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ABSTRACT. In view of the present accuracy of the astrometric observations and of the development 
of the theory of the nutation, it became necessary to make a complete revision of this theory for a 
rigid Earth model. We present the results of our recent one (Kinoshita and Souchay, 1989), which 
includes planetary effects and second order effects no considered in the previous tables (Kinoshita, 
1977). We analyze the difference between these tables and the new ones providing from the revision 
above and the comparison between the theory and numerical integrations recently performed (Kubo 
and Fukushima, 1987; Shastok et al., 1987; Shastok et al., 1989). The results of this comparison are 
much better after revision than before. 

I n t r o d u c t i o n 

A complete reconstruction of the theory of the nutation for the rigid Earth model was 
recently performed by Kinoshita and Souchay (1989). At first they calculated the terms 
due to the first-order potential of the Moon and of the Sun with a level of truncation of 
0.01 milliarcsecond instead of 0.1 milliarcsecond (Kinoshita, 1977), and by using up-to-
date semi-analytical theories VSOP82 (Bretagnon, 1982) and ELP2000 (Chapront-Touzé 
and Chapront, 1983). Moreover, they accounted for scond-order terms due to smaller 
components of the gravitational field of the Earth, and to a coupling effect between the 
orbital motion of the Moon and the rotational motion of the Earth. At last, they included 
planetary influences which can be selected into three categories: their direct torques on the 
Earth, their perturbation on the orbital motion of the Moon, and their perturbation on the 
orbital motion of the Earth. In the following we summarize the consequences of all these 
contributions. 

C o m p a r i s o n b e t w e e n O l d a n d N e w T a b l e s 

The Hamiltonian associated with the motion of rotation of the Earth can be divided in 
two parts according to their nature. The first-order one is the part (not combined) directly 
coming from the main component of the disturbing potential, that is saying the component 
containing the zonal harmonic J2 of the Earth. Thus, rigorously speaking, we can include 
in this part the direct and the indirect effects of the planets. In his old tables Kinoshita 
(1977) included only the terms due to the lunisolar potential. He found 106 coefficients 
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in longitude, and 54 in obliquity, up to 0.1 mas (notice that because of the truncation, 
Kinoshita kept in fact any term bigger than 0.05 mas). Within the same range, we find two 
supplementary terms in longitude (and the two corresponding terms in obliquity), which 
are written, in mas: 

Αφ = 0.13 sin(2/ - 2F + 2D - Ω) + 0.12 sin(-/ + /' + D + Ω) (1) 

As far as the lunisolar effect only is concerned, 148 terms in longitude and 95 terms in 
obliquity must be added only by accounting for all the coefficients up to 0.01 mas instead 
of 0.1 mas. Notice also that the total planetary effect is notable, with 180 terms at all, and 
some of them bigger than 0.1 mas. 

Now, if we consider the revision of the theory at the second order in Kinoshita and 
Souchay (1989), we observe that it produces important changes in the low frequencies, 
when inserting a contribution due to the dynamical interaction between the figure of the 
Earth and the orbital motion of the Moon (Kubo, 1982; Kinoshita, 1988). Besides this main 
effect, other subsequent terms are providing from the influence of tesseral (C22 and £22) 
and zonal ( J3) harmonic coefficients of the gravitational field of the Earth on the expression 
of the lunisolar potential. 

In table 1, we indicate the number of new coefficients involved in the theory both at the 
first order and at the second order, according to their origin. The most significant correc-
tions after reconstruction concern the terms of argument Ω and 2Ω, principally because of 
the dynamical interaction described above. They are written: 

δ(Αφ) = -0 /. /00026sinn + 0'/000117sin 2Ω 

6(Αε) = 0'.'00095 cos Ω - 0,./00022 cos 2Ω (2) 

Comparison with Numerical Integration 

To compute the nutation by means of numerical integration is a very useful task in order to 
check the results given by the theory. This has already been done by Kubo and Fukushima 
(1987) and Schastok et al. (1987) before the revision of the theory (Kinoshita and Souchay, 
1989), and again by Schastok et al. (1989) after this revision. All the authors used Woolard's 
theory as a basis. The two former works look very much in agreement one to each other, 
showing relatively big discrepancies with the values given by Kinoshita's tables (1977). 
Besides, Kubo and Fukushima give explicitely the following differences for the terms of 
argument Ω and 2Ω : 

δ(Αφ) = (r70006sm(n - 26° + 0'.'0013 8ΐη(2Ω - 2°) 

δ(Αε) = 0'.'0008 cos(Ü + 26°) - 0'.'0003 α>8(2Ω + 37°) (3) 

which are very similar to the corresponding analytical corrections (2). Furthermore, in the 
curves given by Schastok et al. (1987) as well as in the power spectra given by Kubo and 
Fukushima (1987) semi-annual discrepancies appear clearly whose the amplitudes (about 0.1 
mas in longitude, 0.05 mas in obliquity) correspond exactly to the amplitudes of the quasi 
semi-annual corrections between Kinoshita (1977) and Kinoshita and Souchay (1989). At 
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last, when comparing their results of numerical integration with the new series by Kinoshita 
and Souchay (1989), Schastok et al. (1989) show that the discrepancy is no more than 0.3 
mas in longitude and 0.2 mas in obliquity, after fitting some of the biggest coefficients. The 
same comparisons with the old series of Kinoshita (1977) gives discrepancies of the order of 
1.5 mas and 1. mas respectively. This big improvement is partly due to the introduction of 
the planetary terms in the new series. It is also worthy to remark that the big discrepancy 
for the term of argument 2Ω noticed by Kubo and Fukushima (equations (3)) disappears 
completely after the analytical corrections (2), both in longitude and in obliquity. 

Notice that we will soon achieve ourselves a complete determination of the nutation for 
the rigid Earth model by numerical integration, starting from Kinoshita's basic equations 
(Kinoshita, 1977). Preliminary comparisons with the tables given by Kinoshita and Souchay 
(1989) within a few years and without any fit, show very small dicrepancies, with a mean 
square error lower than 0.05 mas for Αφ and Δε. 

Part Longitu I 
Lde 

Obliqui ty 

Number of new 
terms 

> 0.01 mas 

Sum 
(in phase) 

Number of new 
terms 

> 0.01 mas 

Sum 
(in phase) 

First order 

Moon (main problem) 
Sun (keplerian motion) 
Planets (indirect effect) 
Planets (direct effect) 

145 
3 
93 
36 

2.5 mas 
0.1 mas 
1.6 mas 
0.8 mas 

93 
2 
37 
14 

1.6 mas 
0.1 mas 
0.4 mas 
0.2 mas 

Second order 

Triaxiality 

Jz 
Coupling effect 

7 
6 
7 

0.1 mas 
0.2 mas 
1.9 mas 

3 
3 
7 

0.05 mas 
0.1 mas 
0.5 mas 

Total 297 7.2 mas 159 3.0 mas 

Table 1. Number of new terms included in the new tables of the nutation (Kinoshita 
and Souchay, 1989) and their sum, in phase. 
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Discussion 

H U G H E S : Can you state which of the three new effects—J3, indirect perturbations, and direct 
perturbations—has contributed most to the improvement, or are they more-or-less equal? 

SOUCHAY: The effect of J 3 is small compared with the two others («0.1 mas). The indirect and direct 
effects are of the same order, but the indirect one contributes the most. 

Β ARKIN: The unperturbed rotational motion of the Earth in your paper is the Eulerian motion of a rigid 
body. How does the difference between the Euler period and the Chandler period in the pole 
motion influence the perturbed rotation of the Earth, which is constructed in your paper in 
analytical form? 

SOUCHAY: Since the change of period between the Euler period and the Chandler period character-
izes the nature of the model of the Earth which is chosen, it would be nonsense to study the 
difference mentioned because we only deal with the rigid-Earth model. Anyway, it seems 
that this difference should not modify the equations for the perturbed motion. 

YATSKIV: (1) Zhu and Groten have pointed out some differences between your calculations of 
nutation and their work. What are the causes? (2) Could you explain the differences between 
the new analytical nutation and numerical integrations? 

SOUCHAY: (1) Zhu and Groten did not take into account some terms. (2) It is due to the truncation 
in the series, or to the combination of terms of very small amplitude (=0.01 mas) in the 
second-order theory. 
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