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Precise Positions of Methanol Masers
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Abstract: The Australia Telescope Compact Array (ATCA) has been used to determine positions for many
southern methanol maser sites, with accuracy better than 1 arcsec. The results are presented here as a catalogue
of more than 350 distinct sites, some of them new discoveries, and many others with positional precision 10-
times better than existing published values. Clusters of 2 or 3 sites are occasionally found to account for single
previously listed sources. This in turn reveals that the velocity range for each individual site is sometimes
smaller than that of the originally tabulated (blended) source. Only a handful of examples then remain with
a velocity range of more than 16kms~! at a single compact (less than 2 arcsec) site. The precise methanol
positions now allow apparent coincidences with OH masers to be confidently accepted or rejected; this has
led to the important conclusion that, where a 1665-MHz OH maser lies in a massive star formation region, at
more than 80 percent of the OH sites there is a precisely coincident methanol maser. The methanol precision
achieved here will also allow clear comparisons with likely associated IR sources when the next generation
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of far-IR surveys produce precise positions.
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1 Introduction

Over the past decade, methanol maser emission at the
6668-MHz transition has become recognised as a valuable
tracer of young stellar objects — the sites where massive
stars have recently formed but are not directly detectable
owing to their obscuring mantle of dust and molecules.

Existing work has discovered a large number of
methanol masers in our Galaxy by an inhomogeneous mix-
ture of targeted searches (especially towards OH masers,
and IR sources, e.g. Caswell et al. 1995a), and unbiased
surveys towards some portions of the Galactic plane (e.g.
Ellingsen et al. 1996). However, there is a need to con-
solidate this work and provide accurate positions for the
known sources in preparation for a new sensitive search
for methanol masers that is currently being conducted with
the Parkes Radio Telescope (Green et al. 2009a).

2 Observations and Data Reduction

The methanol maser observations described here were
obtained with the ATCA in many sessions since 1993
February, chiefly in any of the four standard ‘6-km’ con-
figurations (instantaneously yielding 15 baselines ranging
from 76 to 6000 m). The correlator was configured to give
a 2048-channel spectrum across a 4-MHz bandwidth for
each of the 2 orthogonal linear polarizations. Typically,
a target was observed for at least four periods of several
minutes each, within a 10-hour timespan. Targets selected
for study included methanol sites with positions known
only approximately from single dish observations, and the
positions of some new OH masers (chiefly from Caswell
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1998) not previously searched for methanol. Some new
serendiptious discoveries, made while investigating the
chosen targets, are also reported. The masers selected for
observation lie primarily in the Galactic longitude range
232° through 360° to 16° which is the region covered by
extensive southern observations of OH masers (Caswell
1998). Indeed, a major objective was to ensure that the
precise position was obtained for all methanol masers that
appeared to have a nearby maser counterpart of OH at
either (or both) 1665 (or 1667) MHz and 6035 MHz. The
region investigated was expanded to include some addi-
tional targets that lie between longitudes 16° and 50°, and
between 188° and 232°; these extensions were prompted
by the absence until recently of a northern hemisphere
instrument able to efficiently perform such measurements.
The procedures for observing and data reduction closely
follow those of Caswell (1996a, 1996b, 1997).

3 Results

The synthesised beamsize of approximately 2 arcsec
enables not only an accurate position measurement for
the brightest maser feature in the spectrum of the target,
but also enables mapping of the maser spot distribution.
Past studies have shown that the maser spots are generally
confined to groups with typical maximum extent of less
than 1 arcsec (Caswell 1997; Forster & Caswell 1989).
Where distances are known, the calculated linear extent
rarely exceeds 30 mpc (= 6000 au). Sometimes the maps
of maser spot positions show a cluster of two or more
maser groups, with separations clearly exceeding group
sizes. It is likely that each compact maser group within
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such a cluster has an embedded embryonic massive star
as its source of excitation.

For the current analysis. we do not list each detected
maser spot, but we do list, as separate, the site of each
compact group of maser spots that is separated more than
a few arcsec from any other group in the same cluster. In
a few rare cases there is a cluster of three or more groups;
somewhat more commonly there is a pair, and the majority
of sites are single.

The emphasis of the current work is to provide a cata-
logue of precise positions. In order to increase its useful-
ness, Table 1 lists not only our new previously unpublished
positions, but also: the 19 sources earlier listed only with
1950 coordinates by Caswell, Vaile & Forster (1995b),
results from Caswell (1996a,b, 80 sources), and results
from Caswell (1997, 42 sources). In addition, some of
our new positions, although not published in tabular form,
have been referred to in source notes concerning related
OH masers at 1665 MHz (Caswell 1998) and at 6035 MHz
(Caswell 2003). For some sources, we made new mea-
surements confirming or replacing the previous published
values. The present positions are recommended for future
studies and, unless otherwise noted, have RMS uncertain-
ties of 0.4 arcsec. These errors arise chiefly from resid-
ual atmospheric phase instabilities between calibration
measurements as discussed by Caswell (1997).

The peak intensity and its velocity at our observing
epoch is shown in Columns 4 and 5 of Table 1. However,
variability occurs in many sources, primarily on timescales
of months to years (see e.g. Caswell, Vaile & Ellingsen
1995¢). Consequently, the peak intensity at our observing
epoch is often different from that of published spectra (and
sometimes a different velocity peak is stronger). Earlier
published spectra (e.g. Caswell et al. 1995a) sometimes
have a better signal-to-noise ratio than our measurements,
and show features over a larger velocity range. In Col-
umn 6 we quote the larger ranges in such cases if there
is no evidence that any emission comes from an offset
position. The resulting velocity ranges are approximate,
and are generally underestimated for weak sources with
low signal-to-noise ratio, but occasionally overestimated
if two sources are blended. A better assessment of velocity
ranges will be possible from spectra being obtained in a
new methanol multibeam survey, which is now well under
way (Green et al. 2009a).

The Table assigns a name to each maser based on its
Galactic coordinates (to the nearest millidegree). Where
separations of approximately 2 arcsec occur, it is not clear
whether the features represent distinctly separate maser
sites, or an unusually extended one. The difficult cases are
discussed for individual sources in the next section.

The methanol masers listed here include the results of
searches towards a comprehensive list of southern OH
masers (Caswell 1998) in the Galactic longitude range
232° through 360° to 16°. Some of the methanol masers
detected towards OH targets are coincident with the OH
and others are not. Coincidences are identified in the col-
umn ‘OH?’ by citing a reference to the OH data; most
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references are to Caswell (1998), but there are others
positioned more recently. Some associations require more
extensive comment, and ‘text’ in the ‘OH?’ column refers
to notes in section 4. The resulting detection statistics of
methanol masers towards 1665-MHz masers are discussed
later in the paper.

The final column of the Table identifies the epoch of
our methanol position measurement or, where the mea-
surement has been discussed in an earlier publication, a
reference is given. Published positions have sometimes
been improved by additional data at a later epoch.

There are, of course, multiple individual publications
on many previously reported sources but we have not
attempted to cite these since they are of varying quality
and are mostly included in a comprehensive compilation
of older methanol maser data (Pestalozzi, Minier & Booth
2005). Many of the positions listed here supersede the
earlier approximate positions, and others confirm inde-
pendently obtained positions of high accuracy. Amongst
the positions in the Pestalozzi compilation with accuracy
comparable to ours, those obtained by Walsh et al. (1998)
were derived from ATCA observations in 1994 and 1995,
and used a strategy similar to the present one (but with
lower spectral resolution). For most of those sources, the
strongest features, tabulated by Pestalozzi et al. (2005)
from the full Walsh et al. (1998) dataset, are in agreement
with our values to within 0.4 arcsec and provide a useful
corroboration of both datasets.

Some northern sources have recently been measured
with the Arecibo telescope, with an RMS position uncer-
tainty of 7arcsec (Pandian, Goldsmith & Deshpande
2007). Comparison with our data confirms this precision,
but also reveals a bias in the Arecibo Right Ascensions,
suggesting that the values should be reduced by an average
of 0.6s (9 arcsec).

4 Discussion
4.1 Notes on Some Individual Sources

We first draw attention to corrections needed for ear-
lier published data. A source listed by Caswell (1996a)
as 335.603-0.078 is now believed to be spurious and
is accounted for as a weak distant side-lobe of another
maser. The site listed here as 0.475-0.010 is the cor-
rected value for a source listed by Caswell (1996b) as
0.393-0.034.

Problems of this type can occur when sparse antenna
arrays are used to observe weak sources for only short
periods, but such errors are rare and it is expected that no
similar examples remain in the current catalogue.

The remaining notes draw attention to some anomalies
regarding the information on a few of the sites, and draw
attention to sites with neighbours less than 20 arcsec away,
which mostly represent individual stars within a cluster.
A few of the sites are as close as a few arcsec and the
alternative interpretations of two close separate sites, or a
single site of larger extent, are discussed.
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291.579—0.431 and 291.582—0.435. As noted pre-
viously (Caswell 2004a) these two sites, with separation
nearly 20 arcsec, are sufficiently close to lie within the
same star cluster, but are quite distinct, with one site
accompanied by water, and the other accompanied by both
water and OH.

311.94740.472. This has a possibly associated OH
maser but the OH position still has an uncertainty larger
than 10 arcsec (Caswell 1998).

312.598+0.045 and 312.597+0.045. The first of
these sites is stronger and coincides with an OH maser.
The second methanol site is offset 6 arcsec and appears to
be distinct, and has no detected OH counterpart.

319.836—0.197. The apparent OH counterpart is off-
set 3 arcsec, but is weak, and its position uncertainty may
account for the discrepancy; we provisionally regard the
two species of maser as coincident.

321.030—0.485 and 321.033—0.483. 'The separation
is more than 10 arcsec and only the first, weaker, site has
a detected OH counterpart.

327.392+40.199 and 327.3954-0.197. ' The separation
of these sources is 14 arcsec and neither has a detected OH
counterpart.

328.808+0.633 and 328.809+0.633. These were
treated by Caswell (1997) as possibly separate sites, partly
on the basis of an overlay with continuum emission, and
despite their small separation of only 2.4 arcsec. The spec-
tral features of the second source lie within the velocity
range of those from the first source, but we retain them as
distinct sources pending more evidence.

329.339+40.148. The discovery of the 1665-MHz
maser at this site was reported by Caswell (2001) and
it turns out to be an especially interesting distant site with
OH maser emission also at 1720 MHz (Caswell 2004b)
and 13441 MHz (Caswell 2004c¢).

329.405—0.459 and 329.407—-0.459. 'The separation
of the sites is 5.7 arcsec and only the first site coincides
with an OH maser.

330.953—0.182. As noted by Caswell (2001), the
methanol coincides with an OH 6035-MHz maser site,
but the major OH 1665- and 1667-MHz masers are offset
3 arcsec.

331.542—0.066 and 331.543—0.066. The separation
is only 3 arcsec, but at a likely distance of 6 kpc this cor-
reponds to 90 mpc, and there is further evidence that they
represent two distinct sites since there is no obvious veloc-
ity overlap, and each has an OH counterpart (Caswell
1997, 1998).

333.126—0.440 and 333.128—0.440. ' The separation
is 7 arcsec and OH emission has not been detected at either
site.

333.135—0.431s. The suffix denoting south was
added by Caswell (1997) to distinguish this site from
another site, offset nearly 3 arcsec, which has OH without
methanol.

333.128—0.560 and 333.130—0.560. The sites are
distinct with separation more than 6 arcsec and neither
has a detected OH counterpart.
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335.585—0.289 and 335.585—0.290. These appear
to represent two distinct sites, but with a separation of
barely 3 arcsec, this is uncertain. The first site has coinci-
dent OH. The second is a single strong feature at an offset
velocity and without OH emission.

337.703—0.053 and 337.705—0.053. Only the sec-
ond, stronger, maser of this pair has a detected OH
counterpart.

338.075+40.012 and 338.075+0.009. Only the first,
stronger, maser of this pair has a detected OH counterpart.

339.681—-1.208 and 339.682—1.207. As noted by
Caswell (1998) there is an OH counterpart to the second
site straddling the methanol position. The first methanol
site which lies more than 3 arcsec south is stronger, has
a wide velocity range encompassing the small range of
the second source and although it seems to be spatially
distinct, this is not certain.

344.419+40.044 and 344.421+40.045. These are
clearly distinct and only the first, weaker, methanol site
has an OH counterpart.

345.003—0.223 and 345.003—0.224. The second of
these agrees well in position with an OH counterpart at
both the 1665- and 6035-MHz transitions. The velocity
ranges of the two sources do not noticeably overlap and
an overlay on continuum emission argues strongly that the
two sites are quite distinct despite their small separation
of only 3 arcsec (Caswell 1997).

345.010+1.792 and 345.012+1.797. These are
clearly distinct and only the first has a detected OH
counterpart.

348.550—0.979 and 348.550—0.979n. The first of
these has a continuum and OH counterpart at both
the 1665- and 6035-MHz transitions. There is evidence
(Caswell 1997) that the second source (offset 2.2 arcsec
to the north), detected only on the methanol transition, is
quite likely a site with its own source of excitation. The
sites have overlapping velocity ranges.

349.092+0.105 and 349.092+0.106. The second
source coincides with an OH maser. The first source, with
no OH, has a clearly distinct velocity range and seems
to be a separate site despite the smallness of its offset,
slightly more than 2 arcsec, from the second.

350.105+0.083 and 350.104+4-0.084. Separated nearly
4 arcsec, neither site has an OH counterpart. The small
velocity range of the second source lies wholly within the
range of the first.

351.41740.645 and 351.41740.646. The separation
of these sites is more than 3 arcsec. The first one coincides
with the well-known H 11 region NGC6334F and its OH
maser emission. The second lies clearly offset and appears
to be a distinct separate site (Caswell 1997).

351.581—-0.353. Caswell (1997) queried whether
there was an additional distinct source to the north
(351.581—0.353n). The separation of slightly less than
1.8 arcsec leaves this unclear, and the extra maser spots
have velocities within the range of the main site. We list
the positions of both sites, but note that the 1665-MHz
OH counterpart and a compact H 11 region lie between
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the positions, which hints that we are more likely dealing
with an extended single site. Recent recognition that the
site is most likely in the near portion of the expanding
3-kpc arm (Green et al. 2009b) would imply a distance of
5.3kpc, and thus a linear extent of 45 mpc which, for a
single site, is large but not exceptional.

353.273+40.641. 'This strong methanol maser was
first detected 1993 but was reported only recently
(Caswell & Phillips 2008) when an association with a
remarkable water maser was confirmed. No OH maser
has been detected at the site.

355.344+-0.147, 355.343+0.148 and 355.346+0.149.
The third maser is quite distinct spatially, with an off-
set of 10arcsec from the other sites. The first two sites
have no overlap in velocity but are separated spatially
only 3.7 arcsec, and the likelihood that they are distinct
sites depends on an estimate of their distance. Crovisier,
Fillit & Kazes (1973) argue, on the basis of interven-
ing absorption features near +100kms~!, that the radio
continuum emission and the OH 1665-MHz maser emis-
sion are at a distance beyond the Galactic Centre. This
evidence subsequently passed unnoticed in the literature,
attracting no relevant citations, and in particular was over-
looked by Caswell (1997) and Forster & Caswell (1989,
1999, 2000) who assigned the complex to a distance of
only 2kpc. If we reject the nearby location, the alterna-
tive distances then include: outside the solar circle and
thus beyond 17 kpc; near the Galactic Centre at 8.5 kpc
which might account for unusual velocities; or (perhaps
most likely) a location in the far-side counterpart to the 3-
kpc expanding arm at 11.5 kpc (Dame & Thaddeus 2008;
Green et al. 2009b). At any distance beyond 8.5 kpc, the
separation of 3.7 arcsec then corresponds to more than
150 mpc, indicative of clearly distinct sites for all three
methanol masers.

357.967—0.163 and 357.965—0.164. Two clearly
distinct sites, separated 7.6 arcsec, of which only the first
has an OH counterpart.

359.436—-0.104 and 359.436—0.102. Clearly dis-
tinct and separated 6 arcsec, the first has a well-known OH
counterpart (Caswell 1998) and the second also now has
a more recently reported OH maser counterpart (Argon,
Reid & Menten 2000).

0.315-0.201 and 0.316—0.201. These are separated
by 2.5arcsec and listed as distinct sites by Caswell
(1996b), despite the weak features of the second lying
wholly within the range of the first source. At neither posi-
tion is there any detected OH counterpart. Pending further
evidence, we list both sites, but caution that they may in
fact be components of a more than usually extended single
site.

0.475—0.010. This source was discovered as a new
source in the Galactic centre survey by Caswell (1996b)
but was incorrectly reported as 0.393—0.034. Re-analysis
of the data showed that the position error arose because
the sparse uv-coverage caused a side-lobe to be of com-
parable amplitude to the main lobe and was incorrectly
interpreted as the source position. The source is closer to
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the target pointing than first estimated, and so its flux den-
sity correction for the offset is not as large, and the new
estimate of peak flux density is therefore lower, 2.9 Jy.

0.645-0.042 to 0.695—0.038. These nine sites
within the Sgr B2 complex were distinguished by both
Houghton and Whiteoak (1995) and Caswell (1996b);
they are all clearly distinct sites. Existing OH 1665 and
1667-MHz observations towards Sgr B2 remain incom-
plete, and those by Argon et al. (2000) are some of the
best currently available. The detailed information in their
datasets show counterparts at 1665 and 1667 MHz for
0.657—0.041 and 0.672—0.031, and an OH 1720 MHz
counterpart for 0.665—0.036. One of the other methanol
sites, 0.666—0.029, is accompanied by a 6035-MHz maser
(Caswell 1997).

Two weak additional methanol sites in the Sgr B2 com-
plex were reported by Houghton and Whiteoak (1995) and
are believed reliable but were too weak to confirm in the
present observations. They are omitted from the present
listing which is intended to present only the results of our
independent observations.

9.62140.196 and 9.619+0.193. The first of these is
the strongest known methanol maser, and the second is a
clearly distinct site offset more than 10 arcsec. Both have
OH counterparts and ucH 11 regions (Forster & Caswell
2000).

11.034+0.062. Note that the weak feature seen on the
spectrum of Caswell et al. (1995a) at velocity 24.4 km s~!
is a side-lobe of 10.958+-0.022.

12.025—-0.031. There is an OH 1665-MHz maser
counterpart at 18"12™01.88%, —18°31/55.6” (Caswell
unpublished; this is a precise position for a source pre-
viously listed as 12.03—0.04 by Caswell 1998) and it is
thus now confirmed to coincide with the methanol.

12.209-0.102. A 1665-MHz OH maser counter-
part lies at this position (Argon et al. 2000; Caswell
unpublished).

12.889+0.489. Spectral features over the velocity
range 28 to 42kms~! mostly lie within 0.5arcsec of
the tabulated position, but a single strong feature at
velocity +33.5kms™! is offset 2arcsec northeast, at
187 11™m51.49%, —17°31/28.0"”. The OH counterpart is off-
set from both methanol features by slightly more than
1 arcsec and we treat this as a single site.

13.657—0.609. This source was first reported by
MacLeod et al. (1998) but is not in the compilation of
Pestalozzi et al. (2005). As also noted by MacLeod et al.,
there is associated OH emission at 1665 and 1667 MHz
which new observations (Caswell in preparation) show to
be at 18"17M24.27%, —17°22'13.4", effectively coincident
with the methanol.

19.472+40.170 and 19.472+40.170sw. The second
source is offset 3.7 arcsec south-west from the first, and
offset to smaller velocity. No other maser is known at these
positions so it is not clear whether the sites are distinct, or
simply a larger than usual single site.

20.2374+0.065 and 20.239+0.065. The two sites
are separated more than 7arcsec. The first coincides
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with OH maser emission at 1665 MHz, 6035 MHz and
1720 MHz (Caswell 2003, 2004b), whereas the second is
solitary.

23.437—-0.184 and 23.440—0.182. The clear separa-
tion of more than 10 arcsec establishes these as distinct
sites with distinct velocity ranges.

28.146—0.005 and 28.201—0.049. The proximity of
these sources to declination zero causes the beamsize in
declination to be large, and the declinations to have larger
than usual uncertainties, estimated to be 1 arcsec. The cor-
respondence in each case with an OH maser (Argon et al.
2000) to better than 2 arcsec suggests that our errors are
indeed no greater than 2 arcsec.

43.149+0.013 t0 49.1614+0.004. These four sites are
part of the W49 complex and were noted as distinct in the
single dish observations of Caswell et al. (1995a). Pandian
et al. (2007) detect all four, plus an additional weak one
which has a peak less than 1 Jy.

49.470—0.371 to 49.490—0.388. These five sites are
part of the complex W51. Caswell et al. (1995a) recog-
nised that there were at least three sites here and Pandian
et al. (2007) recognised four. Our higher resolution now
distinguishes five sites with clearly defined separate posi-
tions, although the velocity ranges of weak features are
uncertain owing to side-lobe confusion.

4.2 Association with OH Masers

The precise methanol maser positions reported here allow
an improved study of the association of methanol masers
and 1665-MHz OH masers in regions of Massive Star
Formation. However, beyond the 16 degree Galactic
longitude limit of the Caswell (1998) catalogue, the
OH information is incomplete, although some individual
sources can be studied using the OH positions available
in Forster & Caswell (1989, 1999) and in Argon et al.
(2000).

Therefore, for statistical purposes in the evaluation of
the discovery statistics of methanol towards OH masers,
we consider only the Galactic longitude range 232°
through 360° to 16°, covered by the OH catalogue of
Caswell (1998). A preliminary analysis was performed
by Caswell (1998), but accurate positions for some of
the methanol masers were not known and some of the
possible associations were therefore uncertain. Further-
more, there are several more recent OH results in this
region as noted in section 4.1. We find that for the
(updated) list of 207 star-formation-region OH masers
with precise positions known in this longitude range,
168 (81 percent) possess a methanol counterpart. Of
course, the interpretation of methanol and OH associ-
ations in terms of common conditions and evolution-
ary stages for methanol and OH co-existence requires
a closer inspection of line ratios and investigation of
co-propagation.

However, a practical consequence of this 81 percent
statistic is that when a new, deep, unbiased survey for
methanol masers has been completed (Green 2009a), and
the positions used as targets for an OH search, we may
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expect the results to be a useful proxy for a deep unbiased
survey for OH, and perhaps to recover at least 80 percent
of the full OH population.

4.3 Unusually Wide Velocity Spreads

We have explored the velocity widths of the methanol
masers and find that only 10 of our sample have
velocity widths exceeding 16kms~!. The largest are
24 and 23kms~!, shown by 340.785—0.096 and
335.060—0.427. For both sites, red-shifted emission is
weaker, most noticeably for 340.785—0.096 (Caswell
et al. 1995a; Caswell 1997). The two sources with
extent 17kms~! (344.227—0.569 and 340.054—0.244)
also have only weak emission at one of their extreme
velocities, one blue, the other red. The six sources with
velocity ranges of 18 or 19kms~! (339.681—1.208,
330.070+1.064, 10.47340.027, 2.5364-0.198, 6.795—
0.257 and 22.435—0.155) have somewhat stronger emis-
sion near both extremes of velocity, the intensity ratio of
blue to red ranging from 1.8 to 0.1.

Since velocity extents greater than 16km s~ are rare
(less than 3 percent of the total), this lends validity to the
practice of using methanol velocities (e.g. the mid-values
of the range) as the systemic velocity, with the expectation
that the uncertainty is rarely as large as 10kms~!, and
most commonly less than 5kms™!.

The systemic velocity is dominated by Galactic rota-
tion for the Galactic disk population of young massive
stars, and is thus suitable for estimating kinematic dis-
tances. Velocity ranges of individual sources often match
those of OH counterparts quite well, and confirm the likely
systemic velocities.

5 Conclusion

The precise positions reported here confirm that more
than 80 percent of OH masers in regions of massive star
formation have associated methanol masers.

We have also explored the velocity widths of the
methanol masers and find that values greater than
16kms~! are rare (less than three percent of the
total), in marked contrast to water masers where more
than half the sources have velocity widths exceeding
20kms~!,
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