—1 % t—1
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a

nd
/diarg(—t_f)/\diargt:—/dlog
X t—1 e

hence

t—f
l =
t—l'/\d oglt| =0,

t—c - t—c|? _ )
/){dlog(:)Adlogt:/){dlog’:‘ Adlogt = 4nilog|c|.

We also have the standard integral for p; a bump function around t =0, i.e., p; = 1
around t =0 and p; =0 off t =0,

/ d(p,(ndiargt) = —2mi.
X

Finally, we shall need the following integral. Let 4 be a function on P! with
h(co) — h(0) = 1. Then

/ dh(t) A diargt = 2mi.
X

3. The Regulator Integral

Let C be a smooth, proper, geometrically ireducible curve over the number field &,
and let g be its genus. Then C,,, the associated complex manifold to C ®¢ C, is
a disjoint union of [k : Q] complete algebraic curves C; over C of genus g, indexed
by the embeddings of k into C. We fix an orientation on C,, such that the involution
o given by complex conjugation on C in C ®q C reverses the orientation. We also
introduce the number r defined by r = [k: Q] - g.

The goal of this section is to describe the regulator on the image of (p(zn 41y inside
Hl:(F; R(n))*. We begin with some remarks on the cohomology groups of Cyy.

For 7 : k — C an embedding, denote C; the curve obtained from C by base change
from k to C via 1.

If 7 is a real embedding, then ¢ acts on C,, reversing its orientation. HéR(CT; C)is
spanned (as a C-vector space) by the holomorphic and the anti-holomorphic forms
on C;. Then the R-vector space of holomorphic 1-forms w on C; such that
woo = is given by H(Cgr; Q) = Rf where Cy is the base change from k to
R via 7. On the other hand, by projecting

Hig(Ce; C) = H(Cr: Q) & H'(Cr: Q) @ iH(Cr: Q) @ iH(Cr: Q)
onto the R(n) and & parts one checks easily that
Hig(Ci; Rm)* = 7, H'(C; Q) 2 RS

because the forms remain independent after projection onto the real or imaginary
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parts. We get a pairing Hl (C; R(n))™ x H(Cg; Q) — R(1) by mapping (m,, @) to

_ 1 _
/ nnl//Mozif VAP
Cz C‘(

This pairing takes values in R(1) because o reverses the orientation, and o ¢ =
and w o g = ®. It is non-degenerate because of the duality between holomorphic
and anti-holomorphic forms on C;.

If 7 is not a real embedding, ¢ acts on C; || C:. Then the holomorphic 1-forms w
such that w oo =® are given by the pairs (o, ®o0) with @ € H'(C;; Q) = C?.
And Hlx(C.]] C:; R(n))* is given by the pairs (, Y o o) with Y € H}(C.; R(n))
which has R-dimension 2g. In this case we get a pairing
Hip(C: 1] Ce: R(m)" x HY(C, ][ C: Q" — R(1) by mapping (.Y 0o0),
(w,®00)) to

/¢A6+/ l//O()’/\CUOO’:2/ Y A T o.
C, C: C;

It has values in R(1) for the same reasons as above. It is non-degenerate because the
pairing

Hlo(Co: R(n)) x H)o(Coi R(n + 1)) — Hig(Cr: R(1)) 22 R(1)

is non-degenerate, and the projection H(C; Q) — Hlz (C:; R(n + 1)) given by map-
ping o to @, is an isomorphism.
We summarize those results in the following Remark.

Remark 3.1. Hlx(C; R(n))" = R” with r = [k: Q] - g. Moreover, the holomorphic
forms w on C,, such that w o ¢ =@ form the dual of Hjz(C; R(n))* under the
pairing

Hip(C: Rm)* x (o) = R(1)
defined by sending (, w) to [ ¥ A @.

We use this duality in Proposition 3.2 below in order to give the Beilinson regu-
lator in terms of integrals.

In the following formulae we use the notation + or  where we read either the top
or the bottom in all places.The involution ¢ acts also on H;(C; QQ), so this space splits
into a 4 part and a — part as well. From the pairing with H'(C; Q) one deduces that
both pieces have Q-dimension r, as H;(Q)* is perpendicular to H'(Q)F. Let
{s1.+,...,8.+} be a basis of H(C; Q)*, and let {74854} in H'(C; Q)
be its dual base, so that fsmi Sto=O0m. Let T = (‘/s;k,i ), SO
o= Y (T5si .+ Tisi. ). Write R(+) for R(0) and R(—) for R(1), and similarly
for ny. As@; = w; o ¢, we get fSki o= [, woc= /. (o) @1 = ifs;c,i wy, and hence

! ol
T* has entries in R(z£). Therefore 75 = ka .m0y Inparticular, myop = 3, T s |
and m_w; =Y TSk _.
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PROPOSITION 3.2. Suppose the Beilinson regulator maps the elements oy, . . ., o, in
Ké’:f“(C) toy, ..., in HéR(C; Rm)*. Let w, ..., o, and T* be as above, and let
Ry = fC Vi AN Then the Beilinson regulator of oy, ..., a, is given by

. det(R)
T i) det(TH).

where we take — for n even, and + for n odd.

Proof. In this proof, let us write + and F where we mean that we take the top for n
even, the bottom for n odd. Note that y, o 6 = 2y if Y, € Hix(C; R(n))". There-
fore we can define the R(n)-valued matrix M by Y, =), My s:.. Then by
definition, ¢, = 2ni)™" det(M). As o reverses the orientation, w; oo = @; and

Vi o0 =Py = (~1)"y, imply that
Rk,[:/l//k/\@:—/lﬂkOO'/\COIOO':—/l/J_k/\OJ[:—R—k,].
C C C

Therefore Ry, is purely imaginary, and

Ry = —/ Wi A oy
c

_ F *
== 27 v
n C

:_ZM/”” nl[ mi/\s

m,n

:_ZMkm mn

with A, =[5, o A s . As det(4) expresses the non-degeneracy of the pairing
H'(C; Q) x HY(C; Q) - H*(C;Q), it is an element of Q* Hence taking
determinants we find that det(R) = det(M)det(TF) up to a factor in Q*. So we
get that the regulator ¢,; of «y, ..., is given by

det(R)
= iy det(TF)

DEFINITION 3.3. If w is a holomorphic 1-form on C,, such that w o ¢ = @, we call
the map Hl (C; R(n)" — R(1) given by ¢ 1— Jo¥ A@ the regulator integral
associated to w. We shall use the same terminology if we precede this with the regu-
lator map from K{""(C) to HlL(C; R(m)*.

The regulator integral has the advantage that it can be factored over larger groups
than just Ké’:f“(C):

PROPOSITION 3.4. Let w be a holomorphic 1-form on C. Then the regulator
integral Ké’fl)(C) — H(}R(C; R(n))t — R(1) associated to w extends naturally over
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the maps
K3(C) — KEV(F) — KSR (k) U F,

Proof. Let ff be a class in Hip (F; R(n))" = lim - Hip(U; R(n))". Then using the
fact that Hlz(U; C) can be computed using forms with logarithmic singularities,
one sees that § has a representative i as in (2.7), and we extend the map by mapping
B to [~ A®. Proposition 2.5 shows that this does not depend on our choice of i,
hence is well defined.

As for the last map, note that the regulator of « U f for a € Kéﬁll(k) and f € F'is
given by (0,c)U(dlogf,logl|f]) = (0,cdiargf) in Deligne cohomology, hence
by diargf in H)y. Then the regulator integral becomes Jocdiargf Ao =
Jocdlog|f A =0 as one easily checks using Stokes’ theorem.

The rest of the section is devoted to rewriting the integrals occurring in Prop-
osition 3.2 on the image of Hz(M(',1+1)(F)). We shall in fact prove the following
Theorem.

THEOREM 3.5. Suppose the Beilinson—Soulé conjecture holds for F, so there is a
map HP (MG, ,,(F)) — K;ZIIQ)_F(F) as explained in Section 2. If Zi ¢lfil, ® gj is an
element of HZ(M(°,1+1)(F)), then the regulator integral

reg f RN

H(M{,1(F)) — Ky (F) = Hip (F2 R(m)—~—— R(1)
is given by mapping [f ], ® g to

Lo / loglgllog"! |f|dlog |1 — f] A @
C

For an element Zj ¢lfil, ®gjin HZ(MZnH)(F)), the total sum is the same if we map
Vl.®gr

n n— —
:I:Z”—/loglg|log 2171001 = £, ) A, (3.1)
n+1 C

where 0(f, g) = log|f|dlog|g| — logl|g|dlog|f|. This last integral is zero on symbols
11+ (=D'[1/f1,) ®g  hence factors through the map HZ(M('HH)(F)) —
HA (MG, ) (F)).

Remark 3.6. If the curve is an elliptic curve E, the integrals occurring in Theorem
3.5 can be rewritten using Fourier transformation. This gives expressions for the
regulator integral in terms of non-classical Eisenstein series (see e.g., [5S, Theorem
3.4] for the case n =2 and [3, Theorem 5.8] for arbitrary n). It seems that for
n = 2 those Eisenstein series were first considered by Deninger in [2].
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The rest of this section is devoted to the proof of Theorem 3.5. We first make the
isomorphism H’¢' (X2 0" R(n)™ = Hix(C; R(n)* explicit. Namely, let / be a
real-valued C*°-function on P}; such that /(co) — 4(0) = 1. Then the isomorphism

HiRN(Y; Rm)) 3 Hijp(Xy; O; R(m))

is given by sending y to A dA, and similarly for the + parts if / is symmetric with
respect to complex conjugation on P% . As

/dh/\dlog?:—/dh/\diargt:—2ni,
X X

this means that for y in H}z(C; C),
i/ /N®)
c

= Q2mi)™" Yy Andh(t) A --- Adh(t,) Adlogty A -+ Adlogf, A D
xe

= (—2m’)*”/ Yy Adh(t) A --- Adh(t,) Adiargty A--- Adiargt, A®.
Xz

Now let a =3 ¢lfj], ® g be an element of Hz(/\/l('nﬂ)(F)), with image  in

Hl:(F; R(n))* under the composition
HA(M,,1(F) > K5 D(F) — Hig(Fs R(n)*.

From Theorem 2.4 we have a commutative diagram

K9 (X < xpshan)

loc

ESY (xn 0

lg lg

KD e o) —— KD (G o,
and the image of « = ), ¢/[fj], ® g; under (p(an) in K"*D(X™; ") under the maps in
this diagram will be mapped to o’ = £ Y, ¢[f], Ug; in K\ (Xn':0""), modulo
1+ I)*OK,(I”)(XI’gz; [0"2). One has the corresponding diagram in Deligne
cohomology, which is equal to the de Rham cohomology in all cases. Hence we
have  reg(e) in  HiFN(X"; 0" R(m)*,  corresponding to Y/ in
Hi(X" 50" R(n))Tas well as  in Hig(F; R(n))™ under the relativity
isomorphisms. ' in turn maps to reg(e) in Hlip (X[ 0O"'; R(n))*. Therefore,
if @ is any holomorphic 1-form on C, and ® =dlog# A --- Adlog?,_1, we want

to compute

1 1
+ AND=—— "ANOAD=—— | 1eg(@d)AO® A D
/clp Qniy"! /wxcw (2ni)”—1/z &)
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where Z is a localization of X 2*1 and reg(o) is a form satisfying (2.7) on a suitable
compactification of Z, Z. We can obtain Z from (P')"~! x C by repeatingly blowing
up, obtaining a Z which has a Zariski open part isomorphic to X f{l})c for some
Zariski open U of C. To see that the last equality sign is true, we have to check
that the conditions of Proposition 2.5 apply, i.e., that on Zreg(e/) can be written
as in (2.7) and that (the pullback to Z of) dlog# A --- Adlog?,_ A @ has poles
of order one along the strict transform of [1""' and no poles elsewhere. This
one easily checks explicitly, cf. the computations on page 608 of [6].

Because we can take Z to be a blowup of (P! ”C_l, which is isomorphic to (P! ’}]_1
for some Zariski open part U of C, we can compute simply on X gflloc without chang-
ing the value of the integral.

As the regulator of [f], U g is given by the product

(wn, €2) U (dlogg, log|gl)
= (w, ndlogg, e, ndiarg g+ (—1)"log|g|m,w,),

we find that the regulator integral is given by
Qni)' =" Z ¢ /Z(en(fj) ndiarg gi+(—1)"log |gj|n,,wn(}j-)) AO A,
j
which equals
(2711')1_” Z ¢ /Z(en(fj) ndloglgjl + (—1)"log |gj|n,,a)n(}j»)) AOAD
j
as d(iargg —log|g)) A@(f) =0 on X" ! x C. Adding
0= (=1)"Qni)'™ Z cj/Ed(log Iglea(f)) A O AT
j
we obtain
(—1)"Q2mi)' ™" Z c,/flog gl 0a(f;) AN O AT
j

Remembering that

i _f/\-n/\dlogl"_1 -/

w:a)n(f)z(—l)"_ldlogtl — P

Adlog(l — f)
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we can compute each of the terms in this sum as

n—1
:|:(2ni)1"/(/ dlogi flj/\dlogt> log|g;|dlog(1 —f) A @
C X -

= 4! / log gl log”*1 Ifildlog(l — ) A@
c
= :|:2”/ log|g;l log"_1 Ifildlog|l — fil A
c

because fxlog%A dlog? = 2milog|f]* and dlog(1—f)A@ =0 on C. We can
rewrite the resulting total sum

j:chZ”/ log|g;l log"™! Ifildlog|l — fil A @
: c

J

in terms of

/C log g log" [f](log |1 — fldlog [f| — log|f|dlog|1 — /) A @

by adding
1 n—1 —
_;cj—n_i_ i /Cd(log|gj|log [fillog|l —fil) A @
and
1 n—2 —
ch— log" ™" |fjl log |1 — £;] 0(f;, gj) N @.
r n+1 C

Note that this does not change the value of the integral, as the first term vanishes by
Stokes’ theorem, and the second because we take sums of terms corresponding to an
element in HZ(M(',, +1(F)), and the form vanishes identically after summing up the
terms. This yields the integral given in (3.1). One checks immediately by writing
it out that each of the terms vanishes on ([f], + (—1)"[1/f],) ® g.

Remark 3.7. For n4+1 =3 or 4, i.e., the cases Kf)(F) and Ké“)(F), we get the
results of Theorem 3.5 without any assumptions. If n+ 1 = 3, we have the map
(7)%3) : H2(M;3)(F ) & H 2(/\/l('3)(F ) — Kf)(F ) without any assumptions, see Section
2, so the Theorem gives the formulgf for the regulator on the image of (2)33). For
n+1=4, the map ¢(24) from Hz(/\/l('4)(F)) to Ké4)(F)/N (with N generated by
Kf)(F)UKf)(F), see Section 2) exists without assumptions, and the regulator
factors through this as the regulator map to Deligne cohomology respects the prod-
uct structure, and vanishes on Kiz)(F ). Hence it factors through this quotient to give
us

HA(MG,(F)) - HH(F, R3))" = Hjp (F. R(Q2)*
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with the formulae for the regulator integrals as given in Theorem 3.5. Note also that
in this case the map H 2(/\/l('4)(F ) — H 2(/\/l('4)(F )) is a surjection, which follows from
the acyclicity of the complex (2.2) in degrees 3 and 4 as mentioned just after (2.2).

4. The Boundary Under Localization
If x is a closed point of the curve C, K,(k(x)) is torsion as k(x) is a number field.

Hence the localization sequence for the K-theory of the curve takes the form

0 — KUO(C) — KUOF) — [ KW (k(x) — -

xeCh

This section is devoted to the computation of the boundary map on the image in

KSHO(F) of Hz(/u;n+l)(F)) or H*(M¢, ,(F)) in this localization sequence for

n = 3. The method chosen probably works for all n > 2 (with the case n = 2 already
done in [8]), but at some stage the combinatorics become too complicated in general
and we restrict ourselves to the case n = 3.

Recall that in [8, Corollary 5.4] it was proved that we have a commutative diagram
(up to sign and up to 3(K§2)(k) U F) in the lower right hand corner)

#s)

H2(M?y) (F)) KQ(F)
lzé la
accm H (Mo, (k(2)) —> [Tecm K2 (k())

Note that the lower horizontal arrow is an isomorphism by Theorem 2.3. For
generalizing this to n = 3, we need some preliminary results. The following result
was proved in [8] for n = 2.

PROPOSITION 4.1. There is a map

51 Moy () > [ Miykepil

xeCh
given by
Ox([f 11 @ g1 A Ag) =3Py ([ 1u-) ® Brx(gr A+ A g1)
forl=1,...,.n—1, and
Ox(gu A Agn) = —0nx(G1 A Agn)

SJor I =n, where sp,_; ([f1,_) = [f (O], if f(x) # 0 or oo, 0 otherwise, and 9, the
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unique map from /\/ Fg to /\171 k(x)p, determined by

T AUL A -+ Aj_1 = up(X) A -+ Awy_1(x)

Uy A---Aui—0
if all u; are units at x and 7, is a uniformizer at x. This gives rise to maps

o: HME) — [ H™ MG, k().

xeCh)

Remark 4.2. We get induced maps

51 Moy > [ Mi,kepil

xeC®

and

51 H"My(F) — [ ™ (Vo ()
xeC
by composing the natural projection Mg, (F) — /A\;l(‘n)(F ) with 9.

Proof. Let x € C be a closed point in our curve over the number field k. Fix a
uniformizer 7, around x. We shall in fact construct the map
SPux M(,,)(f ) — M(n)(k(x)), and then observe that it factors through the projection
M(”)(F) — M(”)(F). N

Assume we have amapsp,,_| , : M,—(F) = M(_1)(k(x)) given by mapping [f],_,
to [f(x)],_; if f(x) # 0 or oo, and 0 otherwise. This was done for n — 1 = 2 in the
proof of [8, Proposition 5.1], and is the case where one has to work with
]\~4(,1_1)(k(x)) rather than M,_1)(k(x)). We then have a diagram

Q[F*] Mn—1)(F) ® Fg

l |

My (k(2)) —> M1 (k(z)) ® kg

where Q[F*] is the free (Q-vector space on elements of F*, the vertical maps are
[ 5p, ([f(0)],) and [f], ® g+— sp,_; ([1,—1) ® g(x), with g(x) = gn °4®|,, 7,
a uniformizer at x. It is obvious that the diagram commutes. To show that it factors
through M, (F) observe that if « goes to zero in M, (F) then sp, () defines an
element in Ké’:l)_ 1(k(x)). As k(x) is a number field, we can verify that the element
is zero by computing the regulator map, given by Theorem 2.3. To this end, consider
all embeddings of k(x) into C, i.e., tensor the curve C over Q with C. Then we have
that P™4(x) is constant, see Lemma 2.2. Specializing to a point y where it can
be done directly (which means that y should lie in some Zariski open part, see Section
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2), we find 0, so the regulator vanishes. Then we use that the regulator does not
change if we replace y with x, and continuity, to see that

Pod(sp, () = PP°4(sp, (o)) = 0 because PM°¢ is continuous at 0 and oo and

has value 0. Hence sp,, (o) = 0 in M, (k(x)).
This map gives us the map sp, . : M) (F) — M)(k(x)), obviously factoring
through M, (F). It is then easy to check that we get maps of complexes
Mi(F)—> Mi(F) = M5,y (k)]

with 0, given by mapping [f], ;®g1A---Ag to sp, ; ([f(X)], ) ® I for
I=1,....,n—1and —0,.(g1 A ... Agy) for [ =n, with 9;, the unique map from

N F§ to AN k(x)p, given by

T AUL A - Atp_ 1= U1 (X) A - Aug_1(xX)

Uy A---Aui—0

if all u; are units at x. From this we get maps

3yt H" (M (F) — H" (M, (k(x)))

(n

as claimed in the proposition.

We can now introduce the complexes Mg, ;)(C) and ﬂ(n+l)(C), by defining them
to be the total complexes of the double complexes

Muy(F) > My(F) ® Iy S Moy e N F}, 5.
\ o o
0 — 1 My (k(x)) SO M1y (k(x)) ® k(x)%, 4.
and
Mun(F) S M) @F, S MeyF)e N F
' 54 5y
0 > UMuk) > L Munk) @ k() > -

where both coboundaries have degree 1 and the total complexes are cohomological
complexes with M¢, . ,,(F) and M, ,(F) in degree 1. There are obvious inclusions
of HZ(M(',,H)(C)) into Hz(M(',H_l)(F)) and of Hz(MEnH)(C)) into Hz(/\/l(',H_l)(F)),
so that the maps (p%n +1) Tesp. (7)(2n +1) obviously extend to maps on the cohomology
of those complexes.

COROLLARY 4.3. Under the map ¢f, Hz(]\v/t&)(C)) is mapped to
KP(C)+ K (k) U Fy inside K{(F).
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Remark 4.4. The exact sequence
0 > K(C) - KO(C) + KP(k) U Ffy — a(z<§2>(k) U ng)

is split. Namely, because Kf)(k)uk* =0 as Kf)(k) =0 (remember that k is a
number field), the cup product factors through K§2)(k) ® F(,/k7). The boundary
map factors through this as well, and is hence given by
doUf = —09f Ua = —div(f) Ua. Because the divisor map is injective on F;‘Q/k,’b,
the boundary map is injective as well. The corresponding result holds forKg'l l)(C)
and Ky (k) U F},.

COROLLARY 4.5. ¢ : HA(M(C) — K{(C) + K (k) U Fy can be lifted to a
map go(23) : HZ(M('3)(C)) — Kf)(C) by changing q)é)(oc) with elements in ng)(k) U Fp,.

We now serve the main course in this section:

THEOREM 4.6. For n = 3, the diagram

HA(M¢, (F)) e, kO (F)/ KD (F) UK (F)

: :

oecm H (M (k@) —— [Lecm K5 k(=)

commutes up to sign and up to 8(K§3>(k) u Fa) in the lower right hand corner. ( Note
that the map (p%4) exists without assumptions as explained in Section 2, and that
the lower isomorphism is part of Theorem 2.3.)

Remark 4.7. Note that from the localization sequence
0 — KP(C) > KP(F) — [ [ K (k(x)
we get an isomorphism Kf)(F ) = Kf)(C) as Kgl)(k(x)) =0. Hence on
Kf)(F yu Kéz)(F), dy is given by mapping o U f to the cup product of o(x) with
the boundary at x of f3, i.e., zero as a(x) € Kf)(k(x)) =0 as k(x) is a number field.

(Of course that would be zero for any field for which the Beilinson—-Soulé conjecture
holds.) So in fact

KP(F)UKP(F) c KP(C) c KD (F).
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COROLLARY 4.8. Under (p(24), HZ(U(4)(C)) is mapped to
KP(O)/KP(F) UK (F) + KO (k) U F,
inside K)(F)/ K (F) U K (F).
COROLLARY 4.9. Using Remark 4.4, the map
Pl HAM(O) > KP(C)/KP(F) U K (F) + K (k) U F,
in Corollary 4.8 can be lifted to a map
9y T HH (MG (0) — KO/ K (F) U K3 (F)
by changing @%4)(00 with elements in Ké”(k) U Fg,.

Large parts of the proof of Theorem 4.6 work for general n, and we give most of it
in this context. However, although the method employed probably works for all n,
the combinatorics at a certain stage get rather out of hand, so we restrict our atten-
tion to n = 3 at some point.

Starting with o =) . ¢[f]], ® g in Hz(M;nH)(F)) we begin with creating an

J
element oy in K/V(XplaO""). Let {4y,....4)} in F* be a basis of
(fi» &) C F{y obtained by first choosing a basis of (f;) among the f’s and then

extending to a basis of (f}, g;). Write

f= l_[Aik/ and g = l_[Altf/ 4.1)
k k
in Fa. Let
_t—f = A\ .
F,(t)_t_ll_[<t_1> e(l+D)"
Let J = (i1i>-- - §x) with all §; € {1,...,n — 1} be a sequence of distinct elements,

and let J°' = (jij» - - - ji) be the ordered version of J, i.e., J and J°'¥ have the same
elements, and j; < j» < --- < ji. We shall write (—1)’ for the sign of the permutation
]’: ]”; , and (—1)/¢/ to mean (—1) if j = i;. If J; and J, are disjoint tuples, we write
1J2 for their juxtaposition. If j € J, write J \ {j} for the (|J] — 1)-tuple obtained
by deleting j from J. Note that if 1,...,7— 1 are all in J then, by adding j into
the j-th position of J\ {j}, and moving it up front and then to its position in J,

we find
(—D)"W = (1Y (=)W = (—1y (1Y (—1)’. 4.2)

Foraset! C {1,...,n— 1} weidentify I with the ordered tuple it defines by order-
ing its elements, and similarly for its complement /. = {1,...,n — 1} \ 1.
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IfI={i....ik}and I, = {ji, ..., Ju_1_x} are rzs above, let Fj’ = Fi(t;)U---UF(t;,)
and [£]; ., = [fl,_« seen as element of K" *(Xp:;!=%;0"'"*) with coordinates
Ly t, .. Then we let

Al 1.
d; Fu Ul Vg
= contribution to the boundary at t; = 4;’s coming from the F;

= (1Y s F T U 0 U gi=a
K
(noting that (—1/€/) if j € I) if i € I and zero otherwise. Similarly, we define

[l I
& F; Ul Ve
= contribution to the boundary at #; = f;’s coming from the F;

. eI, I\{i) I, .
=—(=1) F U Y Gy,

if i € I and zero otherwise, and

(11 I
di F; Ul Ve
= contribution to the boundary at #; = f;’s coming from the [f]

_ icll, yo1 I\ {i} .
= (=D F, U [/_{/']|1[\{li}|+1 U &=,

(because (—1)I(—1)€le = (1) if i € I,) if i¢I and zero otherwise. Note that
d; =d? +d +dl. In the commutative diagram

o

KD e o) KD (et on)

l |

K1(1n+1)(X % Xn_l_Dn) = K(n+1)(Xn—1.Dn—1)

loc n+1 loc

we know that (p(znﬂ) maps 1Zj Glili®g to x> ¢lfil,Ug (modulo
(1+Iy*OK®(X0" ) in KX ;0" "), see Theorem 2.4. The complex
(from a spectral sequence analogous to (2.1))

K(n+1)(Xn—1. anl) N ]_[K,(f')(X”_z‘ anz) e s K;Z)(F)

n+1 loc loc >

has the acyclic subcomplex

(I+ D"OK (X5 0" —
de )+ [ Ja+ 0ok 0m ) — -
o> de)+ [ Ja+ D OKP @) - de-)
with quotient complex

K(er)(anl . Dn_l) K’gn)(anZ. Dn—Z)

n+1 loc loc

= — _
1+ I)*UK,(,H)(X”’Z' |:|"_2) 1+ I)*UK,EH:II)(X”*S' Dn—3)

loc ° loc °

QF,— ... (43)
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(The proof that the subcomplex is acyclic is completely analogous to the proof of
Lemma 3.7 in [7] which is based on the fact that the subcomplex is closed under
multiplication by (1 + I)* and every element in the subcomplex contains at least
one factor in (1+1)*, see also [7, Remark 3.10].) We know that
o= Zj ¢ilfjl, ® gj is mapped to zero under the map in (4.3), and want to lift it back
(uniquely because of the acyclicity of the subcomplex) to «; in the kernel of
K"Vt 0"y > [[K(X722: 0" %). Note that this lift is the restriction to

n+l loc > loc >
KMVt 0" of the image under Py N K" V(' 0""). The same proof

works over some suitable Zariski open part of C.

PROPOSITION 4.10. If

K(W*I)(Xn—l. Dn—l)

i ] Ug~ c n+1~ loc
Z il Y g a ~|—I)*UK,§")(X”’2'D"_2)

J loc

has trivial boundary Zj Glfil.1Ug ®f; in

KIS")(X"_z' Dn*Z)

loc

(1 + D*OK" P(xr3:.0m?)

loc °

*

Fg

(resp. Kéz)(F) ® Y for n=2) then

o) = Z (=D Z CiFjI U [/.fi]ilqn Ugj
J

Ic{l,...n—1}

in K(”H)(X"’l' 0" " has trivial boundary in| | K,(l")(X”’z' [0"72). Here the sum is over

n+1 loc > loc *
all subsets I of {1,...,n— 1} seen as tuples in ascending order.

Proof. The proof will be by induction on n. We need the following lemma.

LEMMA 4.11. With f; =[], A, as before,

K’(ln)(anz. Dn*2)

loc

(1 + D*OK" D(xr3:.0" %)

loc >

Z ciskilfili-1 Vg =0 in
J

(resp. K;z)(F) ® Y forn=2).
Proof. Write the boundary in

KO0
(1 + D*OK" (xr3:.0m?)

loc °

*

Q

in terms of - - - ® Ay’s, and collect terms, remembering that the 4;’s form a basis of
(fi» &) C F{, so they are independent in F,.

We now compute the boundary of o, doing it for all #;. For n = 2 one checks easily
that o; has boundary Zj,k ¢jsij(1 — f;) U gjji=a, , which is zero as one sees by writing
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out the boundary of }; cj[ﬂ U g] in terms of our chosen basis for (f;, g;) C Ff;. For
the hlgher n’s, as d; = d +d +d, we get three contributions. We start with
the d/-component. We ﬁnd

Z (—1(— 1)”chjskF PO 1 Y &=,

i

= (—1)i o DY s UL Y giia,
Jll, =1} ok
by letting J = I\ {i}, and taking J. in {1,...,7,...,n— 1}, and using (4.2). By
induction on n and Lemma 4.11, this equals zero.
For the contribution from d’; we get

- Z GO RC Z GFN U1 Y Gl

Icql,...n—1) j

=== > DY GE Ul 0 Ygiea
Jc{l,..0,...n—1} J
again by letting J = I'\ {i}, and taking J. in {1,...,1,...,n— 1}, and using (4.2).
For dg-] we get a contribution

Z (—1)e(— 1)”Zc,F’uw i1 Y &,

=D > DY GF UL Vg
g 7

with J=1c{l,...,1,...,n—1}, and taking J. in {1,...,17,...,n— 1} as before,
and using (4.2) again. Obviously, the contributions of d{' and dE] cancel.

Because k(x) is a number field and the regulator is injective (up to torsion) on its
K-theory, we can compute the boundary at the level of Deligne cohomology, so
we now turn towards the regulator level. Consider the following commutative dia-
gram with horizontal maps being the regulators (into de Rham cohomology as
it is equal to the Deligne cohomology in all cases considered).

HY(MS, ,,)(F))

KT(Ln+1)(Xn;Dn) Hg;l(Xn;Dn§R(n+ 1)*
K(n+l)(Xn—l; On-1) — Hi (X" 1,05 R(n))*

n+1 l

KD (X ks 0t — Hi (X 075 R()
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We shall determine the regulator of o in Hfjp (X771 0" ' R(n))*and then lift it
back to Hlp (X%, 0""; R(n))". We begin with finding the indeterminacy in the
lift. In order to simplify notation, write Xjoc forXy joc = Xv\{f = f;} with U a suit-
able Zariski open part as before, Hip (X, ; s) for Hix (X ;[07; R(s)), and consider
the spectral sequence

Hipg(Xihin) THRN X2 - 1) THRA XS n—2)

loc > loc > loc

HiR(Xpchm) [THGRAXE S n— 1) [THIRAX S n—2) - (4.4)

loc loc loc

Hg];Z(anl. n) L[Hg];,?(anZ. n— 1) L[H(rit};4(Xn73. n— 2)

loc loc » loc

converging to Hi(X"~!; R(n)).

LEMMA 4.12. Hlp (X% 0: 09 =0if n < k.
Proof. For k =0 this is obvious. For k > 1 we have a spectral sequence (with
notation as in (4.4))

Hig(XE D TTHIRNXES =D HIRA(XE ) —2)
HIZ (X)) THIRAXE - THR (X —2)
HiR2(XE s THIR XK -1 HHRAXE - 2)

o oc loc >

converging to Hjp(X k-OF: R(j)). We see that the only contributions to
HI (X5 0% R@)) will come from HSEZP(XIZ,Y;C; O%”Yys, which are zero by
induction for p>1. The boundaries leaving HJp(X ’{MOC; ) land in
Hggzl’ H(x ’,}Tf;c; 0% 7 R(j — p))’s for p > 1, which are also zero by induction. There-
fore we get isomorphisms

Hig(X5 005 R() = HiR(X5: 0% R()) = HIgNU; R() = 0.

Lemma 4.12 shows that in (4.4) there are only two terms contributing to
H (X" 0" ': R(n)), so we have a short exact sequence

0—> ES — HgR(X”_l; o R(n)™ — Ef >0

with E the + part of the E5, = E5 term at the position in the spectral sequence of
Hi (X O"';R), and ES the 4 part of the E, =E, term at the
L Hi2(X3 2. 07725 R(n — 1)) position. Because Hlp(X"~'; 0" R(n)* is alter-

https://doi.org/10.1023/A:1026440915009 Published online by Cambridge University Press


https://doi.org/10.1023/A:1026440915009

K-THEORY OF CURVES OVER NUMBER FIELDS 171

nating for the action of S,_; (acting on everything by permuting the coordinates), E;
and E7 are alternating as well. As we are looking at the regulator of an element
coming from X ffl, it of course survives in the spectral sequence to E,, and we
can consider its projection in E5". We move on to determining the E>-term. For this
we introduce

R, = <di argﬂ(i_};j) such that l_[ff € k*>
PN i

inside H(}R(X vioc: [0; R(1))™. Note that an element in Re is determined completely
by its residue at the # — f;’s.

R

LEMMA 4.13. The map
H(U; R(0)),—y — Hip(Xo: O3 R(1) = Hip(Us R(1))

maps 1 to £di argf.
Proof. Consider the situation U = G,, and f = S (S the coordinate on G,,). We
then have the exact sequence in relative de Rham cohomology

o= H'Xioe) = H(U)®? > H'(Xioe; ) = H'(Xi0e) = H'(U)®* — - ..

As H'(Xjoo) = (diarg(t — S)/(t — 1))g ® (diarg S)g, the last map in the above
sequence is injective. From the corresponding sequence with X instead of X
one then gets that

H'(X;0) = H' (Xioe; 0)
as H°(Xjoc) =2 H°(X). Consider the localization sequence
H'(X;0)™ H'(Xioe: 0) » H'(U) » H*(Xy:0) — H(Xioe: 0.

Note that H*(Xy 1oc; )= H*(Xy.1oc) because H*([J) = 0. From the commutative
diagram

H(Xy:0) —— H*(Xy)

Hz(XU,loc;D ) — Hz(XU,loc)

we see that the map H*(Xy;0) — H*(Xyioe;[0) is the zero map because
H*(Xy) = H*(U)=0. Hence H'(U) 3 H*(Xy:; ) = H'(U). All this works with
cohomology with Z-coefficients, which gives the statement for G,,. By pulling back
to our original U via f we get the corresponding statement for / and U.
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LEMMA 4.14.

n alt
H" (X} 1000 O RO)™ = (EBR?UHH( > in R(n—k»)
k=0

Proof. For n = 0 this is obvious, or for n = 1 consider the localization sequence

0 — Hix(Xy; O; R(1) > Hig(Xu 1oc; O R(1)) —

[ Hir(U: ROy, = B (X O R(D) = -

j
The map H3(U; R(0)),,— - — HX:(Xy;0; R(1) = Hix(U; R(1)) maps 1 to
+diargf; by Lemma 4.13. Hence ]_[ a; is in the kernel of ¢ if and only if
> ;adiargf;=0, which means that [[;¢; is the image of Y ;a;diarg: 1’ in
H&R(XUJOC; O; R(1)). So if we show this is in R., we are done. We have an exact
sequence

0— k* — F* — {diargf;}

as one sees by considering the residue versus the divisor map. Tensoring with R we
get

0—k*"®7,R— F"®; R — (diargfj)r

from which it follows that Z a;di arg’ “isin R.,e.g., by considering a (Q-basis of R.
Because R, injects into [ [; HgR(U R(O))l,iff under the residue, we get the statement
forn=1.

For n > 2, we use induction. We have a spectral sequence (with notation as in

(4.4))

. It . It
HdR( loc; )alt (]—[ HgRl(A/Iy(l)cl’ 1))a (]—[ HgRZ(A/locz’ - 2))a
n n n lt n n
Hde( loc; )ah (]_[ HdRz(/Ylocl’ - 1))a (]_[ HdR3(A/1002’ n-— 2))

. It . It
Hi2(Xpsm™ (UHR X n=D)" (U Hi* (X2 n = 2))°

alt

converging to HdR( ]OC, a”; R(n))“11t ~ Hip (X ;0% R(n)). Introducing the
notation Hf, for Hiy (X7 .; 0" R(k)), by Lemma 4.12 everything below the line

loc

O | ) ) 7 e (4.5)

vanishes. Write H for H §R(X Ulocs mi R (k). The subcomplex of the correspond-
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ing non-alternating row given by

& RIOH"™ - d(..)+ [ [eZi REOH™ '
. (4.6)
d..)+ [ [ei RO — .

is acyclic as in the proof of Lemma 3.7 of [7] (because it is closed under multiplication
by elements in R, and the boundary is injective on R.), so hence is its alternating part.
Taking the quotient of the complex in (4.5) and the alternating part of its subcomplex
(4.6) yields by induction on n the row

D REOH"*

Hlp (X3 00" R(n) a‘;
4.7

Hig (X0 R — 1) @0 Fiy/ky — -+
Obviously the last map is zero. Because the composition

Hi' X 0" R — 1) ®@g Fiy/k — HiF (X5 0" Rm)™
~ H'(U; R(n))

maps ¢ Adh(t)) A --- Adh(t,—1) ® fj to cdiargf; this is an injection. So the first map in
(4.7) must also be zero, giving an identification

Hi (X 0" ROOM™ = Hi(X: 0" s R)™

o (Hin(X 10 0" RO\
B @®)_ REU H"k

from which the result is immediate because @}_, R¥ U H"* injects under the residue
into [[H" .

Remark 4.15. The proof shows that E; = E;‘“ is generated by the
Hi2(Xe~: 0" i R(n — 1),,_;. Hence by Lemma 4.13, a lift from E3 = E" to
HIL(X55 0" R(m)™ = Hip (U R(n)) is determined up to R(n — 1) (di argf)r
Adh(t) A - Adh(t,—1), corresponding to R(n—1)(diargf;)r under this
isomorphism.
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Note that we can compute the residue as follows. There is a commutative diagram

K (X500

vlreg lreg

Hin (X507 R(n) — Hig (X750 0" 5 R(m)

I |-

Hig(U;R(n)) Hgg (k(z); R(n — 1))

n+1 n— n—
K‘SL-‘—JE )(XU 1§D 1)

If ¢ is in HiRx(U; R(n)) and x is a point not in U, then res,(y) in Hoy (k(x); R(n — 1))
is given by
1

W U Andh(t)A---Adhi(t,_) Adiargty A--- Adiargt,
Y XW—IXS)I(

for S! a circle around x.

We can also replace U with the closed set of C by leaving out small (open) discs
around the point x¢ U, without changing either the cohomology groups involved
or the values of the integrals. We shall assume that from now on, so in particular
U is compact.

LEMMA 4.16. Suppose Y, and y, in HgEI(X’g,’l; O ' Rn—1) satisfy condition
(2.7). Then with @ =d logt; A--- Ad logt,_|, we have an equality

/ l//l AN = / lpz N
Xr=IxSL Xn=1xSL

The same holds if we replace @ with diargt; A--- Adiargt, ;.

Proof. The proof of Proposition 4.6 of [8] shows that i/, — , = dy, where y satifies
the conditions in (2.7) on a suitable blowup of (PIC)’H, isomorphic to this over a
suitable Zariski open part of C. With that, one checks easily using integration
in each fibre, that f Xr-1x8! dy A®@ =0 as the holomorphic form has a zero along
t; = 1 for every i. Hence the result follows from Stokes’ theorem.

Remark 4.17. Note that if we represent the image of E; inside
Hia (X350 R(m))™ by forms given by

HO% (U R(n — 1)* - (diargfy)p A dh(t) A -+ A dh(t,_y),

then
]_[f Yy Andiargt; A--- Adiargt,
xgU Y XIS}

converges and maps E; to HgR(U; R — 1)t - res(di argf;) inside ]_[in R(n—1).
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Proof. The computation of Ef was carried out in the proof of Lemma
4.14. It is generated by the pushforward of the alternating version of
Hgiz(X,?’l; O ' R — 1))\rl=f;' The rest is just a matter of integration and Lemma
4.13. ‘

Remark 4.18. Note that by Borel’s theorem (see (2.6)) the image of
Hix(U; R(n — 1)* - res(diargf;)
is exactly [ [y fg reg(KéZ)_l(k))(diargﬁ)R.

We now have the regulator reg(x;) of o) in HSR(XZ’[]LC; O™ R(n)). If we lift it
back toy € HgR(X{’fI; 0"'; R(n)) satifying (2.7) then by Remark 4.17 and Lemma
4.16

1 . .
_(275—1)"]—[/)( 1 Sllﬁ/\dlargll/\~~/\dlargtn,1 (4.8)
x¢ n_xx

differs from the boundary

1
_ _ i j _ 4.
(27fi)")!¢—[[]/)(~1xs§ reg(a) Adiargty A---Adiargt, 4.9

by an element in
27U\¢]_([]/SL reg(Ky, | (k))(diargf;)g.

Because we shall see that all values in (4.8) and necessarily (4.9) are in the image of
Ké’;{l(k(x)), it follows that i = reg(x) + reg(p) for some f in (f;) U Ké;;ll(k). From
this we get Theorem 4.6.

We now turn our attention to the explicit lift of reg(«;), starting out in general, but
specializing to the case n = 3 at some stage.

LEMMA 4.19. Suppose for k=0,....,n—1 we have (n—1-—k)-forms
Or(tht1s - - s tho1), with Op—100, ti1s ooy ty1) = dQp(thsts - - -5 tnm1) for
k=1,...,n—1. Assume moreover that each ¢, is alternating for the action of
Sy—k—1, and @, vanishes for t; =00, j=k+1,...,n—1. Let p(t) be a bump form
around t = 0. Then the form

> (=) =DED gy

Icil,.n—1}
is an alternating form vanishing at t; = 0 fork =1, ...,n — 1. Here the sum is over all
ordered tuples I of {1,...,n—1}, the complement I. is given the ascending
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ordering, t' = Lioooouty 0f Le=1{, ..k} with ji <--- <jk, and D'y =
d(p(4)d(p(1,) -~ - d(p(ti)@) ---)) if T = (i -+ jw)-
Proof. For ¢ in §,_;, we have that
a* ((_1)11"D1(P|1|(ll"))

= (=1 D" Dy (17"

= (=1)(=1) DD (170

— (_1)0(_1)6(1)(0(1)),»DG(I)w‘J(I)l(10(1)[)
by replacing (/) with (¢(1)),, i.e., ordering it. This shows the form is alternating.

Note that (D'¢p),, _,= 0 unless j¢[ or is its last element. Therefore, when restricting

|zj:0
to t; =0 we get

P ord ord
Y O DA () +

Jc(l,. J,n=1}
1=J()

. ord - ord
+ Z (_l)ll\(_l)J((l)Jr) DJ(PM(Z((/)M )

Jc(l,. J,n=1}

with #; =0, and J.° takenin {1, .. .}, ...,n—1}. Using (4.2) and the conditions on
the ¢,’s we have

(/P = (1 D D

ord ord
d€0u|+1(lj" ) = 9,50, /<)
. ord : h ord
Py (D) g = —(=1YS D g (0, £
(_1)1((1‘)11)"“1 — (_1)i(_1)/€((i)JL-)°'d(_I)UI(_l)JJ(

)ord

ord

so everything cancels.

It turns out that for applying Lemma 4.19 with ¢, = ¢,, writing down the forms
involved is quite messy. We therefore assume from now on that n = 3. (The case
n =2 was done before in [8].) In this case we shall carry out the lift explicitly.

We need some identities between forms (all f’s, g’s are functions on C).

diargfi Adiargf, = —dlog|fi]| A dlog|fs]
diargfi Adlog|fz| = —dlog|fi| Adiargfs

Both identities follow by considering the real or imaginary parts of
dlogfi Adlogf, = 0. We let

a(f1,/2) = logl|fildiarg f, — log |f2|diarg f,
so do(f1,/2) = 0.
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Let U =G, \ {1}, and let Xy joc = Xy \ { = S}. We want to write down the
explicit elements (w,. €,) € HB(X[5 O"'; R(n))* that are the images of [S], under
the regulator for n =1, 2 and 3, see Section 2.

Forn=1,wehave ¢, = ¢ =log|l — f| and w; = dlog(l — f). For n = 2, we have

0y = —dlogi :J;/\ dlog(1 —f)

To find e, let

t_
6 =logl|l —f|di arg(%) - log

f’ di arg(l —f)

and if we spemahze this to t = 0, we find this equals dn(z) with n(2) = —P> 745(f). Then
6 =6—d p(t)r/ with p(f) a bump form around ¢ = 0. (This is the correct ¢,, see
[8] or the explanation after (2.4).)

Finally, for n = 3, we have that

f f

w3 = dlog A dlog 7/ dlog(l —f).

In order to find ¢, let

é3 =log|l — fl|diarg ﬂ Adiarg ﬂ +
th—1 th —1

2 _
—1og|1—f|dlog f Adlog 221
3! tHh—1
H — 1 —
—log ! fdiarg(l—f)/\diarg 2=/ —
th—1 th—1
2 n—f h—f
—ﬁlog tl—l'dIOgll —flAdlog t2—1‘+
+1og |2\ di are(1 — £) A diarg (=) +
th —1 th—1
-/ h—f
3'1 g' dlog|l —f] Adlog L

(3)

Specializing to t; = 0 we find after some computation that we get di;” where r](13) (t2)

is given by
f

(=) 2
—P) 7a5(f)di arg(lz _f ) ~Zlog|l —f] log

1 3
1 t —
—=log|l —f|log[f|dlog2—f.
3 Hh—1

7| dlogfI-

Finally, putting /, =0 in 11(13) we find that we get dr](;) with

1
15() = ~Przas(f) = 5 log” [ | log [1 1.
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Putting everything together as in Lemma 4.19, we put

3 =& — dlp(t)n) ()] + dlp(e2n (1)]+
+dlp(t1)dlp(t2)nS (O1] — dip(e2)dlp(t)nS (1]

We check that (w3, ¢3) is the class of the regulator of [f];. Let (w3, €;) be the regulator.
Then e — ¢ € Hip(X3 1oc 0% R@2)*. By (44) and Lemma 4.12,
H3 (X% 0%; R(2)" can be computed as the kernel of the map

res alt
Hin (X 100 07 ROY S (] Hi (X RO

so if we can show that both €3 and €} have residue e, =5 — €,,=5 then they differ by
an element of Hip(X?; 0%; R(2))* = R(2), and we can check that they are the same
by specializing to a fixed value and integrating. From the exact sequence

0 — Hig(Xo: O3 RO — Hig(Xf 000" RON' — Hip (U3 RO)

we see, as Hl,(Xy; O; R(1)" = HgR(U' R(1))" = 0 that we do not lose any infor-
mation about the residue in Hp (X}, .; ;0"; R(1))" by specializing S to a constant.
Therefore, assuming S = ¢ is constant in Q such that p(c) = 0 from now on, we
find at #; = ¢ that the residue is

log|1 — c|di arg( ) + d(P2,zag(0)p(12)) = €2(12, €)

as desired. So 5 — ¢} is an element of H3,(X% [0%; R(2))" = R(2). Note that again
in order to check that they are identical, we can specialize to S = ¢, so that we
can check that they are the same class by computing

/ e(ty, th,c) ndiargty Adiargt, = (2ni)22P3,Zag(c).
X2

Because this is the answer for ¢3 (see [7, Proposition 4.1] with the correct sign as
mentioned just after (2.4)), we conclude that ¢; = ¢;.

Recall that we had the element o = 3, ¢/[fj]; ® g; in Hz(M(4)(F)). Before writing
down the corresponding regulator, we deduce some identities. We have the identity

D ¢l ® (fi Ag) =0. (4.10)
J
By applying d ® id to it and writing it with respect to our basis of (f;, g;) we find that
for all k
sl —f) @ (®g —g ®f) =0. @11
J
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By using our basis once more we find that for all £ and /
S esgs(l = ®g = suty(l —f) ®f (4.12)
J J

We shall also need

Yoaslih ®g =Y estylfil ® 4
Iz

Jk,1

= chs/jtkj[fj]z ® A= ch[ﬂ']z ®fi=0
ik

Jk.l

in H 2(/\/lé)(F )), where we used (4.10) and used our basis again. Similarly we see from
(4.10) that for all £ and /

Z ciskitylfil, = Z cisitiilfilo- (4.13)
J J

Note also that the map /' 1— P» 7a0(f) factors though ]\~4(2)(F ), so that an element of
]\Nl(g)(F ) gives rise to a continuous function on C, differentiable where f has no zeros
or poles or assumes the value 1.

From Proposition 4.10 we obtain the element

J

D ol ug+ Y GF() Ulfh() U g—
7
— Z ¢iFj(12) Ufil (1) U g+
7
+ Z ¢ Fi(t) UFi()U[fj] Ug;
7
in K{(X2.;0%), with
= I (AN
F/(I)_t_ll_[<t—1>

in(1+D"if f; =TI, Ai"’ as in (4.1). According to (2.3), it has regulator

Y st 12, f) A di argg; — log |gjlmsws(t1, 12, ;) —
J

— Z dei argFj(tl) A (62(12,]3') A di argg; + log |gj|n2w2(t2,fj))+
S . . (4.14)
+ Z ¢;di arg Fy(12) A (e(11, f;) A di argg; + loggjlmma(ty, /7)) +
J

+ Y edi arg Fi(h) A di arg Fi(12) A o(1 — £, &)
J

in Hiz(X} 0% R3)*, which we want to lift back to a form in
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Hip(X3:0°; RB3)™. & A di argg — log |g|m303 can be rewritten as

di arg( _{) Adi arg( J;) Aa(l —f, 9+
15}

t—

+ d|:(1 log|g|di arg(l — f) +— a(g, f))/\

log f’ dlog =)y —log =)y dlog =/
th —1 th —1 Hh—1
+ log|g| log i _f dlog [1—f| A diarg(i2 _fl>_
5 —
—log|g| log fdlogll —f|/\diarg<§l _J1(>i|
| —
For
di arg F(t)) A (&x(t2, f) A di argg + log |g|mawa(t2, f))
we obtain

di arg F(t;) A diarg(h_{) ANo(l—f,9)+

fdlogll —findi argF(t1)1|.

+ d|: log |g]| log

Putting all this together, we get that the form in (4.14), after replacing all ¢’s with €’s,

is given by
reg” = ZCJ ( 108 f] o(g/, —f;) Andlog iz :Jls _
—glog f 1458 f)/\dlog f/
+ log Igjllog f’ [|dlog |1 =il A di arg<tz;_{i>+
+§log lgjl log [11 :119' di arg(l — f;) A dlog Z :f;f _

—log|g;l log L—Ji dlog|l —fj| A di argCll :]1;>_

Hh—1
=Sl 47 arg(1 — £) A dlog| =2
th —1 t —1

1
- glog lgillog

+log|g;llog z%{/ dlog|1 —fj| A di arg Fi(t1)—

d10g|1 —filAndi argF(t2)>

—loglgl log
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— Ax . 1 — A
+ Zc,sk,s;,dz arg( — > Adi arg(lz_l) no(l—f, g)

Jok,d

Using (4.12), the last part can be written as

_A th —
chsk]t/]dz arg( 1 ) Adi arg( tzz —

Jik,d

. Hh—A . h—A
= chskjlyd<—P2,Zag(]§-)dl arg( ;1 — 1k) Adi arg( :2 — 11))

Jk.1

1’) Ao(l=fi.f)

because o(1 — f, ) = —dP> z7.(f). Therefore reg™ above is equal to dy(#1, 1) with
Y, (11, 1) given by

o (gloefi =4 oter 1 1) A dlog 2

J

—glog f’a(g,, —/‘;)Adlog?—_?Jr
-

1jdlog|1 —filndi arg( ﬁ>+

1 t—f
+7log lgi|log 1_]1; ];]

fH—
+log|gj|log P

di arg(l —fj) A dlog

10g|gj|10g dlog|1—f|/\dz arg( fj)—

1
— glog gl log f’ di arg(l —f) A dlog f’
+10g|gj|10g dlog|1—f|/\d1 arg Fi(t))—

ﬁ
—log|g,|log dlogll —fil ndiarg Fi(t2) |-
— Ay — A

_ chskjt/]Pz Zag(fj)di arg( > Adi arg( 2 1).

il -1 th —1

Observing that

. h—Jfj
Zq(log lgil log |fildlog |1 — f;| A di arg(é——?)_

J

—loglgillog|fjldlog|1 — fi| A di argFj(12)>

—4
_Zc,sk,log|gj|log|fj|dlog|1 —filndi arg( lk>,
.k
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we find for ¥,(0, £2)

f]

Zc,( log |fjlo(g), 1 f)/\dlog
f/

— —log

[o(g 1= 1)) A dloglfl+
ﬁ

—log lgj| log |fj|di arg(l — f;) A dlog
f;

1
——log|g]|10g di arg(l — f;) Adlog|fj|—

f

10g|g,|10g T{d1og 1 =/l A di argfj+

—A
+Zskjlog|g,|log|f,|dlog|1—f|/\d1 arg( lk)

— A
— Zsk]Pz zag(fj)di argg; A di arg( = 1/))

On the other hand, from writing down the explicit ¢, for n = 1, 2 and 3, we know that
if we put 1; =0 in reg”, we get dcor; with cori(#;) given by

Z (’7(13) (2)di arg F/»(tz)) ndiargg;
J
. t —f; 2 ty — f
= Zcfi(—Pz,Zag(ﬁ)dl arg( 2 ﬁ) —Zlog |l — f;|log 2 —Jj

— ' T P zag(f)di arg F) A di argg

dlog|fi|—

1
— glog [1 —fjllog [f]|dlog
. th—A
= ch (Z Skj — P2,zag(fj)di arg(ﬁ>_
J

dlog il — flogll — fillog [f|dlog

2
—glog|1 f,|log

So (0, t,) — cor(t;) equals

. th—A
ch (Z Skj P2, zag(f5)di arg< i — lk)—i—
j k

ﬁ

2
+=log|1 f,Ilog dlog[f,l—i—

3
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1
+§log|1 — fillog U’J|dlog 1 ) Adi argg;+

+ZC1< log |fjlo(g;, 1 f,)/\dlog J;

L f’ dl

% Og 1|0 1= /) A dlog lfil+

;! =/
3loglgl loglfjldi arg(l —fj) A dlog

1 _];. )

—zloglgl 1Og di arg(1 —f;) A dlog|f;|—

f]

—log |gj|log dlogll —fil Adiargfi+

. 1y — Ag
+ szsk./log lgjllog fjldlog |1 —fi| A di arg( n—1 )_

Hh—1

—A
— ZS"JPZ zag(f)di argg; A di arg( k))

A
= Zc]lkj —2P) 7a0(f;)di argf; + log’ Ifildlog|1 — f;) A di arg<41k>+

+ch< log |filo(g;, 1 f)/\dlog fj

1l f’ dl
~% og 1|0 1=/ A dlogfj+

1 —Ji|
3log lg;j log |f;|di arg(1 —f)/\dlog —
1 f;

log |g]|log di arg(l —f;) Adlog|fj|—

—log|g|log|~ :{f

dlog|l —f| A di argfi+

/|dlog Ifil Adi arggi+
f]

2 R
+§log|1—fjllog 2_

+= logll —f,llog[f,ldlog Adi argg,)
where we used (4.10) and (4.11), as well as the fact that mapping [f], to P2 zae(f)
factors through M) (F) (following (4.13)) and (4.13). Using integration by parts

to get log Z:f{ out, we find that this equals di,(#;) with

t, — A
WYs(tr) = Z ¢ (Z —Zlij3,Zag(fj)dl' arg< jz — lk>_
J k
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1 tr—f;
— clog [fjllog|->—|a(g;. 1 — /)~

6 Hh—1

1 : bh—fl,. )
- glog lgjllog |f;| log tz _{j di arg(l — f))+

1 L—fil,.
+§log|l —fillog|f;l log tz _J;j di arggj)

as all the other elements then cancel using only that 7; of a holomorphic 2-form on U
vanishes identically.

We now have the (alternating) forms reg™(¢1, t2), Y¥,(?1, £2), ¥,(#2) and cor;(#,), all
of which become identically zero if we put # =oco. If we let cor, =
Zj cjn(;)(ﬁ) A di argg; (which does not depend on #; or t,), we have that they satisfy
the relations

reg (t1, ) = dy (11, 1)

reg (0, 1) = dcor; (%)
cor(0) = dcor;

¥1(0, 1) — cory(t2) = dyr,(t2).

We now consider the following form, where p,(¢) is a bump form around ¢ = 0,
po(t1, 12) a bump form around the collection of #; =f; or #; =1 (symmetric with
respect to interchanging 7; and ¢;). It is easy to choose them in such a way that
of p,(t1), pi(t2) and p,(t1, 2) at most two are nonzero at the same time. Let reg
be the form (satisfying (2.7)) given by

reg” — d[p,(t1)cori(12)] + d[p; (2)cori(t1)]+
p1(t1)dlp; (r2)cora]] — d[p; (22)d[p, (t1)cora]]—
pa(t1, ) (11, )]+ (4.15)
pa(t1, 12)(py(t1)cori () — py(t2)cor (1)) ]+
po(t1, t2)dlp, ()W (12)]] — d[py(t1, 22)d[py ()W, (11)]].

+d
—d
+d

— T T

+d

Here the first five terms are the original regulator as in (4.14), the remaining form the
d of some 2-form vanishing at ¢; = 0, oo, lifting the regulator back to X,z/, in fact to
(Pl)%,. (For checking that this is the case, note that the product
(1, 12)p1(t1)p1(%2) is identically zero by our choice of p,, so that at most two
of them are nonzero at any point of X [2/.)

We now proceed to computing the integral in (4.8). Write E for diarg#; A diargt,.
Some calculations using the formulae at the end of Section 2 give the following
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integrals.

| et nndiaregn= = [ 2Pz(diarge,
X2x58! st

/2 1 —log |glmsws(t1, 1. f) A E = (2mi)’ /1 log? |f]log |g|di arg(1 — /),
X2x St St

/ di arg F(t1) A ex(ta, f) Andi argg AE =0,
X2xS1

/ di arg F(t;) A log|g|mwa(ty, ) ANE =0,
X2xS!

/ diargF(t)) ndiargF(to)) Ao(l —f,g) AE =0,
X2xS!

/ —d[py(t1, )Y (11, )] A E
X2xS1

= —4ni/ 02(0, (0, £) Adi argt,
X1xS!

X

[, At ooy t)eoni () = pi(iyeor () A =
= 4m'/ p(0, f)cor () A di argt,
X'xSL
| TR X AT B RO AR STA DY P

= 4711'/ p2(0, 1)(1(0, ©) — cor (1)) A di argr+
XS]

x

+ 2mi)? / 4P, 7,4(f)di argg.
sk

(For those computations, note that S! has dimension one, so that a lot of the con-

tributions actually vanish identically on X él .) The first five lines here suffice to com-

pute the contribution of the first two lines in (4.15), as those equal (4.14).
Putting everything together we find that (4.8) equals

-1
2mi

/sl Zci(6P3,zilg(f,)di argg; +log” |f;| log |g;|di arg(1 —f))- (4.16)
1

We now rewrite the form in (4.16) in order to compute its residues. Using (2.5) and
(4.12), we find

> (6P (f)di argg; + log’ [fjla(g;, 1 — 1))

J
= > ¢i(6PF(f;)di argg; + log f;| log |g;lo(f;. 1 — f7)).
J
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Subtracting
Z dc;(log |fjl log 1)1 P2, zag(f)))

= ¢j(2log g P2zas(f))d log |fi] + log |f;| log Ig;la(f;. 1 — )
J

this transforms into
> ¢ (6PFoY(f)di argg; — 2log |g;| Py (f;)d log If;1). (4.17)
J

Hence the integral in (4.16) yields —6 Z cjord,(g)) Pm"d(f](x)) which is the regulator
of the element :|:3Z ¢;i0x([fjls ® g;), see Theorem 2.3. Because the regulator is
injective on K( )(k(x)) this proves that the diagram

HM (F) KOF)/KP ()UK ()
136 1‘9
accm H My (k@) —— [Leow K& k()

commutes (up to sign and up to B(Kf)(k) U Fa) in the lower right hand corner), thus
proving Theorem 4.6.

Remark 4.20. Because the form  appearing in (4.17) (or (4.16)) has the same
residue (modulo the residue of the regulator of K§3)(k) U Ff) as the regulator of
o in the localization sequence

0 — Hig(C; RB)" — Hyp(F; RQ)" — | [ Hir(k(x); R2)",

they differ by an element in Hl (C; R(3))" + reg(K?)(k) U F7). Using integration by
parts and Stokes’ theorem it is not hard to check that

/Czp/\wzfcreg(oc)/\w

with the last given by Theorem 3.5. By Remark 3.1 i is an explicit representative of
the regulator of Zj ¢ilfjls ® gj in Hix(C; R(3)), modulo the regulator ofKS)(k) U Fp.

5. Connections with Goncharov’s Work

In this section, we start with showing how the work in the previous two sections,
together with the work of Goncharov ([3] and [5], see [4, Section 8] for an overview
of the results without proofs) leads to a complete description of the image of
the regulator map on Kf)(C) and Ké‘”(C). In particular, this proves a conjecture
of Goncharov for those cases ([5, Conjecture 1.5] or [3, Conjecture 1.6]). We also
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sketch how, assuming some conjectures, the relation with results as in Goncharov’s
work for higher K-groups would work out.

In [4, §6], Goncharov defined the following complexes I'(F, n) (in degree 1, ..., n),
given by

n—2 n
B(F) > Bi((F)® F}y — ... > By(F)® \ Ft, — \ F}
and, for each x € CV, I'(k(x),n — 1) (in degrees 1,...,n — 1), given by

n—3

n—1

Byi(k() — ...~ By(k(x) ® [\ k()G > \ k(x)y
Here for any infinite field F, Bi(F) is a (Q-vector space generated by elements {f }
with f € F U {oco}, modulo certain (inductively defined) relations. All maps are given
by

Uh®@gi A ANgni—> Tha ®F AGUA - A gnk
There is a map

L(F.n)— [] Ttk(x).n—D[-1] (5.1)

xeC®

given by

Uhe®@gi A Agnii—=> T (O ® dyix(81 A+ A gui)
with 9, the unique map A" Ff, — A k(x)7, determined as in Proposition 4.1

T AULA -+ A—1 = U (X) A+ A ug—1(X)

Uy N - A Ug

if all u; are units at x and =, is a uniformizer at x. I'(C, n) is defined as the mapping
cone of (5.1). Goncharov also defines complexes I'(F,n), T'(k(x),n—1) for
n = 3 and 4, and constructs maps as in (5.1). The complexes I'" have the same shape
as the complexes I with the same maps between them, but the By (F) are replaced
by B, (F), generated by F U {oo}, but with explicit relations between the generators.
I''(C, n) is defined as the mapping cone, defined by the corresponding I'" complexes
in (5.1). Goncharov also constructs a map

K2 (C) — HXI'(C,n+ 1)) (5.2)

for n = 2 or 3, and shows that the Beilinson regulator factors through this map. We
summarize part of his results in a form suitable for our needs

THEOREM 5.1 (Goncharov). Let w be a global holomorphic 1-form on C. Then for
n =2 or 3, the regulator map

KD(C) — Hip(C: Ry
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can be extended over the map KEZH)(C) — HXI'(C,n+1)) to a map
H>T'(C,n+1)) - H&R(C; Rn)". For « a holomorphic 1-form such that
w oo =, the composition

CAD
H*(T'(C,n+1))— Hx(C; R(n)ﬁ—fL R(1)
is given by mapping {f}, ® g to

Cn/ loglgllog"? |f|(log|1 — fldlog |f| — log|fIdlog |l — f) A @
C

for some nonzero rational constant c,.

For n = 2, this is proved in [5]. There the map (5.2) is constructed at the end of
Section 2.7. The extension of the regulator is given just before Theorem 3.1, which
states that the extension of the regulator coincides with Beilinson’s regulator on
Kf)(C). Finally, Theorem 3.3 gives the formula for the regulator integral. For
n = 3, the corresponding results can be found in [3], namely Theorems 4.2, 5.3
and 5.5.

LEMMA 5.2. There is a map
B,(F) — M)(F)
given by sending {x}, to [x3]

Proof. B)(F) is a free (Q-vector space on elements {x}, with x in F* \ {1}, modulo
the relations

1 —x -yl _
{xh + vk + {1 —xy}2+{l —xyh + {1 —xy}2_0

It is known (see [10, Lemmas 1.2 and 1.4]) that one then also has the following
relations

(Wh+{l-x=0 and  {x)+{l/x},=0

We have to show that the corresponding relations hold in ]NW(Z)(F ). We start with the
last two. The relation [x;] + [1 /x], = 0 holds in M(z)(F ) by definition. The element
[x2] + [1 = x], lies in H' (/\/l )(F)) and is a pullback from an element in
H' (/\/1(2)(@(1)) which injects 1nto K(z)(Q(t)) by Theorem 2.3. But K(z)(Q(Z))

K(z)(Q) 0 so this element is zero. For the actual five-term relation, observe that
modulo the last two relations (for [---], instead of {---},), the first corresponds
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to the relation in My (F) given by

_ 1 —xy X 1—x
-~ ko0 = [ ] - -
1 1—y
- |:1 - xy:|2+|:l - xyL'

The construction of the complexes as sketched in Section 2 gives that the lift of those
elements are given by

D Uik + Y A=/ UFQ
J J

where F; is the function expressing f; in elements of a chosen basis in {f;}. In order to
show that those equal zero, we work universally, i.e., we work over the base scheme

Z=Spec(QX,Y,1-X)"",A-Y)",a-xY)™)

and we want to show that we are pulling back a universal element in
ng)(Z) = ng)(Q) = 0 via the map x— X, yi— Y. We can pull back directly where
all fj # 1, i.e., pull back from the open part Z’ of Z where 1 — X — XY # 0. But
K§2)(Z/) =0 as well. If 1 —x—xy =0, using the relations {x}, + {l —x}, and
{x}, +{1/x}, which we know already, the relation reduces to to {x?}, =
2{x}, + 2{—x},. One proves this one in a similar way over Spec(Q[X, (1 — X)7']).

Remark 5.3. Infact By(F) = B,(F). Namely, let F be any infinite field, and suppose
o€ Ker(d: Q[F(T)U {oo}] — /\2 F(1)7, ). By Suslin’s work [10], this yields an
element in ng)(F (1) = ng)(F ). But modulo the five term relations, we can rewrite
this to o = § with § € KP(F) = Ker (d L By(F) — N\ Fg). Then «(0) =  modulo
the relations, as one checks by a case by case check depending on the zeroes
and poles of the functions involved. Of course this works for o(1) as well, so in total
o(0) — a(1) is in the (degenerate) relations in B;, hence is zero in By(F).

We use Lemma 5.2 to link our results with Theorem 5.1, beginning with the case
n=>2.

THEOREM 5.4. The maps in (5.2), Lemma 5.2 and q)é) give maps

KP(C) — HYI'(C, 3)) — HY(M,(C0) — KP(O) + K (k) U Fp,.
Viewing this last group as inside Kf)(F), the composition of%ose maps with the regu-
lator integral associated to w is given by Theorem 3.5 on HZ(M('3)(C)) and by Theorem
5.1 on H*I'(C,3)). In particular, all those groups, as well as the group

HZ(M('3)(C)) o HZ(M;3)(C)), have the same image in R(1) under the regulator inte-
gral associated with w.
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Proof. That we get the map fromgz(l“’(C, 3))to Hz(/A\;l(g)(C)) is clear from Lemma
5.2. The regulator integral on H 2(/\/l('3)(C)) was stated in Theorem 3.5, and that the
composition of this with the map H*(I"(C, 3)) - H*(Mf(C)) coincides with the
formulae in Theorem 5.1 up to a nonzero rational number is clear. Then, fixing
w, we get that the images in R(1) have the relations:

Image(K{”(C)) € Image(H*(I'(C, 3))) € Image(HA(Mgy(C)))
C Image(K{"(C) + K (k) U Fy) = Image(K{(C))

because the regulator integral vanishes on ng)(k) U F{, by Proposition 3.4.

COROLLARY 5.5. The groups K{’(C), HXT'(C, 3)) and, in case K (k) =0, the
group H2(M('3)(C)) =~ Hz(/\A;l('”(C)), have the same image in Hlx(C; R(2))" under
the regulator map. The same holds true without assuming that ng)(k) =0 if we
use the modified version of qo(32) as described in Corollary 4.5.

Proof. This is clear from Theorem 5.4, as the regulator integrals form the dual
space of Hjp(C; R(2))", see Remark 3.1, and the difference between using ¢
and its modification lies in ng)(k) U F{, on which the regulator integral vanishes
by Proposition 3.4.

We now turn towards n = 3. As described in Section 2, the natural map
H2(M;4)£F)) — Hz(/A\/Jl('@(F)) is a surjection, so we get a surjection Hz(/\/l('4)(C))
— Hz(M('4)(C)). In particular, those two groups have the same image under the
regulator integral as in Theorem 3.5 and Remark 3.7.

We recall the definition of the group Bj(k): it is the free Q-vector space with gen-
erators {x}; for x € F*\ {1}, and relations

3

. o) Pi B aifi_y
;(W:b‘f’{ﬁ,}s {“i—1}3+{°‘i—1“i}3+{ Bini }3+

+{_ Bi } _{OCiOCi—lﬁiJrl} )_3{1}3_{_{_0{1“20{3}3_ (53)
%ifio1 )5 Bi 3

Here ; =1 — o;(1 — ;1) with indices taken modulo 3.

THEOREM 5.6. Let C be a smooth, proper, geometrically irreducible curve over the
number field k, with function field F. Then the groups

KP(C), HAT'(C,4)), HY (M, (C) and HA(M3,(C))

all have the same image under the regulator integral, given by Theorem 3.5.
Proof. By Corollary 4.8, H*(Mp,(C)) maps to

KP(C) + K (k) U Fy /K (F) U KD (F)
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inside Kg”(F )/Kf)(F yu K§2)(F ). By Proposition 3.4, the regulator integral is zero on
K§3)(k) U F{, and it also kills Kf)(F yuU Kf)(F ) according to Remark 3.7, whence

Image(Hz(M(4)(C))) = Image(Hz(M('4)(C))) C Image(Ké‘”(C))

in R(1).
From Goncharov’s work as quoted in Theorem 5.1 we get a map

KP(C) — HXI'(C, 4)).

By Lemma 5.2 we have a map Bi(F)— M(z)(F). In [7, p. 241] a map
Bl(k(x)) — ]\71(3)(k(x)) was created by mapping {y}; to [y];. This is well defined
because d is zero on the relations in (5.3) so they give rise to an element in
H 1(/A\;l(})(k(x))) C K§3)(k(x)). Because the regulator for the embedding ¢ of k(x) into
C is given by mapping [y]; to a nonzero multiple of Pf{‘"d(a(y))/ the function
P4 vanishes on the elements in (5.3) and the regulator is injective, the elements
in (5.3) go to zero in A~/1(3)(k(x)) and our map is well-defined. Using those two maps
we see that if ), ¢ifits ® g is an element of H*(I''(C, 4)), then Yl ®g s
an element of H 2(/\/l('4)(C)). So we get the inclusion of images under the regulator
integrals

Image(K{"(C)) C Image(H*(I"(C, 4))) €
< Image(H* (M (C)) < Image(K("(0)).

Remark 5.7. If we use the lifted version
0l + HX(M(C)) — K(O)/KY (F) UK (F)

as in Corollary 4.9, followed by the regulator map to Hl(C; R(3))", the resulting
total map factors through the projection from HZ(M('4)(C)) to HZ(M('4)(C)). To
see this, note that the kernel of this projection consists of elements o of the

form > . m(fils —[1/fs®g,  with > (i, +[1/iL®firg=0 in
Mo (F)® /\2 F7). By Remark 3.1, it is enough to check that the regulator integrals
all vanish on the regulator of such «, but this is part of Theorem 3.5 and

Remark 3.7.
Using the lifted versions of q)(24) and Remark 5.7, we get the following Corollary.

COROLLARY 5.8. The groups K{’(C), HX(I'(C, 4)), HX(My,(C)) and H* (M, (C))
have the same image in HAR(C; R@)" under the regulator map.

Proof. This is immediate from Theorem 5.6 because the regulator integrals are
dual to H(}R(C; R(@3))", see Remark 3.1, and the regulator integrals vanish on
K§3)(k) U F, by Proposition 3.4, so they do not notice the modification due to
the lift.
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Remark 5.9. Theorem 5.4 and Theorem 5.6 (or Corollary 5.5 and Corollary 5.8)
give, in principle, a (difficult) combinatorical description of the image of Kf)(C)
resp. Ké4)(C) under the regulator map, in terms of the groups B, involved in
H>(I''(C,3)) resp. H*(I'(C,4)). According to the Beilinson conjectures, for
n = 2, the regulator map from Kgf”(C) to H&R(C; R(n))" should be an injection,
so that this conjecturally gives a combinatorical description of those K-groups
as well.

Remark 5.10. One could try to check the explicit relations of Bj(F) in M(3)(F )
along the lines of Lemma 5.2, in order to get a map from H>*(I"'(C,4)) to
Hz(ﬂ;4)(C)). Due to the size of the relations involved, the author has not tried
to do this. Note also that that would still not give us a map from Ké‘”(C) —
Ké4)(C) + K§3>(k) U Fg similar to the maps in Theorem 5.4, as the map (p(24) from
Hz(ﬂf4)(C)) to Ké“)(C) + K§3)(k) U FY, depends on the Beilinson-Soule conjecture
as explained in Section 2. Thus the results for » = 3 are necessarily weaker than
those for n = 2.

Remark 5.11. One can give a more general proof of the existence of a map
B,(F) — M (F) for all n > 2, but it becomes dependent on conjectures. Namely,
assume that

(1)  F is the function field of a smooth, projective, geometrically irreducible variety Z
over the number field k;

(2) B,(F) is a quotient of the free (Q-vector space on elements {x}, with x € F* \ {1},
with relations Z,- citfi(x1, -+, xm)}, = 0 for rational numbers ¢;, and rational
functions f; on Z with coefficients in a number field k. Assume moreover that
there exists a Zariski open part U of Z such that for all y closed in U, the function
Zj ¢;P™4(a(f;())) vanishes identically for all embeddings of k(y) into C;

(3) the Beilinson—Soulé conjecture is true for general fields of characteristic zero:
KP(F)=0if 2p —n<0and n > 0;

(4) For a smooth, geometrically irreducible variety Z over a number field k,
Kgr?_l(Z) o Kg?_l(k) by pullback from the base (which is part of the Beilinson
conjectures).

Then procggding by induction, assume that we have defined a map
B,_1(F) = Mg—1(F) by {x},_ — [x],_;, so that the diagram

<{z}n,z € F*\ {1}> —— Br1(F) ® Fj

l |

M, (F) M,_1)(F) ® F§
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(resp.
<{xhxe FF\{l} > — A\’ F},

|

Moy(F) —— N Fg

for n=2) commutes. Then we have to check that for any relation
Yooiffi(xt, -+, xm)}, = 0, the relation Y ¢[fi(x1, ..., xp)l, =0 holds in My(F).
The element ) ¢j[fj(x1, . .., X)], defines an element o in H 1(/\/l(°n)(F )), injecting into
Ké’;{l(F ). Using the spectral sequence

Ep? = T] K" 2(k(x) = K")_(2)
xeX®

(see [9, Théoréme 4 (iii))]) the Beilinson-Soulé conjecture implies that then
K (F)~ K" (Z), and the Beilinson conjectures imply K\ (Z)= K\ (k)
by pullback from the base. The remarks in Section 2 show that (p(ln) is in fact
defined over some Zariski open subset U of Z, and we have
K (F) = KW (U) = K" (k) as well. We can select a point y in U such that
(p(ln)(oc) can be pulled back to y, mapping « to an element in Ké';l)_l(k(y)), namely
the image from the corresponding element in Kg’lll(k) =] K;le(U). Because the
map Kéﬁll(k) — Kéﬁll(k@)) is injective, we can check that the image of o is zero
by computing the regulator map, which according to Theorem 2.3 is given by
computing } ¢jP™(a(f;())) for all embeddings o of k(y) into C. This vanishes

by our assumptions.
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