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Abstract. In this paper we study the group K �n�1�2n �F �where F is the function ¢eld of a complete,
smooth, geometrically irreducible curve C over a number ¢eld, assuming the Beilinson^Soulë
conjecture on weights. In particular, we compute the Beilinson regulator on a subgroup of
K �n�1�2n �F �, using the complexes constructed inCompositioMath. 96 (1995), pp.197^247.We study
the boundary map in the localization sequence for n � 2 and n � 3. We combine our results
with results of Goncharov in order to obtain a complete description of the image of the regulator
map on K �3�4 �C� and K �4�6 �C� (which have the same images as K4�C� 
Z Q, and K6�C� 
Z Q,
respectively), independent of any conjectures.
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1. Introduction

LetC be a smooth, proper, geometrically irreducible curve over a number ¢eld k. We
want to consider Km�C� for mX 0, and would speci¢cally like a more concrete
description of this group rather than the abstract de¢nition. The case m � 0 is
classical, and we shall assume mX 1 from now on. For C as above, there are regu-
lator maps from Km�C� to Deligne cohomology groups. More precisely, for C as
above, Km�C� 
Z Q �Lm�1

n�1 K �n�m �C�, where the K �n�m �C� are the weight n subspaces
of Km�C� 
Z Q, which are eigenspaces for particular operators, the Adams
operations. Let Can be the analytic manifold associated to C 
Q C. Can is a disjoint
union of �k : Q� Riemann surfaces of genus the genus of C. Can has an involution
s coming from complex conjugation on C. There are regulator maps to Deligne
cohomology,

reg : K �n�m �C� ! H2nÿm
D �Can;R�n��;

where R�n� � �2pi�nR � C. For mX 1, the only nonzero K �1�m �C� is
K �1�1 �C� � k� 
Z Q. For nX 2, H2nÿm

D �Can;R�n�� is isomorphic to
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H2nÿmÿ1
dR �Can;R�nÿ 1��. The most interesting case for nX 2 for the target is there-

fore the case m � 2nÿ 2, so that we land in H1
dR. Replacing n with n� 1 to simplify

notation somewhat in the rest of the paper, we are interested in the groups
K �n�1�2n �C� for nX 1. For n � 1, the group K �2�2 �C� can be described in terms of
the exact localization sequence

� � � !@
a

x2C�1�
K �n�2n �k�x�� ! K �n�1�2n �C� ! K �n�1�2n �F � !@

a
x2C�1�

K �n�2nÿ1�k�x�� ! � � � ;

where C�1� is the set of codimension 1 (i.e., closed) points of C. Because K2n�k�x�� is
torsion for n > 0 as k�x� is a number ¢eld, the map K �2�2 �C� ! K �2�2 �F � is injective.
K �2�2 �F � � K2�F � 
Z Q, and K2�F � can be described completely in terms of generators
and relations by Matsumoto's theorem. The boundary map @ is described in terms of
the tame symbol. Similarly, because the map K �n�1�2n �C� ! K �n�1�2n �F � is always
injective for nX 1, one can try to describe K �n�1�2n �C� by describing K �n�1�2n �F � and
computing the boundary map to the K �n�2nÿ1�k�x�� in the localization sequence. This
is the approach taken in this paper.

In order to construct elements in K �n�1�2n �F � we use (cohomological) complexes
constructed in previous work by the author for n� 1X 2. Those complexes exist
for any ¢eld F of characteristic zero. Let us write F �Q for F � 
Z Q. There is a
cohomological complex fM��n�1��F � in degrees 1; . . . ; n� 1,

eM�n�1��F � ! eM�n��F � 
 F �Q ! � � � ! eM�2��F � 
 n̂ÿ1
F �Q!

n̂�1
F �Q;

with eM�k��F � a Q-vector space generated by symbols �f �k for f in F �. The maps are
given by

d�� f �l 
 g1 ^ � � � ^ gnÿl�1� � � f �lÿ1 
 f ^ g1 ^ � � � ^ gnÿl�1

for l 6� 2, and

d � f �2 
 g1 ^ � � � ^ gnÿ1
ÿ � � �1ÿ f � ^ f ^ g1 ^ � � � ^ gnÿ1

for l � 2, with d �1�2 
 g1 ^ � � � ^ gnÿ1
ÿ � � 0. There is a map

Hp�fM��n�1��F �� ! K �n�1�2�n�1�ÿp�F �

from the cohomology groups to the K-theory of the ¢eld, at least assuming a stan-
dard conjecture inK-theory that certain weight parts ofK-groups vanish, see Section
2 for more details. The map is natural only up to sign, which will result in some
statements up to sign below. We shall be mostly interested in the case p � 2, so
we get a map to K �n�1�2n �F �. In this case the map corresponding to K �3�4 �F � exists
without assumptions. For K �4�6 �F � we can also work without assumptions, but
the situation is a bit more delicate. The complexfM��n�1��F � is a quotient of a complex
M��n�1��F �. Without assumptions, there is a map H2�M��4��F �� to a quotient of
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K �4�6 �F �, and the natural mapH2�M��4��F �� ! H2�fM��4��F �� is surjective. More details
are given in Section 2.

For the sake of exposition, however, we state our results here usually assuming the
Beilinson^Soulë conjecture, while referring to the more technical statements in the
body of the paper for the corresponding statements without this assumption.

On the images of the maps to K �n�1�2n �F � we compute the regulator map by pairing
the 1-form that is the image of the regulator map inH1

dR with a holomorphic 1-form
and integrating over the analytic manifold Can. The image of K �n�1�2n �C� under the
regulator map is contained in the subspace H1

dR�Can;R�n��� of H1
dR�Can;R�n�� con-

sisting of the forms c such that c � s � c, where s is the involution on Can. Wedging
such a form with a holomorphic 1-form onCan and integrating gives a perfect pairing
between H1

dR�Can;R�n���and holomorphic 1-forms on Can satisfying o � s � o, so
this completely describes the regulator map. The formula we ¢nd corresponding
to the symbols � f �nÿ1 
 g (see Theorem 3.5) has the form conjectured by Goncharov
for such elements, see [4, ½7].

The following is part of Theorem 3.5 below, to which we refer the reader for the
statement without assumptions, see also Remark 3.7.

THEOREM 1. Suppose the Beilinson^Soulë conjecture holds for ¢elds of character-
istic zero, so there is a map

Hp�fM��n�1��F �� ! K �n�1�2n�2ÿp�F �:

Leto be an element in H0�Can;O� such thato � s � o, where s is the involution on Can

obtained by letting complex conjugation act onC. Fix an orientation on Can such that
s reverses the orientation. If

P
j cj�fj �n 
 gj is an element of H2�fM��n�1��F ��, then the

composition of maps

H2�fM��n�1��F �� ÿ!K �n�1�2n �F � ÿ!reg
H1

dR�F ;R�n���ÿÿÿÿÿÿÿ!
R
Can
�^o

R�1�

is given by mapping �f �n 
 g to

�n2n
n� 1

Z
Can

log jgj lognÿ2 jf j log j1ÿ f j d log jf j ÿ log jf j d log j1ÿ f j� � ^ o:

Also, on the image of H2�fM��n�1��F �� in K �n�1�2n �F � we compute an approximation to
the boundary map @ in the above localization sequence, in terms of the complexesfM��n�1��F � and fM��n��k�x��, where x is a closed point of C. This can be carried
out completely for n � 2 and n � 3, corresponding to K �3�4 �F � and K �4�6 �F �, and could
probably be done for all K �n�1�2n �F �, but the combinatorics get rather complicated
already for K �4�6 �F �, so we restrict ourself to the cases K �3�4 �F � and K �4�6 �F �. For
the cases n � 2 and 3 we prove the following result (which for the sake of exposition
is again formulated assuming the Beilinson^Soulë conjecture, see Theorem 4.6
for the result for n � 3 without this assumption). If x is a closed point of C,
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one can de¢ne a map dx : H2�fM��n�1��F �� ! H1�fM��n��k�x��� by mapping �f �2 
 g to
ordx�g��f �x��2, with the convention that �0�2 and �1�2 are zero.

THEOREM 2. Let d � Qx dx. Then, assuming the Beilinson^Soulë conjecture for
n � 3, the diagram

commutes for n � 2 or 3, up to sign and up to @ K �n�2nÿ1�k� [ F �Q
� �

in the lower right hand
corner.

It turns out that the results we obtain for the regulator maps on K �3�4 �F � and
K �4�6 �F �, as well as the boundary maps in those cases, can be very effectively combined
with work of Goncharov. In order to state the results, we introduce the complexfM��n�1��C� as the total complex of the following double complex.

eM�n�1��F � !d eM�n��F � 
 F �Q !d eM�nÿ1��F � 
V2 F �Q !d � � �
# d # d #
0 ! `

x
eM�n��k�x�� !d `

x
eM�nÿ2��k�x�� 
 k�x��Q !d � � �

where both coboundaries have degree 1 and the total complex is a cohomological
complex with eM�n�1��F � in degree 1. The map d in the diagram is determined
by the requirement that dx��f �l 
 g1 ^ � � � ^ gnÿl�1� equals ordx�g1��f �x��l

g2�x� ^ � � � ^ gnÿl�1�x� if none of the gi�x� is zero or1 for i � 2; . . . ; nÿ l � 1, again
putting �0�l � �1�l � 0. There is an obvious inclusion H2�fM��n�1��C�� !
H2�fM��n�1��F ��, and Theorem 2 above implies that (assuming the Beilinson^Soulë
conjecture) under the map H2�fM��n�1��F �� ! K �n�1�2n �F � above, H2�fM��n�1��C�� is
mapped to K �n�1�2n �C� � K �n�2nÿ1�k� [ F �Q inside K �n�1�2n �F �. It also turns out that
K �n�1�2n �C� � K �n�2nÿ1�k� [ F �Q is actually a direct sum K �n�1�2n �C� � K �n�2nÿ1�k� [ F �Q, so that
we can use the projection onto the ¢rst factor to get a map

H2�fM��n�1��C�� ! K �n�1�2n �C�:

We call the composition of this map with the map

reg : K �n�1�2n �C� ! H1
dR�Can;R�n���

the regulator on H2�fM��n�1��C��. If we combine it with the mapZ
Can

� ^ o : H1
dR�Can;R�n��� ! R�1�
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for an element o of H0�Can;O� such that o � s � o, then this composition is still
given by the formulae in Theorem 1 above, see Proposition 3.4.

In [4, ½6], Goncharov de¢ned the following complexes G�F ; n� (in degree 1; . . . ; n),
given by

Bn�F � ! Bnÿ1�F � 
 F �Q! . . .! B2�F � 

n̂ÿ2

F �Q!
n̂

F �Q

and, for each x 2 C�1�, G�k�x�; nÿ 1� (in degrees 1; . . . ; nÿ 1), given by

Bnÿ1�k�x�� ! . . .! B2�k�x�� 

n̂ÿ3

k�x��Q!
n̂ÿ1

k�x��Q
Here for any in¢nite ¢eld F , Bk�F � is a Q-vector space generated by elements f f gk
with f 2 F [ f1g, modulo certain (inductively de¢ned) relations, which include
f0gk � f1gk � 0. The maps are given by

ff gl 
 g1 ^ � � � ^ gnÿl 7! ff glÿ1 
 f ^ g1 ^ � � � ^ gnÿl

if l > 2, and by

ff g2 
 g1 ^ � � � ^ gnÿ2 7! �1ÿ f � ^ f ^ g1 ^ � � � ^ gnÿ2:

There is a map

G�F ; n� !
a

x2C�1�
G�k�x�; nÿ 1��ÿ1�

given by

ff gl 
 g1 ^ � � � ^ gnÿl 7! ff �x�gl 
 @nÿl;x�g1 ^ � � � ^ gnÿl�
with @m;x the unique map

Vm F �Q !
Vmÿ1 k�x��Q determined by

px ^ u1 ^ � � � ^ ulÿ1 7! u1�x� ^ � � � ^ ulÿ1�x�

u1 ^ � � � ^ ul 7! 0

if all ui are units at x and px is a uniformizer at x. G�C; n� is de¢ned as the mapping
cone of the maps of complexes above. Goncharov also de¢nes complexes
G0�F ; n�, G0�k�x�; nÿ 1� for n � 3 and 4, and constructs maps of the corresponding
complexes as above. The complexes G0 have the same shape as the complexes G with
the same maps between them, but the Bk�F � are replaced by B0k�F �, generated by
F [ f1g, but with explicit relations between the generators. G0�C; n� is de¢ned as
the mapping cone, de¢ned by the corresponding G0 complexes. Goncharov also con-
structs a map

K2n�C� ! H2�G0�C; n� 1��
for n � 2 or 3, and shows that the Beilinson regulator factors through this map. We

K-THEORY OF CURVES OVER NUMBER FIELDS 141

https://doi.org/10.1023/A:1026440915009 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026440915009


summarize part of his results (especially [3, Theorems 5.5 and 5.9]) in a form suitable
for our needs.

THEOREM 3 (Goncharov). For n � 2 or 3, the regulator map

K �n�1�2n �C� ! H1
dR�Can;R�n���

can be extended over the map K �n�1�2n �C� ! H2�G0�C; n� 1�� to a map
H2�G0�C; n� 1�� ! H1

dR�Can;R�n���. For o a holomorphic 1-form satisfying
o � s � o, the composition

H2�G0�C; n� 1��ÿ!H1
dR�Can;R�n���ÿÿÿÿÿÿ!

R
Can
�^o

R�1�

is given by mapping ff gn 
 g to

cn

Z
C

log jgj lognÿ2 jf j log j1ÿ f jd log jf j ÿ log jf jd log j1ÿ f j� � ^ o

for some nonzero rational constant cn.

We compare the images under the regulator map of K �n�1�2n �C�, H2�G0�C; n� 1��
andH2�fM��n�1��C�� by showing that there is a map B02�F � ! eM�2��F � given by sending
fxg2 to �x�2. This gives us maps

K �3�4 �C� ! H2�G0�C; 3�� ! H2�fM��3��C�� ! K �3�4 �C�;
such that if we take the regulator to H1

dR�Can;R�2��� from all those groups, the
resulting diagram commutes up to nonzero rational factors. For K �4�6 �C� the situation
is again somewhat more complicated, but comparing the formulae for the regulators
of elements in H2�G0�C; 4�� and H2�fM��4��C�� we can get the following result without
assuming the Beilinson^Soulë conjecture, see Corollaries 5.5 and 5.8.

THEOREM 4.

(i) For n � 2, the groups K �3�4 �C�, H2�G0�C; 3�� and H2�fM��3��C�� have the same image
in H1

dR�Can;R�2��� under the regulator map.
(ii) For n � 3, the groups K �4�6 �C�, H2�G0�C; 4��, and H2�fM��4��C�� have the same image

in H1
dR�Can;R�3��� under the regulator map.

It should be stressed here that the results of Theorem 4 hold without any
assumptions about the Beilinson^Soulë conjecture. Those results in the cases
p � 2 and n � 3 or 4 strongly corroborate a conjecture of Goncharov that there
is an isomorphism H2�G�C; n�� � K �n�2nÿp�C� for all p and n, see [4, ½6].

Such a description of the image of the regulator map is important for the following
reason. The Beilinson conjectures for C as above predict the following.
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(1) K �n�1�2n �C� has Q-dimension r � genus �C��k : Q� for nX 2 (for n � 1, which we
shall not study here, the Q-dimension could be larger, depending on the
reduction of the curve).

(2) For nX 2, the Beilinson regulator induces an isomorphism

K �n�1�2n �C� 
Q R! H2
D�Can;R�n� 1��� � H1

dR�Can;R�n���;

where the� indicates the part of the cohomology where the involution formed by
the combination of complex conjugation s on the space Can and complex con-
jugation on the coe¤cients R�n� 1� (resp. R�n�) acts as the identity.

(3) If a1; . . . ; ar is a Q-basis of K �n�1�2n �C�, let A be the matrix obtained by writing
reg�a1�; . . . ; reg�ar� with respect to a basis of H1�Can;Q�n��� � Qr. Note that
det�A� is determined up to multiplication by an element in Q�. Assume that
the L-function L�C; s� of C can be analytically continued to the entire complex
plane. Then det�A�=L��C; 1ÿ n� is an element in Q�, where L��C; z� is the ¢rst
nonvanishing coe¤cient in the power series expansion of L�C; s� around s � z.

Clearly, for those conjectures it is important to have a good description of the
image of the K-theory under the regulator map, which is one of the aims of this
paper. The regulator det�A� in (3) above is described in this paper in terms of a
determinant of integrals of reg�ai� ^ oj over Can for holomorphic 1-forms oj on
C, and using the periods of the oj's, see Proposition 3.2 below.

As a concluding remark wemention that according to the Beilinson conjectures for
C as above, one should have K2n�C� 
Z Q � K �n�1�2n �C�, and the regulator map
should give an injection K2n�C� 
Z Q � K �n�1�2n �C� ! H1

dR�Can;R�n��� for nX 2,
so that conjecturally we get closer to a description of the even K-groups of C.
On the other hand, the regulator vanishes on allK �j�2n �C�with j 6� n� 1 if nX 1. Hence
Theorem 4 above also gives a complete description of the image of the regulator of
K4�C� 
Z Q and K6�C� 
Z Q.

The paper is organized as follows. We review the description and the construction
of the complexes from [7] in Section 2 below, state some of their properties, and take
the opportunity to prove some loose ends needed in the rest of the paper. The
cohomology groups of these complexes map to the K-theory of the ¢eld F , and
in Section 3 we prove a version of Theorem 1 above. We also prove that there
is a duality between certain holomorphic 1-forms and a subspace of H1

dR containing
the image of the regulator map, given by pairing the two forms and integrating over
the curve. Thus we get a description of the image of the regulator in terms of what
we call regulator integrals. Section 4 contains the proof of Theorem 2 above (or
rather of its incarnation without assumptions about the Beilinson^Soulë conjecture),
and is by far the longest. We give most of the proof for general n, but somewhere
along the road the combinatorics simply become too complicated and we restrict
ourselves to the cases corresponding to K �3�4 �F � and K �4�6 �F �. Even so, the reader
may feel the proof is a bit tedious and messy. Yet the order of the acts is planned,
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and the end of the way inescapable. Finally, in Section 5 we relate our work with that
of Goncharov as quoted in Theorem 3 above, proving Theorem 4 above. This way we
obtain a complete combinatorical description of the image of K �3�4 �C� and K �4�6 �C�
(and as explained above, of K4�C� 
Z Q and K6�C� 
Z Q� under the regulator map,
independent of any conjectures. We conclude the section by indicating how such
results could be obtained for higher n, but all this would depend rather heavily
on conjectures in algebraic K^theory.

Notation.The following notation will be ¢xed throughout the paper. k is a number
¢eld. C is a smooth, geometrically irreducible, proper curve over k. F � k�C� is the
¢eld of rational functions on C. C�1� will denote the set of points of C of codimension
one, i.e., the set of closed points of C.

In all sections except Section 2, n is a ¢xed integer at least equal to two. For an
Abelian group A, AQ � A
Z Q. Q�m� � �2pi�mQ � C and similarly for R�m�.
In the decomposition C � R�nÿ 1� �R�n� we let pnÿ1 denote the projection onto
the R�nÿ 1�-part. If S is a subset of a vector space V , we shall mean by hSi (resp.
hSiR) the Q (resp. R) subspace spanned by the elements of S.

Throughout the paper, in integrals and cohomology groups, we write simplyC for
Can, which is the analytic manifold associated to C 
Q C. Note that by our
assumptions, this is a disjoint union of �k : Q� copies of a Riemann surface of genus
the genus of C. Similarly, we shall write H1

dR�F � for limÿ!
U�C

H1
dR�Uan�, where the limit

is over all Zariski open subsets of C.

2. Some Preliminary Results

This section contains a description of the complexesM��n��F � and fM��n��F �, together
with the maps jp

�n� from their Hp to K �n�2nÿp�F � under suitable assumptions, as they
were constructed in [7]. Apart from that, we also prove or state some results in this
context that are useful for the rest of the paper.

We brie£y recall the construction of the complexes M��n��F � and fM��n��F � in [7,
Section 3], where F is a ¢eld of characteristic zero. Let Y � Spec �F�, or more gen-
erally a Noetherian, quasi-projective separated regular scheme. For convenience,
we shall refer to such a scheme as a reasonable regular scheme. Let t be the standard
af¢ne coordinate on P1; and let XY � P1

Y n ft � 1g. In [7] a formalism of
`multi-relative' K-theory with weights is developed. To ¢x ideas, look at the exact
sequence in relative K-theory

. . .! K �j�m�1�ft � 0;1g� ! K �j�m �XY ; ft � 0;1g� ! K �j�m �XY � ! . . . :

One has K �j�n �XY � � K �j�n �Y � by the homotopy property for K-theory of a reasonable
regular scheme, and the map K �j�n �XY � ! K �j�n �ft � 0;1g� � K �j�n �Y ��2 is the diagonal
map. From this, one gets isomorphisms K �j�n �XY ; ft � 0;1g� � K �j�n�1�Y �. (We shall
apply this isomorphism only in case Y is a Zariski open part of a smooth curve
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over a number ¢eld, the Spec of its function ¢eld, or the Spec of a number ¢eld, in
which case all conditions are satis¢ed.) Iterating this idea one gets `multi-relative'
K-theory, by taking relativity step by step. Let ti be the coordinate on the i-th copy
of X in Xn. Writing n for ft1 � 0;1g; . . . ; ftn � 0;1g, we have a long exact
sequence in relative K-theory

� � � ! K �j�m�1�ftn � 0;1g; nÿ1 � ! K �j�m �Xn
Y ; n � !

K �j�m �Xn
Y ; nÿ1 � ! K �j�m �ftn � 0;1g; nÿ1 � ! � � �

and as before it follows from the homotopy property for K-theory of a reasonable
regular scheme Y that K �j�m �Xn

Y ; n � � K �j�m�1�Xnÿ1
Y ; nÿ1 � for mX 0. Repeating this,

we get K �j�m �Xn
Y ; n � � K �j�m�n�Y � for mX 0. Note that there is no obvious choice

of this isomorphism, which will result in statements up to sign below.
Let Y � Spec �F �, but drop Y from the notation. Let U � F � n f1g be ¢nite. Write

Xk
loc � Xk n fti � uj; uj 2 U; i � 1; . . . ; kg. One has a fourth quadrant spectral

sequence

Ep;q
1 �

a
K �nÿp�ÿpÿq�Xnÿ1ÿp

loc ; nÿ1ÿp � )

K �n�ÿpÿq�Xnÿ1; nÿ1 � � K �n�ÿpÿq�nÿ1�F � �2:1�
which, if we write K �j�m;l for K �j�m �Xl

loc;
l �, looks like

..

. ..
. ..

.

K �n�ÿqÿ1;nÿ1
`

K �nÿ1�ÿqÿ2;nÿ2
`

K �nÿ2�ÿqÿ3;nÿ3 � � �
K �n�ÿq;nÿ1

`
K �nÿ1�ÿqÿ1;nÿ2

`
K �nÿ2�ÿqÿ2;nÿ3 � � �

K �n�ÿq�1;nÿ1
`

K �nÿ1�ÿq;nÿ2
`

K �nÿ2�ÿqÿ1;nÿ3 � � �

..

. ..
. ..

.

Here the coproduct for Xnÿ1ÿp
loc corresponds to the codimension p hyperplanes given

by p equations of type ti � ui, ui 2 U . If K �j�m �Y � � 0 for 2jWm, m > 0, all the terms
below the row with q � ÿn vanish, [7, page 221]. Hence if we view this lowest
row with the differential of the spectral sequence as a cohomological complex
(depending on U)

C��n� : K �n�n;nÿ1!
a

K �nÿ1�nÿ1;nÿ2!
a

K �nÿ2�nÿ2;nÿ3! . . .

in degrees 1 through n, we get a map

Hp�C��n�� ! K �n�nÿp�1�Xnÿ1; nÿ1 � � K �n�2nÿp�F �:
This procedure works more generally for Y a reasonable regular scheme, and
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U � G�Y ;O�� n f1g such that for all uk and ul in U , uk ÿ ul and uk ÿ 1 are invertible
on Y if they are not identically zero. Let G � Spec�Q�S;Sÿ1; �1ÿ S�ÿ1��. From
the localization sequence

� � � ! K �jÿ1�n �Spec�Q���2! K �j�n �A1
Q� ! K �j�n �G� ! K �jÿ1�nÿ1 �Spec �Q���2! � � �

and the facts thatK �j�n �A1
Q� � K �j�n �Q� andK �j�n �Q� � 0 unless n � 2j ÿ 1 for jX 1, one

gets that the conditions about weights above are satis¢ed for G. One can use the
spectral sequence above, with G instead of Y , and U � fSg, to construct elements
�S�n 2 K �n�n �Xnÿ1

G;loc;
nÿ1 � for nX 2, satisfying d�S�n �

Pnÿ1
j�1 �ÿ1�j�S�nÿ1jtj�S, where

we put �S�1 � 1ÿ S. With some more care, one sees that actually
�S�n 2 K �n�n �Xnÿ1

Gm;loc;
nÿ1 �. Any u 2 F � n f1g, or more generally any u 2 G�Y ;O�� such

that 1ÿ u is also invertible on Y , yields a map Y ! G, and hence yields an element
�u�n 2 K �n�n �Xnÿ1

Y ;loc;
nÿ1 � by pulling back, with boundary d�u�n �

Pnÿ1
j�1 �ÿ1�j�u�nÿ1jtj�u

in C��n�.
We now return to the case Y � Spec�F �, U � F � n f1g ¢nite, Xn

loc as before. Write
K�p� for K �p�p �Xpÿ1

Y ;loc;
pÿ1 �. For the construction of fM��n��F � one starts with the

complex C��n� (starting in degree 1)

K�n� !
a
U

K�nÿ1�

 !� nÿ1
1� �
!

a
U2

K�nÿ2�

 !� nÿ1
2� �
!

a
Unÿ1

K�1�

 !� nÿ1
nÿ1� �
:

The ��nÿ1p � here corresponds to the number of ways of putting p of the coordinate tj
to a constant in U . For any u 2 U , we have �u�n 2 K �n�n �Xnÿ1

loc ; nÿ1�. The element
�u�2 has boundary �1ÿ u�ÿ1jt�u, and for nX 3 �u�n has boundaryPnÿ1

j�1 �ÿ1�j�u�nÿ1jtj�u. Moreover, C��n� carries an action of Snÿ1 by permuting the
coordinates, and �u�n is in fact in the alternating part for this action. Let
�1� I�� � K �1�1 �Xloc; �, which can be described more explicitly as

F �t� �
Y
i

�tÿ xi�ni �tÿ 1�ÿni such that xi 2 U and
Y
i

xnii � 1

( )
Q

:

There are mÿ 1 cup products

�1� I�� [ K �mÿ1�mÿ1 �Xmÿ2
loc ; mÿ2 � ! K �m�m �Xmÿ1

loc ; mÿ1 �

depending on which of the coordinates onXmÿ1
loc we use for the �1� I��-factor. We let

�1� I�� ~[K �mÿ1�mÿ1 �Xmÿ2
loc ; mÿ2 � denote the span of the images of all possibilities.

De¢ne

symb2 � h�u�2i � �1� I�� [ F �Q � K �2�2 �Xloc; �
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and for nX 3

symbn � h�u�ni � �1� I�� ~[ symbnÿ1 � K �n�n �Xnÿ1
loc ; nÿ1�:

We get a subcomplex C��n�;log of C��n�,

symbn !
a
U 0

symbnÿ1

 !� nÿ1
1� �
!

a
U 02

symbnÿ2

 !� nÿ1
2� �
!

a
U 0nÿ1

F �Q

 !� nÿ1
nÿ1� �
:

The subcomplex J��n� of C
�
�n�;log given by

�1� I�� ~[ symbnÿ1 ! d�. . .� �
a
�1� I�� ~[ symbnÿ2

� �� nÿ1
1� �!

d�. . .� � . . .! � � � ! d�. . .� �
a
�1� I�� ~[F �Q

� �� nÿ1
nÿ2� �! d�. . .�

is acyclic, and we can form the quotient complex C��n�;log=J
�
�n�. Because Snÿ1 acts on

C��n�;log and J��n� is stable under the action, we can take the alternating part of this
quotient complex, and we get the complex

M��n��F � : M�n� !M�nÿ1� 
 hUi ! � � �

� � � !M�2� 

n̂ÿ2
hUi ! F �Q 


n̂ÿ1
hUi;

where hUi is the (multiplicative) subspace of F �Q spanned by U , and

M�l� � symbl

�1� I�� ~[ symblÿ1
:

(In [7] and [8] we wrote the factors in the tensor product the other way round. We
change this notation here to conform with the notation used by Goncharov.) Finally,
by taking direct limits over U we get the complex

M��n��F � : M�n��F � !M�nÿ1��F � 
 F �Q! � � �

� � � !M�2��F � 

n̂ÿ2

F �Q ! F �Q 

n̂ÿ1

F �Q:

So Ml�F � is generated by symbols �f �l with f 2 F � n f1g, and the differential is given
by

d��f �l 
 g1 ^ � � � ^ gnÿl� � �f �lÿ1 
 f ^ g1 ^ � � � ^ gnÿl

if lX 3 and

�1ÿ f � 
 f ^ g1 ^ � � � ^ gnÿl

if l � 2. The symbol �1�l also exists, with the relation �1�l � 2lÿ1��1�l � �ÿ1�l�, see [7,
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Proposition 6.1]. In particular d�1�l � 0 for all kX 2. By construction, if the
Beilinson^Soulë conjecture holds for F , there are maps

jp
�n� : Hp�M��n��F �� ! K �p�2nÿp�F �

as the composition of

Hp�M��n��F �� � Hp�C��n�;log�F �alt�

! Hp�C��n�;log�F �� ! Hp�C��n��F �� ! K �p�2nÿp�F �:

Finally, the complex fM��n��F � is obtained by quotienting out the complexM��n��F � by
the subcomplex

h�u�n � �ÿ1�n�1=u�ni ! h�u�nÿ1 � �ÿ1�nÿ1�1=u�nÿ1i 
 F �Q! � � �

� � � ! h�u�2 � �1=u�2i 

n̂ÿ2

F �Q ! d�. . .�:
�2:2�

We get the complex fM��n��F �
eM�n��F � ! eM�nÿ1��F � 
 F �Q ! � � � ! eM�2��F � 
 n̂ÿ2

F �Q!
n̂

F �Q:

where eM�l��F � �M�l��F �=h�u�l � �ÿ1�l �1=u�li. The subcomplex (2.2) is acyclic in
degrees nÿ 1 and n ([7, Remark 3.23]) and is acyclic everywhere if the Beilinson-
^Soulë conjecture is true (not just for F but for more schemes, see [7, Proposition
3.20]). Note that now the differential at the �nÿ 1�-th place is given by

d �f �2 
 g1 ^ � � � ^ gn
ÿ � � �1ÿ f � ^ f ^ g1 ^ � � � ^ gn

with the other differentials unchanged. If the Beilinson^Soulë conjecture holds more
generally, we therefore get a map

~jp
�n� : Hp�fM��n��F �� ! K �p�2nÿp�F �

as the composition of

Hp�fM��n��F �� � Hp�M��n��F �� � 
Hp�C��n�;log�F �alt� ! Hp�C��n��F �� ! K �p�2nÿp�F �

Here the leftmost arrow is an isomorphism if the Beilinson^Soulë conjecture is true
in general, and the rightmost arrow exists if the Beilinson^Soulë conjecture is true
for the K-theory of F . By construction, all arrows from left to right are injective
for p � 1, if they exist.

The reader may check that, if the Beilinson^Soulë conjecture is true in general,
then for an element a in Hp�M��n��F �� (resp. H2�fM��n��F ���, jp

�n��a� (resp. ~jp
�n��a�) nat-
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urally lives in K �n�2nÿp�U� for U some Zariski open subset of a reasonable regular
schemeY with function ¢eld F . This is because the lift of such an element will involve
only ¢nitely many elements in F , and the spectral sequence (2.1) will involve only
¢nitely many ti � uj 's. But then this spectral sequence exists for a suitable open part
of Y as well, by leaving out the closed part where ui � uj for all i,j such that
ui 6� uj. Moreover, the Beilison^Soulë conjecture implies that the localization
map K �n�2nÿ1�U� ! K �n�2nÿ1�F � is an injection, which allows one to check that the cor-
responding map of the complex for the Zariski open part U to the corresponding
complex for F is an injection, see [7, Remark 3.17]. We shall only apply this to
the case that U is a Zariski open part of the curve C, in which case the injection
above is guaranteed by a localization sequence

� � �
a
x

K �nÿ1�2nÿ1 �k�x�� ! K �n�2nÿ1�U� ! K �n�2nÿ1�F � ! � � �

because K �nÿ1�2nÿ1 �k�x�� � 0 as k�x� is a number ¢eld.
In this paper we shall be mainly interested in the case p � 2 and n � 4, i.e., the

target is K �4�6 �F �. The leftmost arrow here is a surjection without any assumptions
because of the acyclicity of the complex (2.2) in degree 3. The rightmost arrow exists
to a quotient K �4�6 �F �=N, which is as follows. In the spectral sequence (2.1) all higher
differentials leaving E1;ÿ4

2 are zero, as they land in K �1�2 �F �'s or outside the range
of the spectral sequence. So E1;ÿ4

2 � Eÿ1;41 and we get a map H2�C��4��F �� � Eÿ1;41 ,
a subquotient of K �4�6 �F �. In order to determine this more precisely, note that we
have a long exact localization sequence

� � � !
a

K �1�3 �F � ! K �2�3 �X; � ! K �2�3 �Xloc; � !
a

K �1�2 �F � ! � � � :

As K �1�3 �F � and K �1�2 �F � are both zero, we get

K �2�3 �Xloc; � � K �2�3 �X; � � K �2�4 �F �:
Therefore Eÿ1;41 � K �4�6 �F �=N with N generated by K �2�4 �F � [ K �2�2 �F �, and we get a
map

H2�M��4��F �� ! E1;ÿ4
1 ! K �4�6 �F �=N

which does not depend on any assumptions.
In Proposition 4.1 below, we shall introduce maps d �Q dx with

dx : fM��n��F � ! fM��nÿ1��k�x���1�
given by

dx��f �nÿl 
 g1 ^ � � � ^ gl� � spnÿl;x��f �nÿl� 
 @l;x�g1 ^ � � � ^ gl�
in degrees 1 through nÿ 1, and by the map ÿ@n;x in degree n, where
spnÿl;x��f �nÿl� � �f �x��nÿl if f �x� 6� 0 or1, 0 otherwise, and @l;x the unique map from
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Vl F �Q to
Vlÿ1 k�x��Q determined by

px ^ u1 ^ � � � ^ ulÿ1 7! u1�x� ^ � � � ^ ulÿ1�x�

u1 ^ � � � ^ ul 7! 0

if all ui are units at x and px is a uniformizer at x. This map obviously gives rise to a
map fM��n��F � ! fM��nÿ1��k�x���1� by composition with the natural projection
M��n��F � ! fM��n��F �. Following Goncharov ([4, ½6]), we introduce the complexes
M��n�1��C� and fM��n�1��C�, de¢ned to be the total complexes of

M�n�1��F � !d M�n��F � 
 F �Q !d M�nÿ1��F � 

V2 F �Q !d � � �

# d # d #

0 ! ` eM�n��k�x�� !d ` eM�nÿ1��k�x�� 
 k�x��Q !d � � �
and

eM�n�1��F � !d eM�n��F � 
 F �Q !d eM�nÿ1��F � 
V2 F �Q !d � � �
# d # d #

0 ! ` eM�n��k�x�� !d ` eM�nÿ1��k�x�� 
 k�x��Q !d � � �;
where both coboundaries have degree 1 and the total complexes are cohomological
complexes with M��n�1��F � and eM��n�1��F � in degree 1. There are obvious inclusions
of H2�M��n�1��C�� into H2�M��n�1��F ��, ofH2�fM��n�1��C�� into H2�fM��n�1��F ��, so that
the maps j2

�n�1� (resp. ~j2
�n�1�) obviously extend to maps on the cohomology of those

complexes.
In [7] regulator maps

K �q�p �Xn
Y ;loc;

n� ! H2qÿp
D �Xn

Y ;loc;
n ;R�q��

to relative Deligne cohomology were de¢ned.We recall that the Deligne cohomology
group Hn

D�X;E;R�q�� can be described as the quotient

�on; sn� with on in Fq�D�n; sn in j�Snÿ1
X �qÿ 1� such

that onjE � 0; snjE � 0 and dsn � pqÿ1on

� �
(donÿ1; pqÿ1onÿ1 ÿ dsnÿ1� with onÿ1 in Fq�D�nÿ1;
snÿ1 in j�Snÿ2

X �qÿ 1� such that onÿ1jE � 0 and
snÿ1jE � 0

8<:
9=;
:

(See [7, p. 218].) Here the notation means the following. We write X etc. for the
underlying topological complex manifold consisting of the closed points of
X �Spec�Q� Spec�C�. X is a compacti¢cation of X with complement D such that
D and D [ E are a system of divisors with normal crossings. j is the imbedding
of X into X : S�X �q� is the complex of R�q�-valued C1-forms on X ; Fq�D�� the
complex of C-valued C1-forms on X of type �p; r� with pX q and with logarithmic
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poles along D: (So locally on U � X an element in Fq�D�n is a sum of elements of the
form j ^ c with j 2 O�U �D \U� of degree pX q; and c 2 C0;nÿp�U�:) Note that if
q > dimX , we get a natural isomorphism Hn

D�R�q�� � Hnÿ1
dR �R�qÿ 1��.

The regulator lands in the invariant (or plus) part of Deligne cohomology with
respect to the involution given by the combined action of complex conjugation
on the underlying topological space (through the action on C in
X �Spec�Q� Spec�C�) and on the coef¢cients R�q� � C. This involution acts similarly
on Hnÿ1

dR �R�qÿ 1��, and the plus-space in Deligne cohomology is isomorphic to
the plus-space in HdR if q > dimX .

The regulator of a cup product in K-theory is given by the cup products of the
regulators, (see [7, (22) and (40)], but (40) is £awed by typographical errors).
For �op; sp� in Hp

D�R�k��, �oq; sq� in Hq
D�R�l��, we get that in Hp�q

D �R�k� l��
�op; sp� [ �oq; sq� � �op ^ oq; sp ^ ploq � �ÿ1�p�pkop� ^ sq� �2:3�

As for the regulator of �S�n, it is given by �on; En�, with

on � �ÿ1�nÿ1d log
t1 ÿ S
t1 ÿ 1

^ � � � ^ d log
tnÿ1 ÿ S
tnÿ1 ÿ 1

^ d log�1ÿ S�: �2:4�

Here En is an R�nÿ 1�-valued �nÿ 1�-form such that dEn � pnÿ1on. (Unfortunately
the signs in equation (41) in [7] were wrong, so the formula for op�1 on page
237 needs a sign �ÿ1�p. This does not change the results of the paper, as it only
introduces a similar sign in [7, Proposition 4.1], which was stated up to sign anyway.
The correct statement including sign of that Proposition is that the integral
evaluated there for En using the orientation dx1 ^ dy1 ^ � � � ^ dxnÿ1 ^ dynÿ1 equals
�ÿ1�n�n�1�=2�2pi��1ÿn��nÿ 1�!Pn;Zag�z�.)

Finally, we have to introduce some polylogarithm functions and state their
relations with the present constructions.

Let Lil�z� �
P1

m�1 z
m=ml for lX 1 and z 2 C, jzj < 1. Then Li1�z� � ÿLog�1ÿ z�

and dLil�1�z� � Lil�z�d log z for lX 1. The functions Lil can be continued to
multi-valued holomorphic functions on P1

C n f0; 1;1g. Let the Bernoulli numbers
Bl be de¢ned by

x
ex ÿ 1

�
X1
k�0

Bl

l!
xl

It is well known that the functions (called Pn resp. Pn;Zag in [7] and [8])

Pn;Zag�z� � pnÿ1
Xnÿ1
l�0

�ÿ log jzj�l
l!

Linÿl�z�
 !

and

Pmod
n �z� � pnÿ1

Xnÿ1
l�0

2lBl

l!
logl jzjLinÿl�z�

 !
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extend to single valued functions on P1
C n f0; 1;1g with values in R�nÿ 1�,

see [11]. The functions Pmod
n satisfy the functional equations Pmod

n �z��
�ÿ1�nPmod

n �zÿ1� � 0, and extend to continuous functions on P1
C with Pmod

n �0� �
Pmod
n �1� � 0.
We have the following relations between the functions Pn;Zag:

LEMMA 2.1.

dPn;Zag�z� � Pnÿ1;Zag�z�d i arg z� �ÿ1�n lognÿ1 jzj
�nÿ 1�! pnÿ1d log�1ÿ z�

Proof.

dPn;Zag�z� � pnÿ1
Xnÿ2
l�0

�ÿ log jzj�l
l!

Linÿ1ÿl�z�d log z

 !
�

� pnÿ1 ÿ �ÿ log jzj�nÿ1
�nÿ 1�! d log�1ÿ z�

 !
ÿ

ÿ pnÿ1
Xnÿ1
l�1

�ÿ log jzj�lÿ1
�l ÿ 1�! Linÿl�z�d log jzj

 !

� pnÿ1
Xnÿ2
l�0

�ÿ log jzj�l
l!

Linÿ1ÿl�z�d i arg z

 !
�

� �ÿ1�n lognÿ1 jzj
�nÿ 1�! pnÿ1d log�1ÿ z�

As in [11, ½7] one checks that we have the relations

Pn;Zag�z� �
X

0W 2j<m

log2j jzj
�2j � 1�!P

mod
mÿ2j�z�:

LEMMA 2.2. Let C be a complete, smooth, irreducible curve over C with function
¢eld F � C�C�. If f1; . . . ; fl are elements of F�, and cj are rational numbers such that

Xl
j�1

cjfj 
 � � � 
 fj 
 fj ^ �1ÿ fj�
ÿ � � 0

in Symnÿ2F �Q 

V2 F �Q, then the function

z 7!
Xl
j�1

cjPmod
n �fj�z��

is constant on C.
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Proof. This is done by Zagier in the proof of [11, Proposition 3] for C � P1
C, which

works just as well for any curve as in the statement of the Lemma.

Because B0 � 0, B1 � ÿ 1
2 and B2 � 1

6, we have

P3;Zag�z� � Pmod
3 �z� ÿ

1
6

log2 jzj log j1ÿ zj: �2:5�

Propositions 4.1, 5.1, Remark 5.2 and Theorem 5.3 of [7] contain the following
result.

THEOREM 2.3. Let k be a number ¢eld and let s1; . . . ; sr be all embeddings of k into
C. Then the mapsjp

�n� and ~jp
�n� exist without assumptions. They are injective for p � 1,

and isomorphisms for �p; n� equal to �1; 2� or �1; 3�. Moreover, the composition

H1�fM��n��k��!~j1
�n�
K �n�2nÿ1�k�!

reg

H0
dR�Spec�k
Q C�;R�nÿ 1��� � �sR�nÿ 1�s

ÿ ��
is given by mapping �x�n to ��nÿ 1�! �Pmod

n �s�x��s�.

Finally, we shall need the following result of Borel [1], to which we shall refer as
Borel's theorem. Namely, for a number ¢eld k the regulator

K �n�2nÿ1�k� ! H0
D�Spec �k� 
Q C;R�n��� � �sR�nÿ 1�s

ÿ ��
is an injection for nX 2, and induces an isomorphism

K �n�2nÿ1�k� 
Q R �! �sR�nÿ 1�s
ÿ ��

: �2:6�
Heres s runs through all embeddings of k into C as in Theorem 2.3 above.

We shall want the following theorem for the computation of the boundary map
under localization.

THEOREM 2.4. We have a commutative diagram (up to sign)

and the image of
P

j cj �fj�n 
 gj in K �n�1�n �Xn; n� under the map

j2
�n�1� : H2�M��n�1��F �� ! K �n�1�n �Xn; n� � K �n�1�2n �F �

gets mapped to �Pj cj�fj�n [ gj in K �n�1�n�1 �Xnÿ1
loc ; nÿ1�, up to terms in

�1� I�� ~[K �n�n �Xnÿ2
loc ; nÿ2�.
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Proof. The proof is rather analogous to the proof of [8, Proposition 3.2].

For computing the image under the regulator map we use integration. Because we
shall be integrating forms on non-compact varieties, we need some results about the
dependence of the result on the explicit representative chosen for a particular class.
This problem was dealt with in Proposition 4.6 of [8], which we now proceed to
recall.

LetY be an algebraic variety of dimension nwith compacti¢cation Y such that the
complement of Y is given by D; a divisor with normal crossings. Suppose moreover
that there is another divisor D0 on Y such that the union of D and D0 is a divisor
with normal crossings. We want to say something about the behaviour close to
D of forms on Y that vanish on Y \D0: Suppose that locally in a compact subset
of Y ,D is given by

Qk
i�1 xi � 0: Let ri � jxij; yi � arg xi:We will consider differential

forms b onY that satisfy the following condition on the compact subset of the chosen
neighbourhood of D.

b vanishes on D0 \ Y and can be written as sums
of products of log ri; d log ri; dyi; bounded C1-
functions on Y and the restriction of C1-forms
on Y to Y :

�2:7�

PROPOSITION 2.5. Let Y ;Y ;D and D0 be as above. Suppose that b1 and b2 are two
closed n-forms on Y as in (2.7) that represent the same class in relative de Rham
cohomology Hn�Y ;D0;R�j��: Let o be a holomorphic or anti-holomorphic n-form
on Y ; possibly with logarithmic poles along D0. Then

Z
Y
b1 ^ o �

Z
Y
b2 ^ o:

We conclude this section with some remarks on orientations and standard
integrals, to be used throughout the paper.

We shall always use the following orientations for the integrals involved: with
t � x� iy the standard parameter on A1 � P1, P1 or open parts have orientation
given by dx ^ dy � ÿ12i dt ^ dt. On �P1�n or open parts, we use the orientation given
by ÿ1

2i dt1 ^ dt1 ^ � � � ^ ÿ12i dtn ^ dtn: On Xn
S1 � Xn � S1 we take the product

orientation of the above on Xn with the standard counterclockwise orientation onS1.
Using Stokes' theorem and the fact that d log��tÿ c�=�tÿ 1�� ^ d log t � 0 for

c 2 C, we ¢nd

Z
X

di arg
tÿ c
tÿ 1

^ d log jtj � ÿ
Z
X

d log
tÿ f
tÿ 1

���� ���� ^ di arg t � 2pi log jcj
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and Z
X

di arg
tÿ f
tÿ 1

� �
^ di arg t � ÿ

Z
X

d log
tÿ f
tÿ 1

���� ���� ^ d log jtj � 0;

henceZ
X

d log
tÿ c
tÿ 1

� �
^ d log �t �

Z
X

d log
tÿ c
tÿ 1

��� ���2 ^ d log �t � 4pi log jcj:

We also have the standard integral for r1 a bump function around t � 0, i.e., r1 � 1
around t � 0 and r1 � 0 off t � 0,Z

X
d�r1�t�di arg t� � ÿ2pi:

Finally, we shall need the following integral. Let h be a function on P1 with
h�1� ÿ h�0� � 1. ThenZ

X
dh�t� ^ di arg t � 2pi:

3. The Regulator Integral

Let C be a smooth, proper, geometrically ireducible curve over the number ¢eld k,
and let g be its genus. Then Can, the associated complex manifold to C 
Q C, is
a disjoint union of �k : Q� complete algebraic curves Ct over C of genus g, indexed
by the embeddings of k intoC. We ¢x an orientation on Can such that the involution
s given by complex conjugation on C in C 
Q C reverses the orientation. We also
introduce the number r de¢ned by r � �k:Q� � g.

The goal of this section is to describe the regulator on the image of j2
�n�1� inside

H1
dR�F ;R�n���. We begin with some remarks on the cohomology groups of Can.
For t : k! C an embedding, denoteCt the curve obtained from C by base change

from k to C via t.
If t is a real embedding, then s acts on Ct, reversing its orientation. H1

dR�Ct;C� is
spanned (as a C-vector space) by the holomorphic and the anti-holomorphic forms
on Ct. Then the R-vector space of holomorphic 1-forms o on Ct such that
o � s � o is given by H0�CR;O� � Rg where CR is the base change from k to
R via t. On the other hand, by projecting

H1
dR�Ct;C� � H0�CR;O� �H0�CR;O� � iH0�CR;O� � iH0�CR;O�

onto the R�n� and � parts one checks easily that

H1
dR�Ct;R�n��� � pnH0�CR;O� � Rg

because the forms remain independent after projection onto the real or imaginary
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parts. We get a pairingH1
dR�Ct;R�n��� �H0�CR;O� ! R�1� bymapping �pnc;j� toZ

Ct

pnc ^ j � 1
2

Z
Ct

c ^ j:

This pairing takes values in R�1� because s reverses the orientation, and c � s � c
and o � s � o. It is non-degenerate because of the duality between holomorphic
and anti-holomorphic forms on Ct.

If t is not a real embedding, s acts on Ct
`

C�t. Then the holomorphic 1-forms o
such that o � s � o are given by the pairs �o;o � s� with o 2 H0�Ct;O� � Cg.
And H1

dR�Ct
`

C�t;R�n��� is given by the pairs �c;c � s� with c 2 H1
dR�Ct;R�n��

which has R-dimension 2g. In this case we get a pairing
H1

dR�Ct
`

C�t;R�n��� �H0�Ct
`

C�t;O�� ! R�1� by mapping ��c;c � s�;
�o;o � s�� toZ

Ct

c ^ o�
Z
C�t

c � s ^ o � s � 2
Z
Ct

c ^ pn�1o:

It has values in R�1� for the same reasons as above. It is non-degenerate because the
pairing

H1
dR�Ct;R�n�� �H1

dR�Ct;R�n� 1�� ! H2
dR�Ct;R�1�� � R�1�

is non-degenerate, and the projectionH0�Ct;O� ! H1
dR�Ct;R�n� 1�� given by map-

ping o to pn�1o is an isomorphism.
We summarize those results in the following Remark.

Remark 3.1. H1
dR�C;R�n��� � Rr with r � �k:Q� � g. Moreover, the holomorphic

forms o on Can such that o � s � o form the dual of H1
dR�C;R�n��� under the

pairing

H1
dR�C;R�n��� � hoi ! R�1�

de¢ned by sending �c;o� to RC c ^ o.

We use this duality in Proposition 3.2 below in order to give the Beilinson regu-
lator in terms of integrals.

In the following formulae we use the notation� or � where we read either the top
or the bottom in all places.The involution s acts also onH1�C;Q�, so this space splits
into a � part and a ÿ part as well. From the pairing withH1�C;Q� one deduces that
both pieces have Q-dimension r, as H1�Q�� is perpendicular to H1�Q��. Let
fs1;�; . . . ; sr;�g be a basis of H1�C;Q��, and let fs�1;�; . . . ; s�r;�g in H1�C;Q�
be its dual base, so that

R
sm;�

s�k;� � dmk. Let T�k;l � �
R
sk;�

ol�, so
ol �

P
k�T�k;l s�k;� � Tÿk;l s

�
k;ÿ�. Write R��� for R�0� and R�ÿ� for R�1�, and similarly

for p�. As ol � ol � s, we get
R
sk;�

ol �
R
sk;�

ol � s �
R
s�sk;�� ol � �

R
sk;�

ol , and hence
T� has entries inR���. Therefore T�kl �

R
sk;�

p�ol . In particular, p�ol �
P

k T
�
k;ls
�
k;�

and pÿol �
P

k T
ÿ
k;l s
�
k;ÿ.
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PROPOSITION 3.2. Suppose the Beilinson regulator maps the elements a1; . . . ; ar in
K �n�1�2n �C� to c1; . . . ;cr in H1

dR�C;R�n���. Let o1; . . . ;or and T� be as above, and let
Rk;l �

R
C ck ^ ol . Then the Beilinson regulator of a1; . . . ; ar is given by

cn�1 � det�R�
�2pi�nr det�T��:

where we take ÿ for n even, and � for n odd.
Proof. In this proof, let us write� and � where we mean that we take the top for n

even, the bottom for n odd. Note that ck � s � �ck if ck 2 H1
dR�C;R�n���. There-

fore we can de¢ne the R�n�-valued matrix M by ck �
P

m Mk;ms�m�. Then by
de¢nition, cn�1 � �2pi�ÿnr det�M�. As s reverses the orientation, ol � s � ol and
ck � s � ck � �ÿ1�nck imply that

Rk;l �
Z
C
ck ^ ol � ÿ

Z
C
ck � s ^ ol � s � ÿ

Z
C
ck ^ ol � ÿRk;l :

Therefore Rk;l is purely imaginary, and

Rk;l � ÿ
Z
C
ck ^ p�ol

� ÿ
X
n

T�n;l

Z
C
ck ^ s�n;�

� ÿ
X
m;n

Mk;mT
�
n;l

Z
C
s�m;� ^ s�n;�

� ÿ
X
m;n

Mk;mAm;nT
�
n;l

with Am;n �
R
C s�m;� ^ s�n;�. As det�A� expresses the non^degeneracy of the pairing

H1�C;Q� �H1�C;Q� ! H2�C;Q�, it is an element of Q�. Hence taking
determinants we ¢nd that det�R� � det�M� det�T�� up to a factor in Q�. So we
get that the regulator cn�1 of a1; . . . ; ar is given by

cn�1 � det�R�
�2pi�nr det�T�� :

DEFINITION 3.3. If o is a holomorphic 1-form on Can such that o � s � o, we call
the map H1

dR�C;R�n��� ! R�1� given by c 7! R
C c ^ o the regulator integral

associated to o. We shall use the same terminology if we precede this with the regu-
lator map from K �n�1�2n �C� to H1

dR�C;R�n���.

The regulator integral has the advantage that it can be factored over larger groups
than just K �n�1�2n �C�:

PROPOSITION 3.4. Let o be a holomorphic 1-form on C. Then the regulator
integral K �n�1�2n �C� ! H1

dR�C;R�n��� ! R�1� associated to o extends naturally over

K-THEORY OF CURVES OVER NUMBER FIELDS 157

https://doi.org/10.1023/A:1026440915009 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026440915009


the maps

K �n�1�2n �C� ! K �n�1�2n �F � ! K �n�1�2n �F �=K �n�2nÿ1�k� [ F �Q:

Proof. Let b be a class in H1
dR�F ;R�n��� � lim !

U�C H
1
dR�U;R�n���. Then using the

fact that H1
dR�U;C� can be computed using forms with logarithmic singularities,

one sees that b has a representative c as in (2.7), and we extend the map by mapping
b to

R
C c ^ o. Proposition 2.5 shows that this does not depend on our choice of c,

hence is well de¢ned.
As for the last map, note that the regulator of a [ f for a 2 K �n�2nÿ1�k� and f 2 F is

given by �0; c� [ �d log f ; log jf j� � �0; cdi arg f � in Deligne cohomology, hence
by di arg f in H1

dR. Then the regulator integral becomes
R
C cdi arg f ^ o �R

C cd log jf j ^ o � 0 as one easily checks using Stokes' theorem.

The rest of the section is devoted to rewriting the integrals occurring in Prop-
osition 3.2 on the image of H2�M��n�1��F ��. We shall in fact prove the following
Theorem.

THEOREM 3.5. Suppose the Beilinson^Soulë conjecture holds for F , so there is a
map Hp�M��n�1��F �� ! K �n�1�2n�2ÿp�F � as explained in Section 2. If

P
j cj �fj�n 
 gj is an

element of H2�M��n�1��F ��, then the regulator integral

H2�M��n�1��F �� ÿ!K �n�1�2n �F � ÿ!reg
H1

dR�F ;R�n��ÿÿÿÿÿÿ!
R
C
���^o

R�1�

is given by mapping �f �n 
 g to

�2n
Z
C

log jgj lognÿ1 jf jd log j1ÿ f j ^ o

For an element
P

j cj�fj�n 
 gj in H2�M��n�1��F ��, the total sum is the same if we map
�f �n 
 g to

�2n n
n� 1

Z
C

log jgj lognÿ2 jf j y�1ÿ f ; f � ^ o; �3:1�

where y�f ; g� � log jf j d log jgj ÿ log jgjd log jf j. This last integral is zero on symbols
h�f �n � �ÿ1�n�1=f �ni 
 g, hence factors through the map H2�M��n�1��F �� !
H2�fM��n�1��F ��.

Remark 3.6. If the curve is an elliptic curve E, the integrals occurring in Theorem
3.5 can be rewritten using Fourier transformation. This gives expressions for the
regulator integral in terms of non-classical Eisenstein series (see e.g., [5, Theorem
3.4] for the case n � 2 and [3, Theorem 5.8] for arbitrary n). It seems that for
n � 2 those Eisenstein series were ¢rst considered by Deninger in [2].
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The rest of this section is devoted to the proof of Theorem 3.5. We ¢rst make the
isomorphism Hn�1

dR �Xn
C; n;R�n��� � H1

dR�C;R�n��� explicit. Namely, let h be a
real-valued C1-function on P1

C such that h�1� ÿ h�0� � 1. Then the isomorphism

Hnÿ1
dR �Y ;R�m�� �! Hn

dR�XY ; ;R�m��
is given by sending c to c ^ dh, and similarly for the � parts if h is symmetric with
respect to complex conjugation on P1

C. AsZ
X

dh ^ d log t � ÿ
Z
X

dh ^ di arg t � ÿ2pi;

this means that for c in H1
dR�C;C�,

�
Z
C
c ^ o

� �2pi�ÿn
Z
Xn

C

c ^ dh�t1� ^ � � � ^ dh�tn� ^ d log t1 ^ � � � ^ d log tn ^ o

� �ÿ2pi�ÿn
Z
Xn

C

c ^ dh�t1� ^ � � � ^ dh�tn� ^ di arg t1 ^ � � � ^ di arg tn ^ o:

Now let a �Pj cj�fj�n 
 gj be an element of H2�M��n�1��F ��, with image c in
H1

dR�F ;R�n��� under the composition

H2�M��n�1��F �� ! K �n�1�2n �F � ! H1
dR�F ;R�n���:

From Theorem 2.4 we have a commutative diagram

and the image of a �Pj cj�fj�n 
 gj under j2
�n�1� in K �n�1�n �Xn; n � under the maps in

this diagram will be mapped to a0 � �Pj cj�fj �n [ gj in K �n�1�n�1 �Xnÿ1
loc ; nÿ1�, modulo

�1� I�� ~[K �n�n �Xnÿ2
loc ; nÿ2�. One has the corresponding diagram in Deligne

cohomology, which is equal to the de Rham cohomology in all cases. Hence we
have reg�a� in Hn�1

dR �Xn; n;R�n���, corresponding to c0 in
Hn

dR�Xnÿ1; nÿ1;R�n���as well as c in H1
dR�F ;R�n��� under the relativity

isomorphisms. c0 in turn maps to reg�a0� in Hn
dR�Xnÿ1

loc ; nÿ1;R�n���. Therefore,
if o is any holomorphic 1-form on C, and Y � d log t1 ^ � � � ^ d log tnÿ1, we want
to compute

�
Z
C
c ^ o � 1

�2pi�nÿ1
Z
Xnÿ1�C

c0 ^Y ^ o � 1
�2pi�nÿ1

Z
Z

reg�a0� ^Y ^ o
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where Z is a localization of Xnÿ1
C and reg�a0� is a form satisfying (2.7) on a suitable

compacti¢cation of Z, Z. We can obtain Z from �P1�nÿ1 � C by repeatingly blowing
up, obtaining a Z which has a Zariski open part isomorphic to Xnÿ1

U ;loc for some
Zariski open U of C. To see that the last equality sign is true, we have to check
that the conditions of Proposition 2.5 apply, i.e., that on Z reg�a0� can be written
as in (2.7) and that (the pullback to Z of) d log t1 ^ � � � ^ d log tnÿ1 ^ o has poles
of order one along the strict transform of nÿ1 and no poles elsewhere. This
one easily checks explicitly, cf. the computations on page 608 of [6].

Because we can take Z to be a blowup of �P1�nÿ1C , which is isomorphic to �P1�nÿ1U
for some Zariski open part U of C, we can compute simply on Xnÿ1

U;loc without chang-
ing the value of the integral.

As the regulator of �f �n [ g is given by the product

�on; En� [ �d log g; log jgj�
� �on ^ d log g; En ^ d i arg g� �ÿ1�n log jgjpnon�;

we ¢nd that the regulator integral is given by

�2pi�1ÿn
X
j

cj

Z
Z
En�fj� ^ d i arg gj � �ÿ1�n log jgjjpnon�fj�
ÿ � ^Y ^ o;

which equals

�2pi�1ÿn
X
j

cj

Z
Z
En�fj� ^ d log jgjj � �ÿ1�n log jgjjpnon�fj�
ÿ � ^Y ^ o

as d�i arg gÿ log jgj� ^ o�f � � 0 on Xnÿ1 � C. Adding

0 � �ÿ1�n�2pi�1ÿn
X
j

cj

Z
Z

d�log jgjEn�fj�� ^Y ^ o

we obtain

�ÿ1�n�2pi�1ÿn
X
j

cj

Z
Z

log jgjjon�fj� ^Y ^ o

Remembering that

o � on�f � � �ÿ1�nÿ1d log
t1 ÿ f
t1 ÿ 1

^ � � � ^ d log
tnÿ1 ÿ f
tnÿ1 ÿ 1

^ d log�1ÿ f �

160 ROB DE JEU

https://doi.org/10.1023/A:1026440915009 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026440915009


we can compute each of the terms in this sum as

� �2pi�1ÿn
Z
C

Z
X

d log
tÿ fj
tÿ 1

^ d log t
� �nÿ1

log jgjjd log�1ÿ fj� ^ o

� �2nÿ1
Z
C

log jgjj lognÿ1 jfjjd log�1ÿ fj� ^ o

� �2n
Z
C

log jgjj lognÿ1 jfjjd log j1ÿ fjj ^ o

because
R
X log tÿf

tÿ1 ^ d log t � 2pi log j f j 2 and d log �1ÿ f � ^ o � 0 on C. We can
rewrite the resulting total sum

�
X
j

cj2n
Z
C

log jgjj lognÿ1 jfjjd log j1ÿ fjj ^ o

in terms ofZ
C

log jgj lognÿ2 jf j log j1ÿ f jd log jf j ÿ log jf jd log j1ÿ f j� � ^ o

by adding

ÿ
X
j

cj
1

n� 1

Z
C

d log jgjj lognÿ1 jfjj log j1ÿ fjj
ÿ � ^ o

and X
j

cj
1

n� 1

Z
C

lognÿ2 jfjj log j1ÿ fjj y�fj; gj� ^ o:

Note that this does not change the value of the integral, as the ¢rst term vanishes by
Stokes' theorem, and the second because we take sums of terms corresponding to an
element in H2�M��n�1��F ��, and the form vanishes identically after summing up the
terms. This yields the integral given in (3.1). One checks immediately by writing
it out that each of the terms vanishes on ��f �n � �ÿ1�n�1=f �n� 
 g.

Remark 3.7. For n� 1 � 3 or 4, i.e., the cases K �3�4 �F � and K �4�6 �F �, we get the
results of Theorem 3.5 without any assumptions. If n� 1 � 3, we have the map
~j2
�3� : H2�fM��3��F �� � H2�M��3��F �� ! K �3�4 �F � without any assumptions, see Section

2, so the Theorem gives the formulae for the regulator on the image of ~j2
�3�. For

n� 1 � 4, the map j2
�4� from H2�fM��4��F �� to K �4�6 �F �=N (with N generated by

K �2�4 �F � [ K �2�2 �F �, see Section 2) exists without assumptions, and the regulator
factors through this as the regulator map to Deligne cohomology respects the prod-
uct structure, and vanishes on K �2�4 �F �. Hence it factors through this quotient to give
us

H2�fM��4��F �� ! H2
D�F ;R�3��� � H1

dR�F ;R�2���
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with the formulae for the regulator integrals as given in Theorem 3.5. Note also that
in this case the map H2�M��4��F �� ! H2�fM��4��F �� is a surjection, which follows from
the acyclicity of the complex (2.2) in degrees 3 and 4 as mentioned just after (2.2).

4. The Boundary Under Localization

If x is a closed point of the curve C, K2n�k�x�� is torsion as k�x� is a number ¢eld.
Hence the localization sequence for the K-theory of the curve takes the form

0! K �n�1�2n �C� ! K �n�1�2n �F � !
a

x2C�1�
K �n�2nÿ1�k�x�� ! � � � :

This section is devoted to the computation of the boundary map on the image in
K �n�1�2n �F � of H2�fM��n�1��F �� or H2�M��n�1��F �� in this localization sequence for
n � 3. The method chosen probably works for all nX 2 (with the case n � 2 already
done in [8]), but at some stage the combinatorics become too complicated in general
and we restrict ourselves to the case n � 3.

Recall that in [8, Corollary 5.4] it was proved that we have a commutative diagram
(up to sign and up to @�K �2�3 �k� [ F �Q� in the lower right hand corner)

Note that the lower horizontal arrow is an isomorphism by Theorem 2.3. For
generalizing this to n � 3, we need some preliminary results. The following result
was proved in [8] for n � 2.

PROPOSITION 4.1. There is a map

d : fM��n��F � ! a
x2C�1�

fM��nÿ1��k�x���1�
given by

dx��f �nÿl 
 g1 ^ � � � ^ gl� � spnÿl;x��f �nÿl� 
 @l;x�g1 ^ � � � ^ gl�

for l � 1; . . . ; nÿ 1, and

dx�g1 ^ � � � ^ gn� � ÿ@n;x�g1 ^ . . . ^ gn�

for l � n, where spnÿl;x��f �nÿl� � �f �x��nÿl if f �x� 6� 0 or 1, 0 otherwise, and @l;x the
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unique map from
Vl F �Q to

Vlÿ1 k�x��Q determined by

px ^ u1 ^ � � � ^ ulÿ1 7! u1�x� ^ � � � ^ ulÿ1�x�

u1 ^ � � � ^ ul 7! 0

if all ui are units at x and px is a uniformizer at x. This gives rise to maps

d : Hm�fM��n��F �� ! a
x2C�1�

Hmÿ1�fM��nÿ1��k�x���:

Remark 4.2. We get induced maps

d : M��n��F � !
a

x2C�1�
fM��nÿ1��k�x���1�

and

d : Hm�M��n��F �� !
a

x2C�1�
Hmÿ1�fM��nÿ1��k�x���

by composing the natural projection M��n��F � ! fM��n��F � with d.
Proof. Let x 2 C be a closed point in our curve over the number ¢eld k. Fix a

uniformizer px around x. We shall in fact construct the map
spn;x : M�n��F � ! eM�n��k�x��, and then observe that it factors through the projection
M�n��F � ! eM�n��F �.

Assume we have a map spnÿ1;x : M�nÿ1��F � ! eM�nÿ1��k�x�� given by mapping �f �nÿ1
to � f �x��nÿ1 if f �x� 6� 0 or 1, and 0 otherwise. This was done for nÿ 1 � 2 in the
proof of [8, Proposition 5.1], and is the case where one has to work witheM�nÿ1��k�x�� rather than M�nÿ1��k�x��. We then have a diagram

where Q�F �� is the free Q-vector space on elements of F �, the vertical maps are
f 7! spn;x��f �x��n� and �f �n 
 g 7! spnÿ1;x��f �nÿ1� 
 g�x�, with g�x� � gpÿordx�g�

x jx, px
a uniformizer at x. It is obvious that the diagram commutes. To show that it factors
through M�n��F � observe that if a goes to zero in M�n��F � then spn;x�a� de¢nes an
element in K �n�2nÿ1�k�x��. As k�x� is a number ¢eld, we can verify that the element
is zero by computing the regulator map, given by Theorem 2.3. To this end, consider
all embeddings of k�x� into C, i.e., tensor the curve C over Q with C. Then we have
that Pmod

n �a� is constant, see Lemma 2.2. Specializing to a point y where it can
be done directly (which means that y should lie in some Zariski open part, see Section
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2), we ¢nd 0, so the regulator vanishes. Then we use that the regulator does not
change if we replace y with x, and continuity, to see that
Pmod
n �spn;x�a�� � Pmod

n �spn;y�a�� � 0 because Pmod
n is continuous at 0 and 1 and

has value 0. Hence spn;x�a� � 0 in eM�n��k�x��.
This map gives us the map spn;x : M�n��F � ! eM�n��k�x��, obviously factoring

through eM�n��F �. It is then easy to check that we get maps of complexes

M��n��F �ÿ!fM��n��F � ÿ!dx fM��nÿ1��k�x���1�
with dx given by mapping � f �nÿl 
 g1 ^ � � � ^ gl to spnÿl;x�� f �x��nÿl� 
 @l;x for
l � 1; . . . ; nÿ 1 and ÿ@n;x�g1 ^ . . . ^ gn� for l � n, with @l;x the unique map fromVl F �Q to

Vlÿ1 k�x��Q given by

px ^ u1 ^ � � � ^ ulÿ1 7! u1�x� ^ � � � ^ ulÿ1�x�

u1 ^ � � � ^ ul 7! 0

if all ui are units at x. From this we get maps

dx : Hm�M��n��F �� ! Hmÿ1�fM��nÿ1��k�x���
as claimed in the proposition.

We can now introduce the complexesM��n�1��C� and fM��n�1��C�, by de¢ning them
to be the total complexes of the double complexes

M�n�1��F � !d M�n��F � 
 F �Q !d M�nÿ1��F � 

V2 F �Q !d � � �

# d # d #

0 ! ` eM�n��k�x�� !d ` eM�nÿ1��k�x�� 
 k�x��Q !d � � �
and

eM�n�1��F � !d eM�n��F � 
 F �Q !d eM�nÿ1��F � 
V2 F �Q !d � � �
# d # d #

0 ! ` eM�n��k�x�� !d ` eM�nÿ1��k�x�� 
 k�x��Q !d � � �
where both coboundaries have degree 1 and the total complexes are cohomological
complexes with M��n�1��F � and eM��n�1��F � in degree 1. There are obvious inclusions
of H2�M��n�1��C�� into H2�M��n�1��F �� and of H2�fM��n�1��C�� into H2�fM��n�1��F ��,
so that the maps j2

�n�1� resp. ~j2
�n�1� obviously extend to maps on the cohomology

of those complexes.

COROLLARY 4.3. Under the map j2
�3�, H2�fM��3��C�� is mapped to

K �3�4 �C� � K �2�3 �k� [ F �Q inside K �3�4 �F �.
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Remark 4.4. The exact sequence

0! K �3�4 �C� ! K �3�4 �C� � K �2�3 �k� [ F �Q ! @ K �2�3 �k� [ F �Q
� �

is split. Namely, because K �2�3 �k� [ k� � 0 as K �3�4 �k� � 0 (remember that k is a
number ¢eld), the cup product factors through K �2�3 �k� 
 F �Q=k

�
Q. The boundary

map factors through this as well, and is hence given by
@a [ f � ÿ@f [ a � ÿdiv�f � [ a. Because the divisor map is injective on F �Q=k

�
Q,

the boundary map is injective as well. The corresponding result holds forK �n�1�2n �C�
and K �n�2nÿ1�k� [ F �Q.

COROLLARY 4.5. j2
�3� : H2�M��3��C�� ! K �3�4 �C� � K �2�3 �k� [ F �Q can be lifted to a

map j2
�3� : H2�M��3��C�� ! K �3�4 �C� by changing j2

�3��a� with elements in K �2�3 �k� [ F �Q.

We now serve the main course in this section:

THEOREM 4.6. For n � 3, the diagram

commutes up to sign and up to @ K �3�5 �k� [ F �Q
� �

in the lower right hand corner. (Note
that the map j2

�4� exists without assumptions as explained in Section 2, and that
the lower isomorphism is part of Theorem 2.3.)

Remark 4.7. Note that from the localization sequence

0! K �2�4 �C� ! K �2�4 �F � !
a

K �1�3 �k�x��

we get an isomorphism K �2�4 �F � � K �2�4 �C� as K �1�3 �k�x�� � 0. Hence on
K �2�4 �F � [ K �2�2 �F �, @x is given by mapping a [ b to the cup product of a�x� with
the boundary at x of b, i.e., zero as a�x� 2 K �2�4 �k�x�� � 0 as k�x� is a number ¢eld.
(Of course that would be zero for any ¢eld for which the Beilinson^Soulë conjecture
holds.) So in fact

K �2�4 �F � [ K �2�2 �F � � K �4�6 �C� � K �4�6 �F �:
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COROLLARY 4.8. Under j2
�4�, H

2�U�4��C�� is mapped to

K �4�6 �C�=K �4�2 �F � [ K �2�2 �F � � K �3�5 �k� [ F �Q
inside K �4�6 �F �=K �2�4 �F � [ K �2�2 �F �.

COROLLARY 4.9. Using Remark 4.4, the map

j2
�4� : H2�M��4��C�� ! K �4�6 �C�=K �2�2 �F � [ K �2�2 �F � � K �3�5 �k� [ F �Q

in Corollary 4.8 can be lifted to a map

j2
�4� : H2�M��4��C�� ! K �4�6 �C�=K �2�4 �F � [ K �2�2 �F �

by changing j2
�4��a� with elements in K �3�5 �k� [ F �Q.

Large parts of the proof of Theorem 4.6 work for general n, and we give most of it
in this context. However, although the method employed probably works for all n,
the combinatorics at a certain stage get rather out of hand, so we restrict our atten-
tion to n � 3 at some point.

Starting with a �Pj cj�fj�n 
 gj in H2�M��n�1��F �� we begin with creating an
element a1 in K �n�1�n�1 �Xnÿ1

F ;loc;
nÿ1 �. Let fA1; . . . ;Alg in F � be a basis of

hfj; gji � F �Q obtained by ¢rst choosing a basis of hfji among the fj's and then
extending to a basis of hfj; gji. Write

fj �
Y
k

Askj
k and gj �

Y
k

Atkj
k �4:1�

in F �Q. Let

Fj�t� � tÿ fj
tÿ 1

Y tÿ Ak

tÿ 1

� �ÿskj
2 �1� I��:

Let J � �i1i2 � � � ik� with all ij 2 f1; . . . ; nÿ 1g be a sequence of distinct elements,
and let Jord � �j1j2 � � � jk� be the ordered version of J, i.e., J and Jord have the same
elements, and j1 < j2 < � � � < jk. We shall write �ÿ1�J for the sign of the permutation
i1
j1
���
���

ik
jk

� �
, and �ÿ1� j2J to mean �ÿ1�l if j � il . If J1 and J2 are disjoint tuples, we write

J1J2 for their juxtaposition. If j 2 J, write J n fjg for the �jJj ÿ 1�-tuple obtained
by deleting j from J. Note that if 1; . . . ; nÿ 1 are all in J then, by adding j into
the j-th position of J n fjg, and moving it up front and then to its position in J,
we ¢nd

�ÿ1�Jnfjg � �ÿ1�jÿ1�ÿ1��j�Jnfjg � �ÿ1�j�ÿ1�j2J �ÿ1�J : �4:2�

For a set I � f1; . . . ; nÿ 1g we identify I with the ordered tuple it de¢nes by order-
ing its elements, and similarly for its complement Ic � f1; . . . ; nÿ 1g n I .
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If I � fi1 . . . ; ikg and Ic � fj1; . . . ; jnÿ1ÿkg are as above, let FI
j � Fj�ti1� [ � � � [ Fj�tik �

and �fj�IcjIcj�1 � �fj�nÿk seen as element of K �nÿk�nÿk �Xnÿ1ÿk
loc ; nÿ1ÿk � with coordinates

tj1 ; . . . ; tjnÿ1ÿk . Then we let

dA
i F

I
j [ �fj�Icnÿ1ÿk [ gj
� contribution to the boundary at ti � Ak's coming from the Fj

� �ÿ1�i2IIc
X
k

skjF
Infig
j [ �fj�IcjIcj�1 [ gj jti�Ak

(noting that �ÿ1i2IIc � if i 2 I) if i 2 I and zero otherwise. Similarly, we de¢ne

d
f
i F

I
j [ �fj�IcjIcj�1 [ gj
� contribution to the boundary at ti � fj's coming from the Fj

� ÿ�ÿ1�i2IIcF Infig
j [ �fj�IcjIcj�1 [ gj jti�fj

if i 2 I and zero otherwise, and

d� �i F
I
j [ �fj�IcjIcj�1 [ gj
� contribution to the boundary at ti � fj's coming from the �f �jIcj
� �ÿ1�i2IIcF I

j [ �fj�IcnfigjIcnfigj�1 [ gj jti�fj ;
(because �ÿ1�jI j�ÿ1�i2Ic � �ÿ1�i2IIc if i 2 Ic) if i=2I and zero otherwise. Note that
di � dA

i � d
f
i � d� �i . In the commutative diagram

we know that j2
�n�1� maps

P
j cj�fj�n 
 gj to �Pj cj�fj �n [ gj (modulo

�1� I�� ~[K �n�n �Xnÿ2
loc ; nÿ2 �) in K �n�1�n�1 �Xnÿ1

loc ; nÿ1�, see Theorem 2.4. The complex
(from a spectral sequence analogous to (2.1))

K �n�1�n�1 �Xnÿ1
loc ; nÿ1� !

a
K �n�n �Xnÿ2

loc ; nÿ2� ! � � � ! K �2�2 �F �
has the acyclic subcomplex

�1� I�� ~[K �n�n �Xnÿ2
loc ; nÿ2� !

d�� � �� �
a
�1� I�� ~[K �nÿ1�nÿ1 �Xnÿ3

loc ; nÿ3� ! � � �
� � � ! d�� � �� �

a
�1� I�� ~[K �2�2 �F � ! d�� � ��

with quotient complex

K �n�1�n�1 �Xnÿ1
loc ; nÿ1�

�1� I�� ~[K �n�n �Xnÿ2
loc ; nÿ2�

! K �n�n �Xnÿ2
loc ; nÿ2�

�1� I�� ~[K �nÿ1�nÿ1 �Xnÿ3
loc ; nÿ3�


F �Q! . . . �4:3�
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(The proof that the subcomplex is acyclic is completely analogous to the proof of
Lemma 3.7 in [7] which is based on the fact that the subcomplex is closed under
multiplication by �1� I�� and every element in the subcomplex contains at least
one factor in �1� I��, see also [7, Remark 3.10].) We know that
a �Pj cj�fj �n 
 gj is mapped to zero under the map in (4.3), and want to lift it back
(uniquely because of the acyclicity of the subcomplex) to a1 in the kernel of
K �n�1�n�1 �Xnÿ1

loc ; nÿ1� !`
K �n�n �Xnÿ2

loc ; nÿ2�. Note that this lift is the restriction to
K �n�1�n�1 �Xnÿ1

loc ; nÿ1� of the image under j2
�n�1� in K �n�1�n�1 �Xnÿ1

loc ; nÿ1�. The same proof
works over some suitable Zariski open part of C.

PROPOSITION 4.10. If

X
j

cj�fj�n [ gj 2
K �nÿ1�n�1 �Xnÿ1

loc ; nÿ1�
�1� I�� ~[K �n�n �Xnÿ2

loc ; nÿ2�

has trivial boundary
P

j cj�fj �nÿ1 [ gj 
 fj in

K �n�n �Xnÿ2
loc ; nÿ2�

�1� I�� ~[K �nÿ1�nÿ1 �Xnÿ3
loc ; nÿ3�


 F �Q

(resp. K �2�2 �F � 
 F �Q for n � 2) then

a1 �
X

I�f1;...;nÿ1g
�ÿ1�IIc

X
j

cjF I
j [ �fj�IcnÿjI j [ gj

in K �n�1�n�1 �Xnÿ1
loc ; nÿ1� has trivial boundary in`K �n�n �Xnÿ2

loc ; nÿ2�. Here the sum is over
all subsets I of f1; . . . ; nÿ 1g seen as tuples in ascending order.

Proof. The proof will be by induction on n. We need the following lemma.

LEMMA 4.11. With fj �
Q

k A
skj
k as before,

X
j

cjskj�fj�nÿ1 [ gj � 0 in
K �n�n �Xnÿ2

loc ; nÿ2�
�1� I�� ~[K �nÿ1�nÿ1 �Xnÿ3

loc ; nÿ3�

(resp. K �2�2 �F � 
 F �Q for n � 2).
Proof. Write the boundary in

K �n�n �Xnÿ2
loc ; nÿ2�

�1� I�� ~[K �nÿ1�nÿ1 �Xnÿ3
loc ; nÿ3�


 F �Q

in terms of � � � 
 Ak's, and collect terms, remembering that the Ak's form a basis of
hfj; gji � F �Q, so they are independent in F �Q.

We now compute the boundary of a1, doing it for all ti. For n � 2 one checks easily
that a1 has boundary

P
j;k cjskj�1ÿ fj� [ gjjt�Ak , which is zero as one sees by writing
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out the boundary of
P

j cj �fj�2 [ gj in terms of our chosen basis for hfj; gji � F �Q. For
the higher n's, as di � dA

i � d
f
i � d� �i , we get three contributions. We start with

the dA
i -component. We ¢ndX
I�f1;...;nÿ1g

i2I

�ÿ1�i2IIc �ÿ1�IIc
X
j;k

cjskjF Infig [ �fj �IcjIcj�1 [ gj jti�Ak

� �ÿ1�i
X

J�f1;...;î;...;nÿ1g
�ÿ1�JJc

X
j;k

cjskjFJ
j [ �fj�JcjJcj�1 [ gj jti�Ak

by letting J � I n fig, and taking Jc in f1; . . . ; î; . . . ; nÿ 1g, and using (4.2). By
induction on n and Lemma 4.11, this equals zero.

For the contribution from d
f
i we get

ÿ
X

I�f1;...;nÿ1g
i2I

�ÿ1�i2IIc �ÿ1�IIc
X
j

cjF Infig [ �fj�IcnfigjIcnfigj�1 [ gj jti�fj

� ÿ�ÿ1�i
X

J�f1;...;î;...;nÿ1g
�ÿ1�JJc

X
j

cjFJ
j [ �fj�JcjJcj�1 [ gj jti�Ak

again by letting J � I n fig, and taking Jc in f1; . . . ; î; . . . ; nÿ 1g, and using (4.2).
For d� �i we get a contributionX

I�f1;...;nÿ1g
i=2I

�ÿ1�i2IIc �ÿ1�IIc
X
j

cjF I [ �fj�IcnfigjIcnfigj�1 [ gj jti�fj

� �ÿ1�i
X

J�f1;...;î;...;nÿ1g
�ÿ1�JJc

X
j

cjF J [ �fj�JcjJcj�1 [ gj jti�fj

with J � I � f1; . . . ; î; . . . ; nÿ 1g, and taking Jc in f1; . . . ; î; . . . ; nÿ 1g as before,
and using (4.2) again. Obviously, the contributions of d

f
i and d� �i cancel.

Because k�x� is a number ¢eld and the regulator is injective (up to torsion) on its
K-theory, we can compute the boundary at the level of Deligne cohomology, so
we now turn towards the regulator level. Consider the following commutative dia-
gram with horizontal maps being the regulators (into de Rham cohomology as
it is equal to the Deligne cohomology in all cases considered).
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We shall determine the regulator of a1 in Hn
dR�Xnÿ1

U;loc;
nÿ1;R�n���and then lift it

back to Hn
dR�Xnÿ1

U ; nÿ1 ;R�n���. We begin with ¢nding the indeterminacy in the
lift. In order to simplify notation, write Xloc forXU ;loc � XU nft � fjg with U a suit-
able Zariski open part as before, Hp

dR�Xq
loc; s� for Hp

dR�Xq
loc;

q ;R�s��, and consider
the spectral sequence

..

. ..
. ..

.

Hn
dR�Xnÿ1

loc ; n� `
Hnÿ1

dR �Xnÿ2
loc ; nÿ 1� `

Hnÿ2
dR �Xnÿ3

loc ; nÿ 2� � � �
Hnÿ1

dR �Xnÿ1
loc ; n� `

Hnÿ2
dR �Xnÿ2

loc ; nÿ 1� `
Hnÿ3

dR �Xnÿ3
loc ; nÿ 2� � � �

Hnÿ2
dR �Xnÿ1

loc ; n� `
Hnÿ3

dR �Xnÿ2
loc ; nÿ 1� `

Hnÿ4
dR �Xnÿ3

loc ; nÿ 2� � � �

..

. ..
. ..

.

�4:4�

converging to H�dR�Xnÿ1;R�n��.

LEMMA 4.12. Hn
dR�Xk

U;loc;
k� � 0 if n < k.

Proof. For k � 0 this is obvious. For kX 1 we have a spectral sequence (with
notation as in (4.4))

..

. ..
. ..

.

Hn
dR�Xk

loc; j�
`

Hnÿ1
dR �Xkÿ1

loc ; j ÿ 1� `
Hnÿ2

dR �Xkÿ2
loc ; j ÿ 2� � � �

Hnÿ1
dR �Xk

loc; j�
`

Hnÿ2
dR �Xkÿ1

loc ; j ÿ 1� `
Hnÿ3

dR �Xkÿ2
loc ; j ÿ 2� � � �

Hnÿ2
dR �Xk

loc; j�
`

Hnÿ3
dR �Xkÿ1

loc ; j ÿ 1� `
Hnÿ2

dR �Xkÿ2
loc ; j ÿ 2� � � �

..

. ..
. ..

.

converging to H�dR�Xk
U ; k ;R�j��. We see that the only contributions to

Hn
dR�Xk

U ; k;R�j�� will come from Hnÿ2p
dR �Xkÿp

U ;loc;
kÿp �'s, which are zero by

induction for pX 1. The boundaries leaving Hn
dR�Xk

U;loc;
j� land in

Hnÿ2p�1
dR �Xkÿp

U;loc;
kÿp;R�j ÿ p��'s for pX 1, which are also zero by induction. There-

fore we get isomorphisms

Hn
dR�Xk

U;loc;
k;R�j�� � Hn

dR�Xk
U ; k ;R�j�� � Hnÿk

dR �U;R�j�� � 0:

Lemma 4.12 shows that in (4.4) there are only two terms contributing to
Hn

dR�Xnÿ1; nÿ1 ;R�n��, so we have a short exact sequence

0! E�2 ! Hn
dR�Xnÿ1; nÿ1;R�n��� ! E�3 ! 0

with E�3 the � part of the E1 � E3 term at the position in the spectral sequence of
Hn

dR�Xnÿ1
U;loc;

nÿ1 ;R�n��, and E�2 the � part of the E1 � E2 term at the`
Hnÿ2

dR �Xnÿ2
U;loc;

nÿ2 ;R�nÿ 1�� position. Because Hn
dR�Xnÿ1; nÿ1 ;R�n��� is alter-
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nating for the action of Snÿ1 (acting on everything by permuting the coordinates), E�2
and E�3 are alternating as well. As we are looking at the regulator of an element
coming from Xnÿ1

U , it of course survives in the spectral sequence to E1 and we
can consider its projection in E�3 . We move on to determining the E2-term. For this
we introduce

Rc � d i arg
Y
j

tÿ fj
tÿ 1

� �nj

such that
Y
j

fj 2 k�
* +

R

inside H1
dR�XU;loc; ;R�1���. Note that an element in Rc is determined completely

by its residue at the tÿ fj's.

LEMMA 4.13. The map

H0
dR�U;R�0��jt�f ! H2

dR�XU ; ;R�1�� � H1
dR�U;R�1��

maps 1 to �d i arg f .
Proof. Consider the situation U � Gm and f � S (S the coordinate on Gm). We

then have the exact sequence in relative de Rham cohomology

� � � ! H0�Xloc� ! H0�U��2! H1�Xloc; � ! H1�Xloc� ! H1�U��2! � � �

As H1�Xloc� � hdi arg�tÿ S�=�tÿ 1�iR � hdi argSiR, the last map in the above
sequence is injective. From the corresponding sequence with X instead of Xloc

one then gets that

H1�X ; � � H1�Xloc; �

as H0�Xloc� � H0�X �. Consider the localization sequence

H1�X ; � �! H1�Xloc; � ! H0�U� ! H2�XU ; � ! H2�Xloc; �:

Note that H2�XU ;loc; � �! H2�XU;loc� because H2� � � 0. From the commutative
diagram

H2�XU ; � ÿÿÿÿ! H2�XU �????y
????y

H2�XU;loc; � ÿÿÿÿ!� H2�XU ;loc�

we see that the map H2�XU ; � ! H2�XU;loc; � is the zero map because
H2�XU � � H2�U� � 0. Hence H0�U� �! H2�XU ; � �! H1�U�. All this works with
cohomology with Z-coef¢cients, which gives the statement for Gm. By pulling back
to our original U via f we get the corresponding statement for f and U .
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LEMMA 4.14.

Hn�Xn
U;loc;

n;R�n��alt �
Mn
k�0

Rk
c [Hnÿk�Xnÿk

k ; nÿk;R�nÿ k��
 !alt

Proof. For n � 0 this is obvious, or for n � 1 consider the localization sequence

0! H1
dR�XU ; ;R�1�� ! H1

dR�XU;loc; ;R�1�� !

a
j

H0
dR�U;R�0��jt�fj!

j
H2�XU ; ;R�1�� ! � � �

The map H0
dR�U;R�0��jt�fj ! H2

dR�XU ; ;R�1�� � H1
dR�U;R�1�� maps 1 to

�d i arg fj by Lemma 4.13. Hence
`

j aj is in the kernel of j if and only ifP
j ajd i arg fj� 0, which means that

`
j aj is the image of

P
j ajdi arg

tÿfj
tÿ1 in

H1
dR�XU;loc; ;R�1��. So if we show this is in Rc, we are done. We have an exact

sequence

0! k� ! F � ! fdi arg fjg
as one sees by considering the residue versus the divisor map. Tensoring with R we
get

0! k� 
Z R! F � 
Z R! hdi arg fjiR
from which it follows that

P
j ajdi arg

tÿfj
tÿ1 is in Rc, e.g., by considering aQ-basis ofR.

Because Rc injects into
`

j H
0
dR�U;R�0��jt�fj under the residue, we get the statement

for n � 1.
For nX 2, we use induction. We have a spectral sequence (with notation as in

(4.4))

..

. ..
. ..

.

Hn
dR�Xn

loc; n�alt `
Hnÿ1

dR �Xnÿ1
loc ; nÿ 1�ÿ �alt `

Hnÿ2
dR �Xnÿ2

loc ; nÿ 2�ÿ �alt

Hnÿ1
dR �Xn

loc; n�alt `
Hnÿ2

dR �Xnÿ1
loc ; nÿ 1�ÿ �alt `

Hnÿ3
dR �Xnÿ2

loc ; nÿ 2�ÿ �alt

Hnÿ2
dR �Xn

loc; n�alt `
Hnÿ3

dR �Xnÿ1
loc ; nÿ 1�ÿ �alt `

Hnÿ4
dR �Xnÿ2

loc ; nÿ 2�ÿ �alt

..

. ..
. ..

.

converging to H�dR�Xn
loc;

n;R�n��alt � H�dR�Xn
loc;

n;R�n��. Introducing the
notation Hk

loc for H
k
dR�Xk

U;loc;
k ;R�k��, by Lemma 4.12 everything below the line

Hn
loc !

a
Hnÿ1

loc

� �alt

!
a

Hnÿ2
loc

� �alt

! � � � �4:5�

vanishes. WriteHk forHk
dR�Xk

U;loc;
k ;R�k��alt. The subcomplex of the correspond-
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ing non-alternating row given by

�n
k�1 R

k
c

~[Hnÿk ! d�. . .� �
a
�nÿ1

k�1R
k
c

~[Hnÿ1ÿk !

d�. . .� �
a
�nÿ2

k�1R
k
c

~[Hnÿ2ÿk ! � � �
�4:6�

is acyclic as in the proof of Lemma 3.7 of [7] (because it is closed under multiplication
by elements inRc and the boundary is injective on Rc), so hence is its alternating part.
Taking the quotient of the complex in (4.5) and the alternating part of its subcomplex
(4.6) yields by induction on n the row

Hn
dR�Xn

U;loc;
n ;R�n��

�n
k�1Rk

c
~[Hnÿk

 !alt

!

Hnÿ1
dR �Xnÿ1

k ; nÿ1 ;R�nÿ 1�� 
Q F �Q=k
�
Q ! � � �

�4:7�

Obviously the last map is zero. Because the composition

Hnÿ1
dR �Xnÿ1

k ; nÿ1 ;R�nÿ 1�� 
Q F �Q=k
�
Q! Hn�1

dR �Xn
U ; n ;R�n��alt

� H1�U;R�n��

maps c ^ dh�t1� ^ � � � ^ dh�tnÿ1� 
 fj to cdi arg fj this is an injection. So the ¢rst map in
(4.7) must also be zero, giving an identi¢cation

Hn
dR�Xn

k ; n;R�k��alt � Hn
dR�Xn

U ; n ;R�k��alt

� Hn
dR�Xn

U ;loc;
n ;R�n��

�n
k�1Rk

c [Hnÿk

� �alt

from which the result is immediate because �n
k�1R

k
c [Hnÿk injects under the residue

into
`

Hnÿ1.

Remark 4.15. The proof shows that E2 � Ealt
2 is generated by the

Hnÿ2
dR �Xnÿ1

C ; nÿ1 ;R�nÿ 1��jti�fj . Hence by Lemma 4.13, a lift from E3 � Ealt
3 to

Hn
dR�Xnÿ1

U ; nÿ1 ;R�n��alt � H1
dR�U;R�n�) is determined up to R�nÿ 1� hd i arg fjiR

^ dh�t1� ^ � � � ^ dh�tnÿ1�, corresponding to R�nÿ 1� hd i arg fjiR under this
isomorphism.
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Note that we can compute the residue as follows. There is a commutative diagram

If c is in H1
dR�U;R�n�� and x is a point not in U , then resx�c� in H0

dR�k�x�;R�nÿ 1��
is given by

� 1
�2pi�n

Z
Xnÿ1�S1

x

c ^ dh�t1� ^ � � � ^ dh�tnÿ1� ^ d i arg t1 ^ � � � ^ d i arg tnÿ1

for S1
x a circle around x.

We can also replace U with the closed set of C by leaving out small (open) discs
around the point x=2U , without changing either the cohomology groups involved
or the values of the integrals. We shall assume that from now on, so in particular
U is compact.

LEMMA 4.16. Suppose c1 and c2 in Hn�1
dR �Xnÿ1

U ; nÿ1 ;R�nÿ 1�� satisfy condition
(2.7). Then with o � d log t1 ^ � � � ^ d log tnÿ1, we have an equalityZ

Xnÿ1�S1
x

c1 ^ o �
Z
Xnÿ1�S1

x

c2 ^ o

The same holds if we replace o with d i arg t1 ^ � � � ^ d i arg tnÿ1.
Proof.The proof of Proposition 4.6 of [8] shows that c1 ÿ c2 � dg, where g sati¢es

the conditions in (2.7) on a suitable blowup of �P1
C�nÿ1, isomorphic to this over a

suitable Zariski open part of C. With that, one checks easily using integration
in each ¢bre, that

R
Xnÿ1�S1

x
dg ^ o � 0 as the holomorphic form has a zero along

ti � 1 for every i. Hence the result follows from Stokes' theorem.

Remark 4.17. Note that if we represent the image of E�2 inside
Hn

dR�Xnÿ1
U ; nÿ1 ;R�n��� by forms given by

H0
dR�U;R�nÿ 1��� � hd i argfjiR ^ dh�t1� ^ � � � ^ dh�tnÿ1�;

then a
x=2U

Z
Xnÿ1�S1

x

c ^ d i arg t1 ^ � � � ^ d i arg tnÿ1

converges and maps E�2 to H0
dR�U;R�nÿ 1��� � reshdi arg fji inside

`
x=2U R�nÿ 1�.
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Proof. The computation of E�2 was carried out in the proof of Lemma
4.14. It is generated by the pushforward of the alternating version of
Hnÿ2

dR �Xnÿ1
k ; nÿ1 ;R�nÿ 1��jti�fj : The rest is just a matter of integration and Lemma

4.13.

Remark 4.18. Note that by Borel's theorem (see (2.6)) the image of

H0
dR�U;R�nÿ 1��� � reshdi arg fji

is exactly
`

x=2U
R
S1 reg�K �n�2nÿ1�k��hdi arg fjiR.

We now have the regulator reg�a1� of a1 in Hn
dR�Xnÿ1

U;loc;
nÿ1 ;R�n��. If we lift it

back to c 2 Hn
dR�Xnÿ1

U ; nÿ1 ;R�n�� satifying (2.7) then by Remark 4.17 and Lemma
4.16

ÿ 1
�2pi�n

a
x=2U

Z
Xnÿ1�S1

x

c ^ d i arg t1 ^ � � � ^ d i arg tnÿ1 �4:8�

differs from the boundary

ÿ 1
�2pi�n

a
x=2U

Z
Xnÿ1�S1

x

reg�a� ^ d i arg t1 ^ � � � ^ d i arg tnÿ1 �4:9�

by an element in

1
2pi

a
x=2U

Z
S1
x

reg�K �n�2nÿ1�k��hdi arg fjiR:

Because we shall see that all values in (4.8) and necessarily (4.9) are in the image of
K �n�2nÿ1�k�x��, it follows that c � reg�a� � reg�b� for some b in hfji [ K �n�2nÿ1�k�. From
this we get Theorem 4.6.

We now turn our attention to the explicit lift of reg�a1�, starting out in general, but
specializing to the case n � 3 at some stage.

LEMMA 4.19. Suppose for k � 0; . . . ; nÿ 1 we have �nÿ 1ÿ k�-forms
jk�tk�1; . . . ; tnÿ1�, with jkÿ1�0; tk�1; . . . ; tnÿ1� � djk�tk�1; . . . ; tnÿ1� for
k � 1; . . . ; nÿ 1. Assume moreover that each jk is alternating for the action of
Snÿkÿ1, and jk vanishes for tj � 1, j � k� 1; . . . ; nÿ 1. Let r�t� be a bump form
around t � 0. Then the formX

I�f1;...;nÿ1g
�ÿ1�jI j�ÿ1�IIcDIjjI j�tIc�

is an alternating form vanishing at tj � 0 for k � 1; . . . ; nÿ 1. Here the sum is over all
ordered tuples I of f1; . . . ; nÿ 1g, the complement Ic is given the ascending
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ordering, tIc � tj1 ; � � � ; tjk if Ic � fj1; . . . ; jkg with j1 < � � � < jk, and DJj �
d r�tj1�d r�tj2 � � � � d r�tjk �j

ÿ � � � �ÿ �ÿ �
if J � �j1 � � � jk�.

Proof. For s in Snÿ1, we have that

s� �ÿ1�IIcDIjjI j�tIc �
ÿ �
� �ÿ1�IIcDs�I�jjs�I�j�ts�Ic��
� �ÿ1�s�ÿ1�s�I�s�Ic�Ds�I�jjs�I�j�ts�Ic��
� �ÿ1�s�ÿ1�s�I��s�I��cDs�I�jjs�I�j�ts�I�c �

by replacing s�Ic� with �s�I��c, i.e., ordering it. This shows the form is alternating.
Note that DIj

ÿ �
jtj�0� 0 unless j=2I or is its last element. Therefore, when restricting

to tj � 0 we getX
J�f1;...ĵ;...;nÿ1g

I�J�j�

�ÿ1�jJj�1�ÿ1�J�j�Jcord

DJdjjJj�1�tJc
ord��

�
X

J�f1;...ĵ;...;nÿ1g
I�J

�ÿ1�jJj�ÿ1�J��j�Jc�ord

DJjjJj�t��j�Jc�
ord�

with tj � 0, and Jc
ord taken in f1; . . . ĵ; . . . ; nÿ 1g. Using (4.2) and the conditions on

the jk's we have

�ÿ1�J�j�Jc
ord � �ÿ1�j�ÿ1�jJj�1�ÿ1�JJcord

djjJj�1�tJc
ord� � jjJj�0; tJc

ord�
jjJj�t��j�Jc�

ord�jtj�0 � ÿ�ÿ1�j2��j�Jc�
ord

jjJj�0; tJc
ord�

�ÿ1�J��j�Jc�ord � �ÿ1�j�ÿ1�j2��j�Jc�ord�ÿ1�jJj�ÿ1�JJc
ord

so everything cancels.

It turns out that for applying Lemma 4.19 with j0 � En, writing down the forms
involved is quite messy. We therefore assume from now on that n � 3. (The case
n � 2 was done before in [8].) In this case we shall carry out the lift explicitly.

We need some identities between forms (all f 's, g's are functions on C).

di arg f1 ^ di arg f2 � ÿd log jf1j ^ d log jf2j
di arg f1 ^ d log jf2j � ÿd log jf1j ^ di arg f2

Both identities follow by considering the real or imaginary parts of
d log f1 ^ d log f2 � 0. We let

s�f1; f2� � log jf1jdi arg f2 ÿ log jf2jdi arg f1;

so ds�f1; f2� � 0.
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Let U � Gm n f1g, and let XU ;loc � XU n ft � Sg. We want to write down the
explicit elements �on; En� 2 Hn

D�Xnÿ1
loc;U ; nÿ1 ;R�n��� that are the images of �S�n under

the regulator for n � 1, 2 and 3, see Section 2.
For n � 1, we have ~E1 � E1 � log j1ÿ f j and o1 � d log�1ÿ f �. For n � 2, we have

o2 � ÿd log
tÿ f
tÿ 1

^ d log�1ÿ f �

To ¢nd E2, let

~E2 � log j1ÿ f jdi arg
tÿ f
tÿ 1

� �
ÿ log

tÿ f
tÿ 1

���� ���� di arg�1ÿ f �

and if we specialize this to t � 0, we ¢nd this equals dZ�2�1 with Z�2�1 � ÿP2;Zag�f �. Then
E2 � ~E2 ÿ d r�t�Z�2�1

� �
with r�t� a bump form around t � 0. (This is the correct E2, see

[8] or the explanation after (2.4).)
Finally, for n � 3, we have that

o3 � d log
t1 ÿ f
t1 ÿ 1

^ d log
t2 ÿ f
t2 ÿ 1

^ d log�1ÿ f �:

In order to ¢nd E3, let

~E3 � log j1ÿ f jdi arg
t1 ÿ f
t1 ÿ 1

� �
^ di arg

t2 ÿ f
t2 ÿ 1

� �
�

� 2
3!

log j1ÿ f jd log
t1 ÿ f
t1 ÿ 1

���� ���� ^ d log
t2 ÿ f
t2 ÿ 1

���� ����ÿ
ÿ log

t1 ÿ f
t1 ÿ 1

���� ���� di arg�1ÿ f � ^ di arg
t2 ÿ f
t2 ÿ 1

� �
ÿ

ÿ 2
3!

log
t1 ÿ f
t1 ÿ 1

���� ���� d log j1ÿ f j ^ d log
t2 ÿ f
t2 ÿ 1

���� �����
� log

t2 ÿ f
t2 ÿ 1

���� ���� di arg�1ÿ f � ^ di arg
t1 ÿ f
t1 ÿ 1

� �
�

� 2
3!

log
t2 ÿ f
t2 ÿ 1

���� ���� d log j1ÿ f j ^ d log
t1 ÿ f
t1 ÿ 1

���� ����:
Specializing to t1 � 0 we ¢nd after some computation that we get dZ�3�1 where Z�3�1 �t2�
is given by

ÿP2;Zag�f �di arg
t2 ÿ f
t2 ÿ 1

� �
ÿ 2
3

log j1ÿ f j log
t2 ÿ f
t2 ÿ 1

���� ���� d log jf jÿ

ÿ 1
3

log j1ÿ f j log jf jd log
t2 ÿ f
t2 ÿ 1

���� ����:
Finally, putting t2 � 0 in Z�3�1 we ¢nd that we get dZ�3�2 with

Z�3�2 �f � � ÿP3;Zag�f � ÿ 1
2

log2 jf j log j1ÿ f j:
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Putting everything together as in Lemma 4.19, we put

E3 � ~E3 ÿ d�r�t1�Z�3�1 �t2�� � d�r�t2�Z�3�1 �t1���
� d�r�t1�d�r�t2�Z�3�2 �f ��� ÿ d�r�t2�d�r�t1�Z�3�2 �f ���:

We check that �o3; E3� is the class of the regulator of �f �3. Let �o3; E03� be the regulator.
Then E3 ÿ E03 2 H2

dR�X 2
U;loc;

2 ;R�2���. By (4.4) and Lemma 4.12,
H2

dR�X 2; 2 ;R�2��� can be computed as the kernel of the map

H2
dR�X 2

U;loc;
2 ;R�2���;alt !res a

H1
dR�X1

U ;loc;R�1���
� �alt

;

so if we can show that both E3 and E03 have residue E2jt1�S ÿ E2jt2�S then they differ by
an element of H2

dR�X2; 2 ;R�2��� � R�2�, and we can check that they are the same
by specializing to a ¢xed value and integrating. From the exact sequence

0! H1
dR�XU ; ;R�1��� ! H1

dR�X 1
U;loc;

1 ;R�1��� ! H0
dR�U;R�0���

we see, as H1
dR�XU ; ;R�1��� � H0

dR�U;R�1��� � 0 that we do not lose any infor-
mation about the residue in H1

dR�X1
U ;loc;

1 ;R�1��� by specializing S to a constant.
Therefore, assuming S � c is constant in Q such that r�c� � 0 from now on, we
¢nd at t1 � c that the residue is

log j1ÿ cjdi arg
t2 ÿ c
t2 ÿ 1

� �
� d�P2;Zag�c�r1�t2�� � E2�t2; c�

as desired. So E3 ÿ E03 is an element of H2
dR�X 2; 2 ;R�2��� � R�2�. Note that again

in order to check that they are identical, we can specialize to S � c, so that we
can check that they are the same class by computingZ

X 2
E3�t1; t2; c� ^ di arg t1 ^ di arg t2 � �2pi�22P3;Zag�c�:

Because this is the answer for E3 (see [7, Proposition 4.1] with the correct sign as
mentioned just after (2.4)), we conclude that E03 � E3.

Recall that we had the element a �Pj cj�fj�3 
 gj in H2�M��4��F ��. Before writing
down the corresponding regulator, we deduce some identities. We have the identityX

j

cj�fj�2 
 fj ^ gj
ÿ � � 0: �4:10�

By applying d
 id to it and writing it with respect to our basis of hfj; gji we ¢nd that
for all kX

j

cjskj�1ÿ fj� 
 fj 
 gj ÿ gj 
 fj
ÿ � � 0: �4:11�
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By using our basis once more we ¢nd that for all k and lX
j

cjskjslj�1ÿ fj� 
 gj �
X
j

cjskjtlj�1ÿ fj� 
 fj �4:12�

We shall also needX
j;k

cjskj�fj�2 
 gj �
X
j;k;l

cjskjtlj�fj �2 
 Al

�
X
j;k;l

cjsljtkj�fj �2 
 Al �
X
j;k

cj�fj�2 
 fj � 0

inH2�M��3��F ��, where we used (4.10) and used our basis again. Similarly we see from
(4.10) that for all k and lX

j

cjskjtlj�fj�2 �
X
j

cjslj tkj�fj�2: �4:13�

Note also that the map f 7!P2;Zag�f � factors though eM�2��F �, so that an element ofeM�2��F � gives rise to a continuous function on C, differentiable where f has no zeros
or poles or assumes the value 1.

From Proposition 4.10 we obtain the elementX
j

cj �fj�3 [ gj �
X
j

cjFj�t1� [ �fj �2�t2� [ gjÿ

ÿ
X
j

cjFj�t2� [ �fj �2�t1� [ gj�

�
X
j

cjFj�t1� [ Fj�t2� [ �fj�1 [ gj

in K �4�4 �X2
loc;

2 �, with

Fj�t� � tÿ fj
tÿ 1

Y tÿ Ak

tÿ 1

� �ÿskj
in �1� I�� if fj �

Q
k A

skj
k as in (4.1). According to (2.3), it has regulatorX

j

cjE3�t1; t2; fj� ^ di arg gj ÿ log jgjjp3o3�t1; t2; fj�ÿ

ÿ
X
j

cjdi argFj�t1� ^ E2�t2; fj� ^ di arg gj � log jgjjp2o2�t2; fj�
ÿ ��

�
X
j

cjdi argFj�t2� ^ E2�t1; fj� ^ di arg gj � log jgjjp2o2�t1; fj�
ÿ ��

�
X
j

cjdi argFj�t1� ^ di argFj�t2� ^ s�1ÿ fj; gj�

�4:14�

in H3
dR�X 3

U;loc;
3 ;R�3���, which we want to lift back to a form in
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H3
dR�X 3

U ; 3 ;R�3���. ~E3 ^ di arg gÿ log jgjp3o3 can be rewritten as

di arg
t1 ÿ f
t1 ÿ 1

� �
^ di arg

t2 ÿ f
t2 ÿ 1

� �
^ s�1ÿ f ; g��

� d
1
3

log jgjdi arg�1ÿ f � � 1
6
s�g; 1ÿ f �

� �
^

�
^ log

t1 ÿ fj
t1 ÿ 1

���� ����d log
t2 ÿ fj
t2 ÿ 1

���� ����ÿ log
t2 ÿ fj
t2 ÿ 1

���� ����d log
t1 ÿ fj
t1 ÿ 1

���� ����� �
�

� log jgj log
t1 ÿ f
t1 ÿ 1

���� ����d log j1ÿ f j ^ di arg
t2 ÿ f
t2 ÿ 1

� �
ÿ

ÿ log jgj log
t2 ÿ f
t2 ÿ 1

���� ����d log j1ÿ f j ^ di arg
t1 ÿ f
t1 ÿ 1

� ��
:

For

di argF �t1� ^ ~E2�t2; f � ^ di arg g� log jgjp2o2�t2; f �� �
we obtain

di argF �t1� ^ di arg
t2 ÿ f
t2 ÿ 1

� �
^ s�1ÿ f ; g��

� d ÿ log jgj log
t2 ÿ f
t2 ÿ 1

���� ����d log j1ÿ f j ^ di argF �t1�
� �

:

Putting all this together, we get that the form in (4.14), after replacing all E's with ~E's,
is given by

reg~ �
X
j

cjd
1
6

log
t1 ÿ fj
t1 ÿ 1

���� ����s�gj; 1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� �����
ÿ

ÿ 1
6

log
t2 ÿ fj
t2 ÿ 1

���� ����s�gj; 1ÿ fj� ^ d log
t1 ÿ fj
t1 ÿ 1

���� �����
� log jgjj log

t1 ÿ fj
t1 ÿ 1

���� ����d log j1ÿ fjj ^ di arg
t2 ÿ fj
t2 ÿ 1

� �
�

� 1
3

log jgjj log
t1 ÿ fj
t1 ÿ 1

���� ����di arg�1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� ����ÿ
ÿ log jgjj log

t2 ÿ fj
t2 ÿ 1

���� ����d log j1ÿ fjj ^ di arg
t1 ÿ fj
t1 ÿ 1

� �
ÿ

ÿ 1
3

log jgjj log
t2 ÿ fj
t2 ÿ 1

���� ����di arg�1ÿ fj� ^ d log
t1 ÿ fj
t1 ÿ 1

���� �����
� log jgjj log

t2 ÿ fj
t2 ÿ 1

���� ����d log j1ÿ fjj ^ di argFj�t1�ÿ

ÿ log jgjj log
t1 ÿ fj
t1 ÿ 1

���� ����d log j1ÿ fjj ^ di argFj�t2�
�
�
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�
X
j;k;l

cjskjsljdi arg
t1 ÿ Ak

t1 ÿ 1

� �
^ di arg

t2 ÿ Al

t2 ÿ 1

� �
^ s�1ÿ fj; gj�

Using (4.12), the last part can be written as

X
j;k;l

cjskjtljdi arg
t1 ÿ Ak

t1 ÿ 1

� �
^ di arg

t2 ÿ Al

t2 ÿ 1

� �
^ s�1ÿ fj; fj�

�
X
j;k;l

cjskjtljd ÿP2;Zag�fj�di arg
t1 ÿ Ak

t1 ÿ 1

� �
^ di arg

t2 ÿ Al

t2 ÿ 1

� �� �

because s�1ÿ f ; f � � ÿdP2;Zag�f �. Therefore reg~ above is equal to dc1�t1; t2� with
c1�t1; t2� given by

X
j

cj
1
6

log
t1 ÿ fj
t1 ÿ 1

���� ����s�gj; 1ÿ fj� ^ d log
t2 ÿ f2
t2 ÿ 1

���� �����
ÿ

ÿ 1
6

log
t2 ÿ fj
t2 ÿ 1

���� ����s�gj; 1ÿ fj� ^ d log
t1 ÿ fj
t1 ÿ 1

���� �����
� log jgjj log

t1 ÿ fj
t1 ÿ 1

���� ����d log j1ÿ fjj ^ di arg
t2 ÿ fj
t2 ÿ 1

� �
�

� 1
3

log jgjj log
t1 ÿ fj
t1 ÿ 1

���� ����di arg�1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� ����ÿ
ÿ log jgjj log

t2 ÿ fj
t2 ÿ 1

���� ����d log j1ÿ fjj ^ di arg
t1 ÿ fj
t1 ÿ 1

� �
ÿ

ÿ 1
3

log jgjj log
t2 ÿ fj
t2 ÿ 1

���� ����di arg�1ÿ fj� ^ d log
t1 ÿ fj
t1 ÿ 1

���� �����
� log jgjj log

t2 ÿ fj
t2 ÿ 1

���� ����d log j1ÿ fjj ^ di argFj�t1�ÿ

ÿ log jgjj log
t1 ÿ fj
t1 ÿ 1

���� ����d log j1ÿ fjj ^ di argFj�t2�
�
ÿ

ÿ
X
j;k;l

cjskjtljP2;Zag�fj�di arg
t1 ÿ Ak

t1 ÿ 1

� �
^ di arg

t2 ÿ Al

t2 ÿ 1

� �
:

Observing that

X
j

cj log jgjj log jfjjd log j1ÿ fjj ^ di arg
t2 ÿ fj
t2 ÿ 1

� ��
ÿ

ÿ log jgjj log jfjjd log j1ÿ fjj ^ di argFj�t2�
�

�
X
j;k

cjskj log jgjj log jfjjd log j1ÿ fjj ^ di arg
t2 ÿ Ak

t2 ÿ 1

� �
;

K-THEORY OF CURVES OVER NUMBER FIELDS 181

https://doi.org/10.1023/A:1026440915009 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026440915009


we ¢nd for c1�0; t2�

X
j

cj
1
6

log jfjjs�gj; 1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� ����
 

ÿ

ÿ 1
6

log
t2 ÿ fj
t2 ÿ 1

���� ����s�gj; 1ÿ fj� ^ d log jfjj�

� 1
3

log jgjj log jfjjdi arg�1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� ����ÿ
ÿ 1
3

log jgjj log
t2 ÿ fj
t2 ÿ 1

���� ����di arg�1ÿ fj� ^ d log jfjjÿ

ÿ log jgjj log
t2 ÿ fj
t2 ÿ 1

���� ����d log j1ÿ fjj ^ di arg fj�

�
X
k

skj log jgjj log jfjjd log j1ÿ fjj ^ di arg
t2 ÿ Ak

t2 ÿ 1

� �
ÿ

ÿ
X
k

skjP2;Zag�fj�di arg gj ^ di arg
t2 ÿ Ak

t2 ÿ 1

� �!
:

On the other hand, from writing down the explicit En for n � 1, 2 and 3, we know that
if we put t1 � 0 in reg~ , we get dcor1 with cor1�t2� given by

X
j

cj Z�3�1 ÿ Z�2�1 di argFj�t2�
� �

^ di arg gj

�
X
j

cj ÿP2;Zag�fj�di arg
t2 ÿ fj
t2 ÿ 1

� ��
ÿ 2
3

log j1ÿ fjj log
t2 ÿ fj
t2 ÿ 1

���� ����d log jfjjÿ

ÿ 1
3

log j1ÿ fjj log jfjjd log
t2 ÿ f2
t2 ÿ 1

���� ����� P2;Zag�fj�di argFj�t2�� ^ di arg gj

�
X
j

cj
X
k

skj

 
ÿ P2;Zag�fj�di arg

t2 ÿ Ak

t2 ÿ 1

� �
ÿ

ÿ 2
3

log j1ÿ fjj log
t2 ÿ fj
t2 ÿ 1

���� ����d log jfjj ÿ 1
3

log j1ÿ fjj log jfjjd log
t2 ÿ fj
t2 ÿ 1

���� ����� ^ di arg gj :

So c1�0; t2� ÿ cor1�t2� equals

X
j

cj
X
k

skjP2;Zag�fj�di arg
t2 ÿ Ak

t2 ÿ 1

� � 
�

� 2
3

log j1ÿ fjj log
t2 ÿ fj
t2 ÿ 1

���� ����d log jfjj�
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� 1
3

log j1ÿ fjj log jfjjd log
t2 ÿ fj
t2 ÿ 1

���� ����
!
^ di arg gj�

�
X
j

cj
1
6

log jfjjs�gj; 1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� ����
 

ÿ

ÿ 1
6

log
t2 ÿ fj
t2 ÿ 1

���� ����s�gj; 1ÿ fj� ^ d log jfjj�

� 1
3

log jgjj log jfjjdi arg�1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� ����ÿ
ÿ 1
3

log jgjj log
t2 ÿ fj
t2 ÿ 1

���� ����di arg�1ÿ fj� ^ d log jfjjÿ

ÿ log jgjj log
t2 ÿ fj
t2 ÿ 1

���� ����d log j1ÿ fjj ^ di arg fj�

�
X
k

skj log jgjj log jfjjd log j1ÿ fjj ^ di arg
t2 ÿ Ak

t2 ÿ 1

� �
ÿ

ÿ
X
k

skjP2;Zag�fj�di arg gj ^ di arg
t2 ÿ Ak

t2 ÿ 1

� �!

�
X
j;k

cjtkj ÿ2P2;Zag�fj�di arg fj
ÿ � log2 jfjjd log j1ÿ fjj� ^ di arg

t2 ÿ Ak

t2 ÿ 1

� �
�

�
X
j

cj
1
6

log jfjjs�gj; 1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� �����
ÿ

ÿ 1
6

log
t2 ÿ fj
t2 ÿ 1

���� ����s�gj; 1ÿ fj� ^ d log jfjj�

� 1
3

log jgjj log jfjjdi arg�1ÿ fj� ^ d log
t2 ÿ fj
t2 ÿ 1

���� ����ÿ
ÿ 1
3

log jgjj log
t2 ÿ fj
t2 ÿ 1

���� ����di arg�1ÿ fj� ^ d log jfjjÿ

ÿ log jgjj log
t2 ÿ fj
t2 ÿ 1

���� ����d log j1ÿ fjj ^ di arg fj�

� 2
3

log j1ÿ fjj log
t2 ÿ fj
t2 ÿ 1

���� ����d log jfjj ^ di arg gj�

� 1
3

log j1ÿ fjj log jfjjd log
t2 ÿ fj
t2 ÿ 1

���� ���� ^ di arg gj

�
where we used (4.10) and (4.11), as well as the fact that mapping �f �2 to P2;Zag�f �
factors through M�2��F � (following (4.13)) and (4.13). Using integration by parts
to get log

t2ÿfj
t2ÿ1
��� ��� out, we ¢nd that this equals dc2�t2� with

c2�t2� �
X
j

cj
X
k

ÿ2tkjP3;Zag�fj�di arg
t2 ÿ Ak

t2 ÿ 1

� � 
ÿ
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ÿ 1
6

log jfjj log
t2 ÿ fj
t2 ÿ 1

���� ����s�gj; 1ÿ fj�ÿ

ÿ 1
3

log jgjj log jfjj log
t2 ÿ fj
t2 ÿ 1

���� ����di arg�1ÿ fj��

� 1
3

log j1ÿ fjj log jfjj log
t2 ÿ fj
t2 ÿ 1

���� ����di arg gj

�

as all the other elements then cancel using only that p1 of a holomorphic 2-form onU
vanishes identically.

We now have the (alternating) forms reg~�t1; t2�, c1�t1; t2�, c2�t2� and cor1�t2�, all
of which become identically zero if we put t2 � 1. If we let cor2 �P

j cjZ
�3�
2 �fj� ^ di arg gj (which does not depend on t1 or t2), we have that they satisfy

the relations

reg~�t1; t2� � dc1�t1; t2�
reg~�0; t2� � dcor1�t2�
cor1�0� � dcor2

c1�0; t2� ÿ cor1�t2� � dc2�t2�:

We now consider the following form, where r1�t� is a bump form around t � 0,
r2�t1; t2� a bump form around the collection of ti � fj or ti � 1 (symmetric with
respect to interchanging t1 and t2). It is easy to choose them in such a way that
of r1�t1�, r1�t2� and r2�t1; t2� at most two are nonzero at the same time. Let reg

be the form (satisfying (2.7)) given by

reg~ ÿ d�r1�t1�cor1�t2�� � d�r1�t2�cor1�t1���
� d r1�t1�d�r1�t2�cor2�

� �ÿ d r1�t2�d�r1�t1�cor2�
� �ÿ

ÿ d r2�t1; t2�c1�t1; t2�
� ��

� d r2�t1; t2� r1�t1�cor1�t2� ÿ r1�t2�cor1�t1�
ÿ �� ��

� d r2�t1; t2�d�r1�t1�c2�t2��
� �ÿ d r2�t1; t2�d�r1�t2�c2�t1��

� �
:

�4:15�

Here the ¢rst ¢ve terms are the original regulator as in (4.14), the remaining form the
d of some 2-form vanishing at ti � 0;1, lifting the regulator back to X 2

V , in fact to
�P1�2V . (For checking that this is the case, note that the product
r2�t1; t2�r1�t1�r1�t2� is identically zero by our choice of r2, so that at most two
of them are nonzero at any point of X2

U .)
We now proceed to computing the integral in (4.8). Write X for di arg t1 ^ di arg t2.

Some calculations using the formulae at the end of Section 2 give the following
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integrals.Z
X2�S1

x

E3�t1; t2; f � ^ di arg g ^ X � �2pi�2
Z
S1
x

2P3;Zag�f �di arg g;Z
X2�S1

x

ÿ log jgjp3o3�t1; t2; f � ^ X � �2pi�2
Z
S1
x

log2 jf j log jgjdi arg�1ÿ f �;Z
X2�S1

x

di argF �t1� ^ E2�t2; f � ^ di arg g ^ X � 0;Z
X2�S1

x

di argF �t1� ^ log jgjp2o2�t2; f � ^ X � 0;Z
X2�S1

x

di argF �t1� ^ di argF �t2� ^ s�1ÿ f ; g� ^ X � 0;Z
X2�S1

x

ÿd�r2�t1; t2�c1�t1; t2�� ^ X

� ÿ4pi
Z
X1�S1

x

r2�0; t�c1�0; t� ^ d i arg t;Z
X2�S1

x

d�r2�t1; t2��r1�t1�cor1�t2� ÿ r1�t2�cor1�t1��� ^ X

� 4pi
Z
X1�S1

x

r2�0; t�cor1�t� ^ di arg t;Z
X2�S1

x

d�r2�t1; t2�d�r1�t1�c2�t2��� ÿ d�r2�t1; t2�d�r1�t2�c2�t1��� ^ X

� 4pi
Z
X1�S1

x

r2�0; t� c1�0; t� ÿ cor1�t�
ÿ � ^ di arg t�

� �2pi�2
Z
S1
x

4P2;Zag�f �di arg g:

(For those computations, note that S1
x has dimension one, so that a lot of the con-

tributions actually vanish identically on X 2
S1
x
.) The ¢rst ¢ve lines here suf¢ce to com-

pute the contribution of the ¢rst two lines in (4.15), as those equal (4.14).
Putting everything together we ¢nd that (4.8) equals

ÿ1
2pi

Z
S1
x

X
j

cj 6P3;Zag�fj�di arg gj � log2 jfjj log jgjjdi arg�1ÿ fj�
ÿ �

: �4:16�

We now rewrite the form in (4.16) in order to compute its residues. Using (2.5) and
(4.12), we ¢ndX

j

cj 6Pmod
3 �fj�di arg gj � log2 jfjjs�gj; 1ÿ fj�

ÿ �
�
X
j

cj 6Pmod
3 �fj�di arg gj � log jfjj log jgjjs�fj; 1ÿ fj�

ÿ �
:
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SubtractingX
j

dcj log jfjj log jgjjP2;Zag�fj�
ÿ �

�
X
j

cj 2 log jgjjP2;Zag�fj�d log jfjj � log jfjj log jgjjs�fj; 1ÿ fj�
ÿ �

this transforms intoX
j

cj 6Pmod
3 �fj�di arg gj ÿ 2 log jgjjPmod

2 �fj�d log jfjj
ÿ �

: �4:17�

Hence the integral in (4.16) yieldsÿ6Pj cj ordx�gj�Pmod
3 �fj�x��, which is the regulator

of the element �3Pj cjdx��fj �3 
 gj�, see Theorem 2.3. Because the regulator is
injective on K �3�5 �k�x��, this proves that the diagram

commutes (up to sign and up to @ K �3�5 �k� [ F �Q
� �

in the lower right hand corner), thus
proving Theorem 4.6.

Remark 4.20. Because the form c appearing in (4.17) (or (4.16)) has the same
residue (modulo the residue of the regulator of K �3�5 �k� [ F �Q ) as the regulator of
a in the localization sequence

0! H1
dR�C;R�3��� ! H1

dR�F ;R�3��� !
a

H0
dR�k�x�;R�2���;

they differ by an element inH1
dR�C;R�3��� � reg�K �3�5 �k� [ F �Q�. Using integration by

parts and Stokes' theorem it is not hard to check thatZ
C
c ^ o �

Z
C

reg�a� ^ o

with the last given by Theorem 3.5. By Remark 3.1 c is an explicit representative of
the regulator of

P
j cj�fj�3 
 gj inH1

dR�C;R�3��, modulo the regulator ofK �3�5 �k� [ F �Q.

5. Connections with Goncharov's Work

In this section, we start with showing how the work in the previous two sections,
together with the work of Goncharov ([3] and [5], see [4, Section 8] for an overview
of the results without proofs) leads to a complete description of the image of
the regulator map on K �3�4 �C� and K �4�6 �C�. In particular, this proves a conjecture
of Goncharov for those cases ([5, Conjecture 1.5] or [3, Conjecture 1.6]). We also
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sketch how, assuming some conjectures, the relation with results as in Goncharov's
work for higher K-groups would work out.

In [4, ½6], Goncharov de¢ned the following complexes G�F ; n� (in degree 1; . . . ; n),
given by

Bn�F � ! Bnÿ1�F � 
 F �Q! . . .! B2�F � 

n̂ÿ2

F �Q!
n̂

F �Q

and, for each x 2 C�1�, G�k�x�; nÿ 1� (in degrees 1; . . . ; nÿ 1), given by

Bnÿ1�k�x�� ! . . .! B2�k�x�� 

n̂ÿ3

k�x��Q!
n̂ÿ1

k�x��Q
Here for any in¢nite ¢eld F , Bk�F � is a Q-vector space generated by elements ff gk
with f 2 F [ f1g, modulo certain (inductively de¢ned) relations. All maps are given
by

ff gk 
 g1 ^ � � � ^ gnÿk 7! ff gkÿ1 
 f ^ g1 ^ � � � ^ gnÿk:

There is a map

G�F ; n� !
a

x2C�1�
G�k�x�; nÿ 1��ÿ1� �5:1�

given by

ff gk 
 g1 ^ � � � ^ gnÿk 7! ff �x�gk 
 @nÿk;x�g1 ^ � � � ^ gnÿk�
with @m;x the unique map

Vm F �Q !
Vmÿ1 k�x��Q determined as in Proposition 4.1

px ^ u1 ^ � � � ^ ukÿ1 7! u1�x� ^ � � � ^ ukÿ1�x�
u1 ^ � � � ^ uk

if all ui are units at x and px is a uniformizer at x. G�C; n� is de¢ned as the mapping
cone of (5.1). Goncharov also de¢nes complexes G0�F ; n�, G0�k�x�; nÿ 1� for
n � 3 and 4, and constructs maps as in (5.1). The complexes G0 have the same shape
as the complexes G with the same maps between them, but the Bk�F � are replaced
by B0k�F �, generated by F [ f1g, but with explicit relations between the generators.
G0�C; n� is de¢ned as the mapping cone, de¢ned by the corresponding G0 complexes
in (5.1). Goncharov also constructs a map

K2n�C� ! H2�G0�C; n� 1�� �5:2�
for n � 2 or 3, and shows that the Beilinson regulator factors through this map. We
summarize part of his results in a form suitable for our needs

THEOREM 5.1 (Goncharov). Let o be a global holomorphic 1-form on C. Then for
n � 2 or 3, the regulator map

K �n�1�2n �C� ! H1
dR�C;R�n���
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can be extended over the map K �n�1�2n �C� ! H2�G0�C; n� 1�� to a map
H2�G0�C; n� 1�� ! H1

dR�C;R�n���. For o a holomorphic 1-form such that
o � s � o, the composition

H2�G0�C; n� 1��ÿ!H1
dR�C;R�n���ÿÿÿÿÿÿÿ!

R
Can
���^o

R�1�

is given by mapping ff gn 
 g to

cn

Z
C

log jgj lognÿ2 jf j log j1ÿ f jd log jf j ÿ log jf jd log j1ÿ f j� � ^ o

for some nonzero rational constant cn.

For n � 2, this is proved in [5]. There the map (5.2) is constructed at the end of
Section 2.7. The extension of the regulator is given just before Theorem 3.1, which
states that the extension of the regulator coincides with Beilinson's regulator on
K �3�4 �C�. Finally, Theorem 3.3 gives the formula for the regulator integral. For
n � 3, the corresponding results can be found in [3], namely Theorems 4.2, 5.3
and 5.5.

LEMMA 5.2. There is a map

B02�F � ! eM�2��F �
given by sending fxg2 to �x2�.

Proof. B02�F � is a free Q-vector space on elements fxg2 with x in F � n f1g, modulo
the relations

fxg2 � fyg2 �
1ÿ x
1ÿ xy

� �
2
�f1ÿ xyg2 �

1ÿ y
1ÿ xy

� �
2
� 0

It is known (see [10, Lemmas 1.2 and 1.4]) that one then also has the following
relations

fxg2 � f1ÿ xg2 � 0 and fxg2 � f1=xg2 � 0

We have to show that the corresponding relations hold in eM�2��F �. We start with the
last two. The relation �x2� � �1=x�2 � 0 holds in eM�2��F � by de¢nition. The element
�x2� � �1ÿ x�2 lies in H1�fM��2��F �� and is a pullback from an element in
H1�fM��2��Q�t��, which injects into K �2�3 �Q�t�� by Theorem 2.3. But K �2�3 �Q�t�� �
K �2�3 �Q� � 0 so this element is zero. For the actual ¢ve-term relation, observe that
modulo the last two relations (for �� � ��2 instead of f� � �g2), the ¢rst corresponds
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to the relation in M�2��F � given by

ÿ �xÿ1�2 ÿ �1ÿ y�2 �
1ÿ xy

x

� �
2
� x

1ÿ xy

� �
2
ÿ 1ÿ 1ÿ x

1ÿ xy

� �
2
ÿ

ÿ 1
1ÿ xy

� �
2
� 1ÿ y

1ÿ xy

� �
2
:

The construction of the complexes as sketched in Section 2 gives that the lift of those
elements are given byX

j

�fj�2 �
X
j

�1ÿ fj� [ Fj�t�

where Fj is the function expressing fj in elements of a chosen basis in ffjg. In order to
show that those equal zero, we work universally, i.e., we work over the base scheme

Z � Spec�Q�X ;Y ; �1ÿ X �ÿ1; �1ÿ Y �ÿ1; �1ÿ XY �ÿ1��
and we want to show that we are pulling back a universal element in
K �2�3 �Z� � K �2�3 �Q� � 0 via the map x 7!X , y 7!Y . We can pull back directly where
all fj 6� 1, i.e., pull back from the open part Z0 of Z where 1ÿ X ÿ XY 6� 0. But
K �2�3 �Z0� � 0 as well. If 1ÿ xÿ xy � 0, using the relations fxg2 � f1ÿ xg2 and
fxg2 � f1=xg2 which we know already, the relation reduces to to fx2g2 �
2fxg2 � 2fÿxg2. One proves this one in a similar way over Spec�Q�X ; �1ÿ X 2�ÿ1��.

Remark 5.3. In fact B2�F � � B02�F �. Namely, let F be any in¢nite ¢eld, and suppose
a 2 Ker d : Q�F �T � [ f1g� !V2 F �t��Q

� �
. By Suslin's work [10], this yields an

element in K �2�3 �F �t�� � K �2�3 �F �. But modulo the ¢ve term relations, we can rewrite
this to a � b with b 2 K �2�3 �F � � Ker d : B2�F � !

V2 F �Q
� �

. Then a�0� � b modulo
the relations, as one checks by a case by case check depending on the zeroes
and poles of the functions involved. Of course this works for a�1� as well, so in total
a�0� ÿ a�1� is in the (degenerate) relations in B2, hence is zero in B2�F �.

We use Lemma 5.2 to link our results with Theorem 5.1, beginning with the case
n � 2.

THEOREM 5.4. The maps in (5.2), Lemma 5.2 and j2
�3� give maps

K �3�4 �C� ! H2�G0�C; 3�� ! H2�fM��3��C�� ! K �3�4 �C� � K �2�3 �k� [ F �Q:

Viewing this last group as inside K �3�4 �F �, the composition of those maps with the regu-
lator integral associated too is given by Theorem 3.5 onH2�fM��3��C�� and by Theorem
5.1 on H2�G0�C; 3��. In particular, all those groups, as well as the group
H2�M��3��C�� � H2�fM��3��C��, have the same image in R�1� under the regulator inte-
gral associated with o.
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Proof. That we get the map fromH2�G0�C; 3�� toH2�fM��3��C�� is clear from Lemma
5.2. The regulator integral on H2�fM��3��C�� was stated in Theorem 3.5, and that the
composition of this with the map H2�G0�C; 3�� ! H2�fM��3��C�� coincides with the
formulae in Theorem 5.1 up to a nonzero rational number is clear. Then, ¢xing
o, we get that the images in R�1� have the relations:

Image�K �3�4 �C�� � Image�H2�G0�C; 3��� � Image�H2�fM��3��C���
� Image�K �3�4 �C� � K �2�3 �k� [ F �Q� � Image�K �3�4 �C��

because the regulator integral vanishes on K �2�3 �k� [ F �Q by Proposition 3.4.

COROLLARY 5.5. The groups K �3�4 �C�, H2�G0�C; 3�� and, in case K �2�3 �k� � 0, the
group H2�M��3��C�� � H2�fM��3��C��, have the same image in H1

dR�C;R�2��� under
the regulator map. The same holds true without assuming that K�2�3 �k� � 0 if we
use the modi¢ed version of j3

�2� as described in Corollary 4.5.
Proof. This is clear from Theorem 5.4, as the regulator integrals form the dual

space of H1
dR�C;R�2���, see Remark 3.1, and the difference between using j2

�3�
and its modi¢cation lies in K �2�3 �k� [ F �Q, on which the regulator integral vanishes
by Proposition 3.4.

We now turn towards n � 3. As described in Section 2, the natural map
H2�M��4��F �� ! H2�fM��4��F �� is a surjection, so we get a surjection H2�M��4��C��
! H2�fM��4��C��: In particular, those two groups have the same image under the
regulator integral as in Theorem 3.5 and Remark 3.7.

We recall the de¢nition of the group B03�k�: it is the free Q-vector space with gen-
erators fxg3 for x 2 F � n f1g, and relations

X3
i�1
faig3 � fbig3 ÿ

bi
aiÿ1

� �
3
� bi

aiÿ1ai

� �
3
� aibiÿ1

bi�1

� �
3

�
�

� ÿ bi
aibiÿ1

� �
3
ÿ aiaiÿ1bi�1

bi

� �
3

�
ÿ 3f1g3 � fÿa1a2a3g3: �5:3�

Here bi � 1ÿ ai�1ÿ aiÿ1� with indices taken modulo 3.

THEOREM 5.6. Let C be a smooth, proper, geometrically irreducible curve over the
number ¢eld k, with function ¢eld F. Then the groups

K �4�6 �C�; H2�G0�C; 4��; H2�M��4��C�� and H2�fM��4��C��
all have the same image under the regulator integral, given by Theorem 3.5.

Proof. By Corollary 4.8, H2�M��4��C�� maps to

K �4�6 �C� � K �3�5 �k� [ F �Q=K �2�4 �F � [ K �2�2 �F �
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inside K �4�6 �F �=K �2�4 �F � [ K �2�2 �F �. By Proposition 3.4, the regulator integral is zero on
K �3�5 �k� [ F �Q, and it also kills K �2�4 �F � [ K �2�2 �F � according to Remark 3.7, whence

Image�H2�fM��4��C��� � Image�H2�M��4��C��� � Image�K �4�6 �C��

in R�1�.
From Goncharov's work as quoted in Theorem 5.1 we get a map

K �4�6 �C� ! H2�G0�C; 4��:

By Lemma 5.2 we have a map B02�F � ! eM�2��F �: In [7, p. 241] a map
B03�k�x�� ! eM�3��k�x�� was created by mapping fyg3 to �y�3. This is well de¢ned
because d is zero on the relations in (5.3) so they give rise to an element in
H1�fM��3��k�x��� � K �3�5 �k�x��. Because the regulator for the embedding s of k�x� into
C is given by mapping �y�3 to a nonzero multiple of Pmod

3 �s�y��0 the function
Pmod
3 vanishes on the elements in (5.3) and the regulator is injective, the elements

in (5.3) go to zero in eM�3��k�x�� and our map is well-de¢ned. Using those two maps
we see that if

P
j cjffjg3 
 gj is an element of H2�G0�C; 4��, then P

j cj�fj �3 
 gj is
an element of H2�fM��4��C��. So we get the inclusion of images under the regulator
integrals

Image�K �4�6 �C�� � Image�H2�G0�C; 4��� �
� Image�H2�fM��4��C��� � Image�K �4�6 �C�� :

Remark 5.7. If we use the lifted version

j2
�4� : H2�M��4��C�� ! K �4�6 �C�=K �2�4 �F � [ K �2�2 �F �

as in Corollary 4.9, followed by the regulator map to H1
dR�C;R�3���, the resulting

total map factors through the projection from H2�M��4��C�� to H2�fM��4��C��. To
see this, note that the kernel of this projection consists of elements a of the
form

P
j nj��fj �3 ÿ �1=fj �3 
 gj , with

P
j nj��fj �2 � �1=fj�2 
 fj ^ gj � 0 in

M�2��F � 

V2 F �Q. By Remark 3.1, it is enough to check that the regulator integrals

all vanish on the regulator of such a, but this is part of Theorem 3.5 and
Remark 3.7.

Using the lifted versions of j2
�4� and Remark 5.7, we get the following Corollary.

COROLLARY 5.8. The groups K �4�6 �C�, H2�G0�C; 4��, H2�M��4��C�� and H2�fM��4��C��
have the same image in H1

dR�C;R�3��� under the regulator map.
Proof. This is immediate from Theorem 5.6 because the regulator integrals are

dual to H1
dR�C;R�3���, see Remark 3.1, and the regulator integrals vanish on

K �3�5 �k� [ F �Q by Proposition 3.4, so they do not notice the modi¢cation due to
the lift.
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Remark 5.9. Theorem 5.4 and Theorem 5.6 (or Corollary 5.5 and Corollary 5.8)
give, in principle, a (dif¢cult) combinatorical description of the image of K �3�4 �C�
resp. K �4�6 �C� under the regulator map, in terms of the groups B0n involved in
H2�G0�C; 3�� resp. H2�G0�C; 4��. According to the Beilinson conjectures, for
nX 2, the regulator map from K �n�1�2n �C� to H1

dR�C;R�n��� should be an injection,
so that this conjecturally gives a combinatorical description of those K-groups
as well.

Remark 5.10. One could try to check the explicit relations of B03�F � in fM�3��F �
along the lines of Lemma 5.2, in order to get a map from H2�G0�C; 4�� to
H2�fM��4��C��. Due to the size of the relations involved, the author has not tried
to do this. Note also that that would still not give us a map from K �4�6 �C� !
K �4�6 �C� � K �3�5 �k� [ F �Q similar to the maps in Theorem 5.4, as the map j2

�4� from
H2�fM��4��C�� to K �4�6 �C� � K �3�5 �k� [ F �Q depends on the Beilinson^Soulë conjecture
as explained in Section 2. Thus the results for n � 3 are necessarily weaker than
those for n � 2.

Remark 5.11. One can give a more general proof of the existence of a map
Bn�F � ! eM�n��F � for all nX 2, but it becomes dependent on conjectures. Namely,
assume that

(1) F is the function ¢eld of a smooth, projective, geometrically irreducible variety Z
over the number ¢eld k;

(2) Bn�F � is a quotient of the free Q-vector space on elements fxgn with x 2 F � n f1g,
with relations

P
j cjffj�x1; � � � ; xm�gn � 0 for rational numbers cj, and rational

functions fj on Z with coe¤cients in a number ¢eld k. Assume moreover that
there exists a Zariski open partU of Z such that for all y closed inU , the functionP

j cjP
mod
n �s�fj�y��� vanishes identically for all embeddings of k�y� into C;

(3) the Beilinson^Soulë conjecture is true for general ¢elds of characteristic zero:
K �p�n �F � � 0 if 2pÿ nW 0 and n > 0;

(4) For a smooth, geometrically irreducible variety Z over a number ¢eld k,
K �n�2nÿ1�Z� � K �n�2nÿ1�k� by pullback from the base (which is part of the Beilinson
conjectures).

Then proceeding by induction, assume that we have de¢ned a map
Bnÿ1�F � ! fM�nÿ1��F � by fxgnÿ1 7! �x�nÿ1, so that the diagram
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(resp.

< fxg2; x 2 F � n f1g > ÿÿ!V2 F �Q????y
????yeM�2��F � ÿÿÿÿÿÿÿ!V2 F �Q

for n � 2) commutes. Then we have to check that for any relationP
cjffj�x1; � � � ; xm�gn � 0, the relation

P
cj �fj�x1; . . . ; xm��n � 0 holds in eM�n��F �.

The element
P

cj �fj�x1; . . . ; xm��n de¢nes an element a in H1�fM��n��F ��, injecting into
K �n�2nÿ1�F �. Using the spectral sequence

Ep;q
1 �

a
x2X �p�

K �nÿp�ÿpÿq�k�x�� ) K �n�ÿpÿq�Z�

(see [9, Thëore© me 4 (iii)]) the Beilinson-Soulë conjecture implies that then
K �n�2nÿ1�F � � K �n�2nÿ1�Z�, and the Beilinson conjectures imply K �n�2nÿ1�Z� � K �n�2nÿ1�k�
by pullback from the base. The remarks in Section 2 show that j1

�n� is in fact
de¢ned over some Zariski open subset U of Z, and we have
K �n�2nÿ1�F � � K �n�2nÿ1�U� � K �n�2nÿ1�k� as well. We can select a point y in U such that
j1
�n��a� can be pulled back to y, mapping a to an element in K �n�2nÿ1�k�y��, namely

the image from the corresponding element in K �n�2nÿ1�k� � K �n�2nÿ1�U�. Because the
map K �n�2nÿ1�k� ! K �n�2nÿ1�k�y�� is injective, we can check that the image of a is zero
by computing the regulator map, which according to Theorem 2.3 is given by
computing

P
j cjP

mod
n �s�fj�y��� for all embeddings s of k�y� into C. This vanishes

by our assumptions.
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