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The present paper reports on a time-resolved three-dimensional experimental study of
turbulent Rayleigh–Bénard convection inside a cylinder with one-half aspect ratio. The
working fluid is water and the Rayleigh and Prandtl numbers are, respectively, 1.86 × 108

and 7.6. Measurements are carried out via time-resolved particle tracking velocimetry
for a relatively long time (approximately four hours) and due to the limited size of the
convection cell (internal diameter of 74 mm) the whole interior of the cylindrical sample
is investigated. This allows a proper analysis of the statistical behaviour of the flow across
the time. Proper orthogonal decomposition (POD) is used to extract the characteristic
modes of the turbulent thermal convection. It is shown that the low-order POD modes
are strictly related to the formation of a large scale circulation (LSC) and its organization
in a single-roll state (SRS) or a double-roll state. Innovative criteria for the identification
of the instantaneous flow state based on the POD analysis are also proposed. Such criteria
are proved to overcome the limitations of methods commonly adopted in the previous
literature and relying on the analysis of the azimuthal profiles of the temperature or the
vertical velocity at three different heights (one quarter, one half and three quarters of the
cell height). Compared with the latter methods, the POD-based criteria identify a larger
frequency of occurrence of the SRS, which is recognized as the most frequent state of the
LSC in the investigated conditions.
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1. Introduction

Rayleigh–Bénard (RB) convection is the fluid flow driven by the buoyancy forces arising
from temperature gradients acting in the direction opposite to gravity. Such a process
is almost ubiquitous both in nature and in industrial environments. Examples of natural
processes dominated by RB convection are the formation of ocean currents and winds
(Rahmstorf 2006), the convection in the Earth’s inner core (Glatzmaier & Roberts 1995)
and plate tectonics (Morgan 1972; Richter 1978). Moreover, since the early experiments by
Bénard (1900) and the later theoretical work of Rayleigh (1916), both the experimental and
theoretical studies of RB convection have prompted the development of the hydrodynamic
stability theories (Chandrasekhar 1981; Drazin & Reid 1981) and the basic knowledge on
pattern formation in turbulent chaotic flows (Getling 1998).

The evolution of RB convection is characterized by the formation of coherent structures,
which persist in the regime of strong turbulence and exhibit a complex and chaotic
dynamics. In recent years, statistical approaches have been adopted to study the behaviour
of such structures both experimentally and numerically (Ahlers, Grossmann & Lohse
2009; Lohse & Xia 2010; Chillà & Schumacher 2012; Xia 2013). This has been possible
in the wake of the development of non-intrusive whole-field flow visualization techniques,
such as particle image velocimetry (PIV) or laser induced fluorescence (LIF), and the
advent of high-speed supercomputers that have enabled the direct numerical simulation
(DNS) of highly turbulent flows. The extensive amount of experimental and numerical data
gathered in the last years has also promoted further theoretical work aimed at developing
theories for the prediction of the global flow transport properties, such as the heat transfer
efficiency and the dynamic properties of the mean wind of the turbulent convection.

In order to make experimental and numerical results comparable with each other, most
of the latest works have focused on the analysis of RB convection in closed boxes.
Therefore, a typical RB system consists of a fluid layer delimited by two horizontal
plates, kept at constant temperature and confined by a lateral wall. The fluid is heated
from below and cooled from above, whereas the sidewall is typically adiabatic. Moreover,
thermal convection is generally studied within the Oberbeck–Boussinesq approximation
(i.e. the fluid density is assumed to vary linearly with the temperature). A system of
such a kind is effortlessly accessible in a laboratory, as well as easy to reproduce in a
numerical environment; furthermore, although less complex than systems occurring in
natural phenomena or engineering applications, it preserves the most relevant features of
the latter. More specifically, in the following, attention is paid to RB convection inside a
cylindrical cell, which is widely addressed in the literature (Ahlers et al. 2009). Such a
system is controlled essentially by three dimensionless parameters: the Rayleigh number
Ra = βgΔTH3/(να); the Prandtl number Pr = ν/α; and the cell aspect ratio Γ = D/H,
where β, ν and α are the thermal expansion coefficient, kinematic viscosity and thermal
diffusivity of the fluid, g is the gravitational acceleration, ΔT is the temperature difference
across the fluid layer and H and D are the height and the diameter of the convection
cell.

As well known, the convective motion inside the cell originates from an overturning
thermal instability of the fluid layer above a critical value of the Rayleigh number.
Buoyancy forces cause hot and cold plumes to detach from the boundary layers on the
top and the bottom plates and, while moving across the cell, they organize themselves
into a large-scale circulatory motion, known as large scale circulation (LSC) (Xi, Lam
& Xia 2004). In most cases, the latter spans the entire height of the cell and has a
quasi-planar flywheel structure (Qiu & Tong 2001). The LSC features a very complex and
chaotic behaviour characterized by a multiplicity of dynamical modes, which, however,
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show periodicity in time. First, the nearly vertical plane of the LSC undergoes continual
reorientation in a Brownian fashion, in such a way that a preferential azimuthal orientation
does not exist (at least until the cylinder axis forms a negligible angle with the gravity)
(Cioni, Ciliberto & Sommeria 1997; Sun, Xi & Xia 2005b; Brown & Ahlers 2006a,b;
Xi, Zhou & Xia 2006; Xi & Xia 2007). Such rotation of the LSC plane is associated
with torsional oscillations (Funfschilling & Ahlers 2004; Funfschilling, Brown & Ahlers
2008) and sloshing oscillations (Xi et al. 2009; Zhou et al. 2009). The torsional mode
consists of out-of-phase azimuthal rotations of the upper and lower parts of the LSC,
resulting in a twist of its structure. On the other hand, the sloshing mode consists of a
horizontal displacement of the entire LSC away from the cylinder axis and is accompanied
by horizontal fluctuations of both velocity and temperature in the bulk. Before the
identification of such a mode, these oscillations had been associated with the periodic
and alternate emissions of plumes from the opposite boundary layers (Villermaux 1995).
However, the work by Xi et al. (2009) elucidated conclusively that thermal plumes are
emitted neither periodically nor alternately, but randomly and continuously, from the top
and bottom plates. A further relevant mode of the LSC is the occurrence of cessations
and reversals, i.e. abrupt interruptions and changes in the orientation of the circulatory
motion (Brown, Nikolaenko & Ahlers 2005; Brown & Ahlers 2006b; Xi & Xia 2007).
Cessations and reversals of the thermal convection have been often related and compared
to Earth’s magnetic pole inversions (Glatzmaier & Roberts 1995) and reversals of the
wind in Earth’s atmosphere (van Doorn et al. 2000). This explains the deep interest of
the research community in characterizing the statistical properties of their occurrence.
Several studies have shown that, after a cessation, any azimuthal orientation has the same
probability to occur and, thus, a reversal is only a special case of cessation. Moreover,
since cessation events are Poisson distributed in time, successive cessations are statistically
uncorrelated (Brown et al. 2005).

Most of the above results are related to RB convection in cylindrical cells with
Γ = 1. Numerous studies have been also focused on the Γ = 0.5 case, which is of
interest for the present work. In Γ = 0.5 cells, the LSC has been observed to have an
even richer dynamics, characterized by a periodic switching between different states. In
their DNS study, Verzicco & Camussi (2003) found out the existence of a flow mode
consisting of two vertically stacked nearly circular counter-rotating rolls, which were
later observed experimentally by Xi & Xia (2008). Xi & Xia (2008) revealed random
temporal successions of the single-roll state (SRS) and the double-roll state (DRS), with
a prevalent occurrence of the DRS as Γ is decreased. In Stringano & Verzicco (2006)
a simple model for the prediction of this bimodality was also given. Moreover, Xi &
Xia (2007) showed that cessations and reversals are more frequent in Γ = 0.5 cells than
in Γ = 1 cells, although in the later work of Weiss & Ahlers (2011b) frequencies of
such events comparable to those observed in Γ = 1 cells (Brown & Ahlers 2006b) were
found.

The LSC has been recognized as the first mode (or dipole mode) of the RB convection.
In addition to it, higher-order modes have been identified and their role in the events
characterizing the evolution of the LSC has been investigated. For a Γ = 1 cell, Pr = 0.7
and Ra between 6 × 105 and 3 × 107, Mishra et al. (2011) observed the dominance of
the second Fourier mode during a cessation/reversal event. Xi et al. (2016) studied the
high-order modes of the flow in a Γ = 1 cell in the range 9 × 108 < Ra < 6 × 109 and
in a Γ = 0.5 cell in the range 1.6 × 1010 < Ra < 7.2 × 1010, using water as working
fluid with Pr = 5.0 in both cases. Their results show that in Γ = 1 cells the higher-order
modes are very weak compared with the LSC and contain less than 4 % of the total flow
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energy, whereas in Γ = 0.5 cells they become stronger, with the second mode containing
13.7 % of the total flow energy. Moreover, they observed that during a reversal/cessation,
the amplitude of the higher-order modes experiences a rapid increase followed by a
decrease, which is opposite to the behaviour of the amplitude of the first mode. The relative
importance of the higher-order modes has also been studied to assess the persistence of
the LSC after cell rotation, tilting or changing to smaller aspect ratio (Kunnen, Clercx &
Geurts 2008; Stevens, Clercx & Lohse 2011; Weiss & Ahlers 2011a, 2013).

Apart from the investigation into the behaviour of the coherent structures of the flow,
as highlighted by Xia (2013) in his review, other relevant trends in the research on
RB convection have pertained to the analysis of turbulent heat transfer, the boundary
layer dynamics and the inspection of small-scale turbulence. Such topics are strictly
correlated with each other and with the dynamics of the vortex coherent structures. It
is straightforward that the transition of the flow to different dynamical states may have
an impact on both the global heat transfer and the structure of the boundary layers and
of the bulk turbulence (Verzicco & Camussi 2003). The same Grossman–Lohse theory
(Grossmann & Lohse 2000, 2001, 2002, 2004), which constituted an attempt to unify
experimental and numerical data from the manifold of works available in the literature,
relies on the theoretical assumption that the turbulent bulk and the boundary layers on the
plates and the lateral wall contribute with different mechanisms (and thus different scaling
laws) to the time- and volume-averages of the kinetic and thermal energy-dissipation rates.
This leads to a classification of different flow regimes in the Ra–Pr parametric space, based
on the prevalence of one contribution over the other. Each of these regimes corresponds to
a different power law of the Nusselt number Nu = q̇H/(κΔT) (with q̇ being the area- and
time-averaged total heat flux across any horizontal section of the cell and κ being the fluid
thermal conductivity) and the Reynolds number Re = WH/ν (where W is a characteristic
velocity scale of the turbulent motion) as functions of Ra and Pr. On the other hand,
several works (Funfschilling et al. 2005; Nikolaenko et al. 2005; Sun et al. 2005a) have
shown that Nu has a weak dependence on Γ in both cylindrical and rectangular samples.
This would suggest an insensitivity of the heat flux to the actual configuration of the
coherent vortex structures present in the flow field. As concerns the main results about
the structure of the small-scale thermal turbulence and, in particular, the existence of a
Bolgiano–Obukhov scaling, the reader is referred to the comprehensive review of Lohse &
Xia (2010).

In conclusion of the present overview, it is worth remarking that, while theoretical and
numerical studies generally address only the influence of the above-mentioned parameters
(Ra, Pr and Γ ) on the thermo-fluid-dynamic properties of RB convection, further effects
might have a relevance in laboratory tests, as a consequence of imperfections and
non-idealities of the experimental set-up. Among them, the finite conductivity of the
bottom and top plates of the cell and the never-perfect adiabaticity of the lateral wall can
limit the global heat transfer and also affect the flow dynamics (Ahlers 2000; Roche et al.
2001; Hunt et al. 2003; Niemela & Sreenivasan 2003; Verzicco 2004; Stevens, Lohse
& Verzicco 2014). In principle, the thermal conductivity of the plates κp is required to
be much larger than the effective thermal conductivity of the flow κNu, otherwise the
emission of a plume results in a deficiency or excess of enthalpy that leaves a cold or
warm spot on the plate where the probability of a new plume emission is diminished,
until the spot itself is diffused away. Hunt et al. (2003) observed that such mechanisms
have a great impact on the flow structures, leading to the formation of elongated plumes
when αp ≥ α and, vice versa, small-scale puffs when αp ≤ α, with αp being the thermal
diffusivity of the plates. If the finite conductivity of the plates is relevant for large Ra,
the sidewall properties affect the thermal convection only at small or moderate values
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of Ra. Specifically, even when perfectly isolated on the external side, the presence of
a sidewall results in a heat current that circumvents the fluid layer, entering the wall in
the bottom half of the cell and exiting it in the top half. However, this coupling between
the sidewall and the convecting fluid has only a minor effect on the global heat transfer,
even though it can significantly affect the structure and intensity of the LSC (Niemela
& Sreenivasan 2003). Stevens et al. (2014) also showed that the nature of the thermal
boundary condition (constant temperature or adiabatic surface) at the external side of
the sidewall can determine different flow organizations and, correspondingly, different
heat transport. In the case of an isothermal boundary condition, they showed that a
difference between the temperature imposed at the external side of the sidewall and the
volume-averaged temperature of the fluid can introduce asymmetries in the flow and the
heat transfer rates at the two opposite plates.

The present paper reports on an experimental study of thermal convection inside a
cylinder with Γ = 0.5 via time-resolved PTV. Differently from previous investigations in
the field, velocity measurements are carried out over the whole interior of the cylindrical
cell for a very long time. This allows us to provide insight into the instantaneous complex
dynamics of RB convection and the statistical properties of its characteristic modes.
For this purpose, most of the previous studies have relied on the multithermal-probe
approach (Funfschilling et al. 2005, 2008; Brown & Ahlers 2006a) or punctual or planar
velocity field measurements (Sun et al. 2005b; Sun, Xia & Tong 2005c; Xi & Xia 2008)
performed via laser Doppler anemometry (LDA) or PIV. Experimental works featuring
three-dimensional (3-D) measurements of the velocity field are almost rare. Worthy of
mention are: the works by Gasteuil et al. (2007) and Shew et al. (2007), who used
small buoyant capsules equipped with temperature sensors, an on-board battery and a
signal emitter (smart particles) to both track the flow trajectories and measure heat flux
along them; the PTV study of Ni, Huang & Xia (2012); the simultaneous velocity and
temperature measurements of convection in a rectangular box by Schiepel, Schmeling
& Wagner (2016). In not one of these investigations, however, have 3-D measurements
been performed in the whole domain of the turbulent convection or for a duration
of time sufficiently long enough to obtain reliable turbulent statistics. In the present
experiment, the working fluid is water and the Rayleigh number and Prandtl numbers
are equal to 1.86 × 108 and 7.6, respectively, the cylinder height is H = 148 mm and
the experiments are carried out for approximately four hours. The aim of the present
measurements is to provide a full-field visualization of the characteristic modes of the
turbulent convection and a statistical description of their behaviour across the time by
using the proper orthogonal decomposition (POD) technique. In the literature on RB
convection, a systematic POD analysis has been carried out for rectangular cavities
(Verdoold, Tummers & Hanjalić 2009; Podvin & Sergent 2012, 2015, 2017) or cubic
cells (Soucasse et al. 2019), whereas very few attempts have been made in the case
of cylindrical samples (e.g. Bailon-Cuba, Emran & Schumacher 2010). In the current
work, the relationship between the POD modes and the recurring states of the LSC
circulation is deeply investigated and innovative criteria for the classification of the flow
state based on the POD analysis are introduced and proved to be more effective than
methods classically used in the literature and relying on the analysis of the azimuthal
profiles of the temperature or the vertical velocity at three different levels (Funfschilling
et al. 2005; Brown & Ahlers 2006a; Xi & Xia 2007, 2008; Funfschilling et al. 2008;
Stevens et al. 2011; Weiss & Ahlers 2011b). The paper is organized as follows. In § 2 the
experimental set-up and techniques are described. In §§ 3–5 the main results are presented
and discussed. Finally, in § 6, conclusions are drawn.
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Figure 1. Schematic of the experimental apparatus.

2. Experimental set-up and techniques

2.1. The convection cell
A sketch of the experimental apparatus is reported in figure 1. The convection cell consists
of a Plexiglas cylinder filled with water. The internal diameter of the cylinder is D = 74
mm, the aspect ratio is Γ = 0.5 (height equal to twice the internal diameter) and the
sidewall thickness is 3 mm. The cylinder is immersed in an octagonal tank, also filled with
water.

The water inside the cylinder is heated from below and cooled from above by thermal
sources kept at constant temperature throughout the duration of the experiment via a
high-precision thermoelectric controller (TEC). The bottom heating system consists of
an electrolytic copper slab connected to a mica-insulated flat heater, which can provide
heating power up to 100 W. The copper slab is made of two parts, glued to each other via
a highly conductive epoxy, in-between which a PT100 1/10-DIN RTD sensor is placed.
The distance of the sensor from the slab surface in contact with the fluid is 12 mm; due
to the large thermal conductivity of the copper, the temperature drop across this layer is
negligible with respect to the sensor accuracy. The copper slab is housed in an appropriate
site on the bottom of the tank, and the cylinder is fastened to the copper insert with an
interference fit. The cylinder sidewall is in contact with the copper insert for a depth of
approximately 20 mm.

The top cooling system consists of a water heat exchanger obtained by assembling a
set of Plexiglas layers. These layers comprise two recirculation chambers with nearly
opposite tangential inlet and outlet, delimited by a thin slab with a small central hole.
The lower recirculation chamber is separated by the convection cell via an acrylic foil
of 0.25 mm thickness, which offers a small thermal resistance. The water is refrigerated
by a Peltier thermoelectric cooler and pumped into the lower recirculation chamber.
The cooler consists of a copper waterblock coupled with a Peltier element, connected
to a heat sink with fan, with a maximum heating/cooling power of 118 W and a
maximum allowable temperature difference between its sides of ±75 ◦C. The tubes
of the water circuit are coated with neoprene rubber so as to limit heat losses due
to heat transfer with the surrounding ambient. The water temperature is measured at
the heat exchanger inlet by means of an immersion ultraprecise PT100 1/10-DIN RTD
sensor.
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Based on the continual measurements from the two resistance temperature detection
(RTD) sensors, the thermoelectric controller performs a proportional–integral–derivative
control by adjusting the current inputs to the flat heater and the Peltier element and ensures
a temperature stability of 0.01 ◦C. Since the temperature difference between the top and the
bottom plates is 5 ◦C in the present experiments, this corresponds to a percentage stability
of the imposed unstable temperature gradient of 0.2 %. The laboratory room with the
tank is air conditioned, and maintained at constant temperature; the water temperature is
measured by means of an immersion PT100 1/10-DIN RTD probe to check that it remains
constant and near to the ambient temperature. The latter is equal to 17.5 ◦C; being the
nominal temperature difference equal to 5 ◦C, the nominal temperature of the bottom is
20 ◦C, while the nominal temperature of the top is 15 ◦C. The tank temperature during the
present experiment is 17.35 ◦C.

2.2. Imaging system and camera calibration
The imaging system consists of a dual pulse Nd:YAG laser with maximum pulse energy of
200 mJ and four sCMOS cameras (Andor Zyla) with a resolution of 2560 × 2160 pixels.
The laser light is shaped into a cylindrical beam that is passed through the transparent
heat exchanger on the top of the cell and illuminates the entire convection domain. The
cylindrical shape is obtained by using an appropriate system of mirrors and lenses, as
shown in figure 1.

The four cameras are arranged in a planar configuration with an angular spacing of
approximately 40◦. In order to focus the whole cylinder interior, each camera is equipped
with 28 mm focal length objectives set at an f-number equal to 22. The resulting digital
resolution is 14 pixel mm−1.

The seeding particles are orange fluorescent polyethylene microspheres (Cospheric
UVPMS-BO-1.00); the average particle diameter is 58 μm, while the particle density
is 1.00 g cm−3, resulting in a relaxation time lower than 1 ms (which is significantly
below the turbulent dissipative time scales of the thermal convection at the currently
investigated conditions). The working fluid is seeded before placing the cylinder in situ
and it is not possible to add further seeding particles after the beginning of the experiment.
Fluorescence of the particles is exploited to reduce the green reflections from the copper
base and increase the particle scattering contrast in the recorded images. For this purpose,
the camera lenses are equipped with HOYA YA3 orange filters.

Optical calibration of the camera system is a critical point of the present experimental
set-up, because of inaccessibility of the cylinder interior and optical distortions caused
by the curvature of the sidewall. As is well known, such distortions depend on the
ratio of the refractive indexes of the sidewall material (Plexiglas) and the surrounding
fluid (water) and vary locally with the viewing direction. Specifically, in the present
arrangement, the regions affected by the largest optical distortions are those adjacent to
the cylinder sidewall, where classical camera models, such as the pinhole-camera model
(Tsai 1987; Heikkila & Silven 1997; Zhang 2000), do not provide a satisfactory quality of
the tomographic reconstruction of the particle distribution. This issue is obviated by using
a perspective camera model with a refraction correction for cylindrical distortion based on
Snell’s law of refraction. All the relevant details about this method are given in Paolillo
& Astarita (2020). The main strengths of the refractive camera model are the limited
number of parameters involved (which all have a clear physical or geometrical meaning
and thus are easily checkable) and the possibility of calibrating such parameters without
placing a calibration target inside the cylindrical cell (for this purpose, it is sufficient to
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record images of the target with the cylinder interposed between the cameras and the
target itself). The refractive camera model is initially calibrated following the procedure
explained in Paolillo & Astarita (2020); subsequently, both the pinhole camera and the
cylinder parameters are refined and optimized via the volume self-calibration technique
(Wieneke 2008; Discetti & Astarita 2014).

2.3. Data acquisition and processing
Once the temperature difference between the top and the bottom is set, the system
is allowed to settle for approximately two hours before starting the experiment. Then,
measurements are carried out over approximately four hours with a sampling frequency
of 7.5 Hz. The image analysis consists essentially of three stages: image preprocessing;
time-resolved motion analysis; velocity data post-processing.

Time-resolved motion analysis is based on a combination of the most recent algorithms
for particle motion tracking and consists essentially of two steps. Initially, a first set of
snapshots (typically 5–10) is processed with the sequential-motion-tracking enhancement
(SMTE) algorithm (Lynch & Scarano 2015); at this stage, multiple iterations of the
SMART (Atkinson & Soria 2009) and CSMART (Ceglia et al. 2014; Castrillo et al.
2016) algorithms are carried out with a multiresolution approach (Discetti & Astarita
2012a); multipass volumetric cross-correlations are performed via an efficient algorithm
using sparse matrices (Discetti & Astarita 2012b). In the second phase of the process, the
STB method (Schanz, Gesemann & Schröder 2016) is used for particle tracking. Particle
triangulation is performed by the iterative particle identification method (Wieneke 2012),
while the forward-time projection of particles is based on both the extrapolation of known
trajectories and cross-correlation techniques.

The output of the above process consists of the particle tracks. The velocity data
processing step is aimed at estimating the instantaneous velocity fields from the particle
trajectories. This implies the estimation of the particle velocities and the interpolation of
the latter onto a structured grid. In the present experiments, a fourth-order polynomial
fitting based on a kernel of seven time positions of the particles was used to calculate the
particle velocities. The employed kernel, with the current sampling frequency, corresponds
to a time interval of 0.66 s, which is smaller than the Kolmogorov time scale, estimated to
be approximately 1.8 s for the current experimental conditions. The latter estimate is based
on the computation of the time- and volume-averaged turbulent kinetic energy dissipation
rate from the theoretical relation εu = ν3H−4(Nu − 1)RaPr−2 (Ahlers et al. 2009), which
indeed is exact for cylindrical cells with adiabatic sidewalls. The Nusselt number Nu in
the previous formula has been estimated from separate numerical simulations of thermal
convection accounting for the presence of the cylinder sidewall and performed with the
same code used in Stevens et al. (2014); for all the relevant details about the numerical
procedure the reader is also referred to the works of Verzicco & Orlandi (1996) and
of Verzicco & Camussi (1999, 2003). As concerns the interpolation of the particle
velocities onto a structured grid (i.e. transformation from a Lagrangian reference frame
to an Eulerian one), it is based on least-squares polynomial fitting of local data. More
specifically, a structured (Cartesian or cylindrical) grid is chosen within the measurement
volume; for each point of the grid, particles falling within a fixed search radius are
identified and the velocities of such particles are used to determine a local polynomial
fitting function which is then evaluated at the location of the grid point. Moreover, to
reduce the effects of ghost particles on the determination of the velocity field, only

922 A35-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.554


Experimental determination of the 3-D characteristic modes

particles with trajectories longer than a fixed number of time instants are used in the above
procedure. For the results reported in the following, the employed grid is cylindrical and
consists of 71, 38 and 98 nodes in the axial, radial and azimuthal directions, respectively.
Each velocity vector in this grid is computed with a second-order polynomial fit on the
particle velocities within a search radius of 30 voxels (approximately 2 mm) and relying
only on the particles with trajectories longer than seven sampling periods. The uncertainty
of the present velocity measurements is estimated to be approximately 2 % of the root mean
square of the vertical velocity over the time and the cell volume (which is approximately
0.04w0).

2.4. POD
The POD, also known as the Karhunen–Loève method, is a statistical method aimed at
finding a basis for modal decomposition from an ensemble of signals (Berkooz, Holmes &
Lumley 1993). The POD provides a linear decomposition that is optimal from an energetic
viewpoint; this means that there is no further linear decomposition that approximates – in
a least squares sense – the signal better than the POD when truncated at a specified order
(lower than the number of the signal degrees-of-freedom). In the investigation of complex
turbulent flows, the POD has been applied for the identification of the most energetic
coherent structures since the seminal paper of Lumley (1967). In 3-D unsteady flows, the
POD modes of the velocity field u(x, t) are sought as the functions φ(x) that maximize
their projection on the velocity field itself. This leads to the following eigenvalue problem:∫

V
u(x, t)u(x′, t)φ(x′) dx′ = λφ(x), (2.1)

where V is the cell volume, the symbol (·) indicates the statistical average, λ
is the eigenvalue corresponding to the eigenfunction φ(x) and u(x, t)u(x′, t)φ(x′) =∑3

j=1 u(x, t)uj(x′, t)φj(x′). When working with discrete measurements, the integral
equation (2.1) turns into the following linear eigenvalue problem:

CUφ = λφ, (2.2)

where CU = 1/(Ns − 1)UUT is the velocity covariance matrix with U being the
observation matrix U = [u1, u2, . . . , uNs]. Each observation ui includes the set of the
measurements of the three velocity components for the ith snapshot; thus, the size of U is
3Np × Ns, where Np is the number of measurement points and Ns the number of snapshots
employed for the computation of the POD modes.

Since the number of grid points is significantly larger than the number of snapshots
used for the computation of the POD modes (in the present case Np = 264, 404 and
Ns = 2, 350), the eigenvalue problem (2.2) is solved via the so-called method of snapshots,
first introduced by Sirovich (1987). Such a method allows a reduction of the problem
size from 3Np × 3Np to Ns × Ns and thus it is computationally advantageous. It is also
worth remarking that in the discrete form (2.2), the POD reduces to the singular value
decomposition (SVD); in the present case, singular value decomposition algorithms are
used to apply the method of snapshots.

The POD has been performed by using a subset of all the available snapshots, which
covers the two central hours of the experiment. Moreover, only one in every 25 consecutive
snapshots is considered for a total of 2350 samples. Based on the value of the integral time
scales computed from the autocorrelation functions of the three velocity components, the
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Figure 2. Mean velocity flow field: (a) isosurfaces of vertical velocity corresponding to the values ± 0.026w0
(yellow and cyan surfaces for the positive and the negative value, respectively) and isosurfaces of the scalar
quantity Q corresponding to 0.1 of the maximum value (white surfaces); (b) velocity vector map in the yz-plane.
The velocity magnitude is coded in the vector length, while the colour indicates the value of the vertical velocity
(scaled by the free-fall velocity w0).

number of statistically independent samples is estimated to be approximately a quarter
of the number of employed samples. The uncertainty associated with the POD results
reported in the following has been estimated by repeating the same analyses with a
different number of samples used for the computation of the POD modes. This resulted in
a relative uncertainty up to 7 %.

3. Structure of the mean velocity field and its relationship with the instantaneous
evolution

The morphology of the time-averaged velocity field is shown in figure 2; this is obtained by
averaging the velocity snapshots over the whole duration of the experiment. In figure 2(a)
the isosurfaces of the vertical velocity component corresponding to the values ±0.026w0,
with w0 being the free-fall velocity w0 = √

βΔTgH (= 38.2 mm s−1 in the current
case), are represented; in addition, two annular vortex structures (white isosurfaces)
are identified and displayed using the Q-criterion (Hunt, Wray & Moin 1988; Kolar
2007). Figure 2(b) reports the velocity map in the yz-plane; here, the magnitude of the
velocity vectors is coded in their length, while the colour is representative of the value of
the z-component (vertical velocity). Previous experimental and numerical investigations
(Verzicco & Camussi 2003; Sun et al. 2005b; Tsuji et al. 2005) reported an azimuthally
symmetric structure of the mean flow field. Such a result is substantially confirmed by
the present measurements; on the other side, minor detectable asymmetries are mainly
ascribed to imperfections of the experimental set-up, such as misalignment of the cell
axis with respect to the vertical direction, imperfections in geometry, etc. In addition, the
asymmetries may also be associated with the chaotic nature of the turbulent convection,
which might require a time longer than the duration of the experiment to achieve symmetry
in the average.
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The time-mean flow field is characterized by two separate and opposite radial
recirculations extending over the lower and the upper part of the convection cell. In the
lower part, the flow is observed to rise up in the regions adjacent to the sidewalls and fall
down in the middle; a specular behaviour occurs in the upper part. Such recirculations are
associated with the two toroidal vortex structures found in the proximity of the top and
bottom plates and shown in figure 2(a). From figure 2(b) it is evident that the recirculation
localized in the upper part covers a wider portion of the convection cell than that localized
in the lower part. More specifically, the two recirculations are separated by a saddle point
on the cylinder axis which is located at z/H ≈ 0.43. This is in disagreement with the
findings of previous studies (cf. Sun et al. 2005b), where the saddle point was found at
middle height. The present behaviour is associated with an influence of the heat transfer
between the fluid sample and the external ambient on the internal dynamics. In fact, in
the present experiment, the cylinder sidewall is not perfectly adiabatic and the temperature
in the tank Te (temperature at the external side of the cylinder sidewall) was measured
and found to be lower than the average temperature Tm between the top and the bottom
of the cell. More specifically, in the investigated case Te = 17.35 ◦C and Tm = 17.5 ◦C.
Indeed, when Te < Tm the hot plumes detaching from the boundary layer on the bottom
plate and moving near the sidewall lose their heat excess faster than the cold plumes, since
they are subjected to a greater heat transfer with the external ambient across the sidewall;
thus, the hot plumes are carried into the bulk motion earlier (i.e. at a smaller distance from
the bottom plate) with respect to the case Te = Tm or the case of a cell with an adiabatic
sidewall (cases typically investigated in the literature).

The enclosed recirculations present in the time-averaged flow field are not observed
in the unsteady evolution. Conversely, the flow organizes in ascending and descending
currents which cross the entire cell from one plate to the opposite one. This is clearly
visible in the instantaneous velocity maps of figure 3. In both the selected snapshots,
plumes rising from the bottom plate or falling from the top plate emerge in the proximity of
the cylinder sidewall. In the bottom half of the cell, the emerging hot plumes agglomerate
on one side and form a vigorous current which is pushed by buoyancy forces towards the
top plate; this current moves near the sidewall for approximately three-quarters of the cell
height, then impinges the cold plumes detached from the top, deviates from the sidewall to
the centre of the cell and finally reaches the top plate. An analogous behaviour is observed
for the cold plumes on the diametrically opposite side of the cell in the top half. Vice
versa, the hot/cold plumes which are impeded by opposing descending/ascending currents
in their vertical motion are either deviated azimuthally or pushed back; as a consequence,
confined recirculations are formed close to the cylinder corners.

The spatial structure and evolution of the ascending and descending currents are in
general very complex and are variable across the time. In both the snapshots of figure 3,
opposite currents are localized in the same azimuthal plane, thus forming an LSC
that exhibits an elliptical structure inclined with respect to the cylinder axis with two
counter-rotating rolls in the corners where the currents deviate from the sidewall. However,
different states of the turbulent convection are observed in the unsteady evolution. Figure 4
reports, for instance, a snapshot in which the flow appears to be organized in two
counter-rotating vertically stacked rolls, localized in the lower and the upper half of the
cell. In this configuration, the vertical currents moving along the sidewall travel just one
half of the cell height before deviating and going backwards. As aforementioned, such a
state is typically referred to as DRS in opposition to the SRS which essentially consists of
the domain-filling LSC. The occurrence of the DRS in a cylinder with Γ = 1/2 was first
found numerically by Verzicco & Camussi (2003) and subsequently observed in several
experimental investigations (e.g. Xia, Sun & Cheung 2008; Weiss & Ahlers 2011b).
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Figure 3. Instantaneous velocity vector maps (a) in the xz-plane and (b) in the yz-plane corresponding to two
different snapshots. The velocity magnitude is coded in the vector length, while the colour indicates the value
of the vertical velocity (scaled by the free-fall velocity w0).
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Figure 4. Snapshot of the velocity field in the DRS: velocity vector map in the xz-plane. The velocity
magnitude is coded in the vector length, while the colour indicates the value of the vertical velocity (scaled by
the free-fall velocity w0).
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Figure 5. The POD spectrum of the fluctuating velocity field. Energy of the first 200 modes normalized by
the total amount of energy. The inset shows the semilogarithmic plot of the normalized energy for the first 50
modes.

In order to better identify the characteristic states of the turbulent convection in the
unsteady evolution, a POD (Berkooz et al. 1993) of the fluctuating part of the velocity
field is presented in the next section.

4. Characteristic modes of the turbulent convection

Figure 5 reports the normalized energy spectrum of the POD modes for the first 200
modes. It is worth noting that the normalized energy levels of the POD modes represent
the percentage contributions to the average kinetic energy of the fluctuating velocity field,
i.e. to the turbulent kinetic energy. The energetic budget of the first modes is not very
large compared with that of the high-order modes. The first mode retains only 6.7 % of
the turbulent kinetic energy, while the sum of the energies of the first 200 modes amount
to approximately 87 %, and the energy of the 200th mode is 0.0079 % of that of the first
mode. This is evidence of the absence of statistically dominant modes in the turbulent flow
evolution. A closer look at the inset of figure 5 reveals a pairing of the energy levels for
the first and the second mode (which amount to 6.7 % and 6 % of the total, respectively),
as well as for the third and the fourth mode (4.4 % and 4 %) and for the fifth and the sixth
mode (3.2 % and 3 %). These pairs of modes share also the same flow structure, except for
a 90◦ rotation about the cylinder axis, as shown below.

The flow morphology of the first and the second POD mode is shown figure 6. In
both modes, it is possible to observe the presence of two vertical currents forming a
domain-filling circulation. This single roll (SR) has a quasi-planar structure and is not
tilted with respect to the cylinder axis. In addition, four small counter-rotating rolls are
observed in the corners between the SR and the top and bottom plates (see figure 6c).
It is evident that the first two POD modes mainly contribute to the SRS of the LSC
observed in the present experiment and in numerous previous experimental and numerical
investigations over different ranges of the control parameters. A remarkable difference
between the SR of the first two POD modes and the instantaneous LSC in the SRS is
the significant inclination of the latter with respect to the cylinder axis, which is visible
in figure 3 and was also observed in previous works (Sun et al. (2005b), to cite one).
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Figure 6. First pair of POD modes. Three-dimensional isosurfaces of the vertical velocity corresponding to
values of ±0.1 of the maximum for (a) the first and (b) the second mode (red corresponds to the positive value)
and (c) velocity vector map in the yz-plane for the second mode. The velocity magnitude is coded in the vector
length, while the colour indicates the value of the vertical velocity (scaled by the maximum).

Indeed, the inclination of the instantaneous LSC results from the combination of the mean
velocity field (see figure 2) and the contribution from the first two POD modes. In fact,
this leads to a strengthening of the rising hot plumes and a weakening of the falling cold
plumes near the sidewall on the side of the ascending current of the SR and vice versa
on the side of the descending current. As a consequence, two of the four rolls observed
in figure 2(b) merge in the plane of the SR structure and form an elliptic LSC, while the
other two originate counter-rotating rolls at the diagonally opposite corners, as observed
experimentally by Sun et al. (2005b). Far from the SR plane, the flow is not significantly
affected by its dynamics, so, after the superimposition of the contribution from the POD
modes 1–2 to the mean flow field, the pattern in the plane normal to the SR plane is
similar to that reported in figure 2(b). This picture is consistent with the experimental
observations of Sun et al. (2005c). However, as shown below (cf. § 5.3), this heuristic
description is effective only when the energy in the POD modes 1–2 is dominant over that
in the remaining modes.

It is worth remarking that the only relevant difference between the patterns of the first
two POD velocity modes is the azimuthal orientation, which differs by approximately
90◦. To better show this, figure 7 reports the azimuthal profiles of the axially and radially
averaged vertical velocity for both modes. The profiles have a quasi-sinusoidal shape and
their cosine regressions are also represented in the same diagram. The calculated phase
shift between the two cosine regression curves is 91.86◦. This property can be explained
by considering that the first POD mode could describe only one azimuthal orientation of
the LSC plane in the SRS, while the combination of the first two POD modes can result
practically in any azimuthal orientation of the LSC plane in the instantaneous flow field.
It is also evident that the two POD modes have comparable energetic levels since the
probability of occurrence of any azimuthal orientation is almost the same (cf. § 5.2 for
more details on this point). Interestingly, a degenerated pair of POD modes displaying a
single-roll structure has been detected also in the numerical study of Soucasse et al. (2019)
on thermal convection in a cubic cell (at Ra = 107 and Pr = 0.707). Also these two modes
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Figure 7. Azimuthal profiles of the axially and radially averaged vertical velocity for the first and the second
mode. The data points represent the experimental measurements, whereas the solid lines are the cosine fits to
this probe data. Values are scaled by the maximum of the vertical velocity component in each mode.

are identical after a rotation of 90◦. However, they have been found to combine with each
other to form an LSC localized in one of the two diagonal planes, as a clear consequence
of the diagonal symmetry for the cubic cell.

The third and fourth modes are represented in figure 8. Similarly to the first pair of POD
modes, these modes share an almost identical pattern consisting of two counter-rotating
large-scale rolls localized approximately in the same azimuthal plane. Such a pattern
resembles considerably the DRS observed in cylindrical samples with aspect ratio lower
than unity (Verzicco & Camussi 2003; Xia et al. 2008; Weiss & Ahlers 2011b), and also
detected in specific snapshots of the present experiment (figure 4). Since both the pairs of
modes 1–2 and 3–4 generally contribute to the structure of the instantaneous velocity
fields, the emergence of the DRS is indeed associated with a weak correlation of the
instantaneous velocity field with the first POD modes (i.e. small values of the projection
of the snapshot onto these POD modes), as better shown later in § 5.3. When both the
contributions from these POD mode pairs are not negligible, the SR and double-roll
patterns are combined with each other. It is here observed that this can result in a torsion
of the LSC. In order to show such a property, figure 9 reports the POD-based low-order
reconstructions (LORs) of a selected snapshot by varying the number of modes employed.
The LOR based only on the first two modes (figure 9a) is characterized by the presence
of a quasi-planar LSC circulation: when the contribution from the second mode pair is
added (figure 9b), the ascending and descending sides of the LSC appear to swirl around
the vertical direction; the addition of the contributions from the remaining modes does not
alter significantly this pattern, which in fact is present in the full snapshot (figure 9 f ). The
above example seems to suggest a strict relationship between the torsional mode of the
LSC (deeply investigated in the literature, e.g. Weiss & Ahlers (2011b)) and the nature of
the DRS. In principle, the DRS might be regarded as the result of an extreme torsion of
the LSC.

It is also worth mentioning that the SR present in the first two POD modes is not a purely
planar circulation, but has itself a swirled structure. This can be seen in figure 10(a), which
reports the azimuthal profiles of the vertical velocity at three different heights, namely,
0.25, 0.5 and 0.75 of the cell height, for the second mode. Here, the data points indicate
the experimental data (obtained by interpolation on an evenly spaced mesh), while the
solid lines are the cosine fits to this data. The phase angles of these regression curves
are clearly not coincident and the absolute difference between the phases of the curves
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Figure 8. Second pair of POD modes. Three-dimensional isosurfaces of the vertical velocity component
corresponding to values of ±0.1 of the maximum for (a) the third and (b) the fourth mode (red corresponds to
the positive value) and (c) velocity vector map in the xz-plane for the fourth mode. The velocity magnitude is
coded in the vector length, while the colour indicates the value of the vertical velocity (scaled by the maximum).
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Figure 9. Torsion of the LSC due to the addition of the contribution from the third and the fourth POD mode.
The POD based LOR of a specific snapshot by using the time-averaged velocity fields and the first (a) 2, (b) 4,
(c) 6, (d) 8 or (e) 20 POD modes of the velocity fluctuation field and ( f ) instantaneous velocity field. Red and
blue isosurfaces correspond to values of ±0.04w0.

related to the top and the bottom is approximately 15◦. Furthermore, it can be noted
that the profiles are slightly different from their cosine regressions, which suggests local
flow velocity variations likely due to the presence of thermal plumes. Indeed, also the
axially and radially averaged profiles reported in figure 7 are not optimally fitted by the
cosine model. The above features (twisting of the SR and local flow velocity variations)
are related to the fact that first POD modes, while capturing the most energetic coherent
structures, are typically contaminated by smaller structures that exhibit a high degree of
temporal correlation over the investigation time (Zhang, Liu & Wang 2014). Moreover,
it should be remarked that, although in the literature the first-order azimuthal Fourier
mode is generally associated with the LSC, there is no evidence for expecting that the
LSC states (both the SRS and the DRS) have a purely harmonic structure. The observed
deviation of the first two POD modes from a harmonic shape might be also associated
with the oscillatory modes of the LSC which influence its instantaneous structure. For
the purpose of comparison, in figure 10(b) the azimuthal profiles of the vertical velocity
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Figure 10. Azimuthal profiles of the vertical velocity at the heights z/H = 0.25 (red), z/H = 0.5 (green) and
z/H = 0.75 (blue) and radial position r/H = 0.20 for (a) the second POD mode and (b) the fourth POD mode.
The data points represent the experimental measurements, whereas the solid lines are the cosine fits to this
data. Values are scaled by the maximum of the vertical velocity component in each mode.
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Figure 11. Third pair of POD modes. Three-dimensional isosurfaces of the vertical velocity component
corresponding to values of ±0.1 of the maximum for (a) the fifth and (b) the sixth mode (red corresponds
to the positive value) and (c) velocity vector map in the xy-plane for the sixth mode. The velocity magnitude is
coded in the vector length, while the colour indicates the value of the vertical velocity (scaled by the maximum).

at the same heights and radial position are reported for the fourth mode. In such a case,
the cosine fits of the profiles related to the top and the bottom are shifted by nearly 180◦,
whereas the profile at z/H = 0.5 has a distribution very different from its cosine fit, since
it corresponds to the flow region between the two rolls.

Figure 11 shows the morphology of the fifth and the sixth POD velocity mode. These
two modes are characterized by the presence of four adjacent vertical currents localized
in separate angular sectors of the cylindrical sample, as also visible from the slice of the
velocity field at midheight (Figure 11c). When superimposed on the flow pattern given
by mean flow field and the contributions from the first four POD modes, the contribution
from this POD mode pair can result in an out-of-plane motion of the LSC, which squeezes
it onto a side of the cylindrical cell. This is shown in figure 12 by means of the LORs of
a specific snapshot by varying the number of modes employed. In the selected case, the
addition of the contribution from the second pair of POD modes (compare figures 12a and
12b) does not change significantly the structure of the LSC, which lies approximately in
the azimuthal plane x = y. After the addition of the contributions related to the fifth and
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Figure 12. Sloshing of the LSC due to the addition of the contribution from the fifth and sixth POD mode.
POD based LOR of a specific snapshot by using the time-averaged velocity fields and the first (a) 2, (b) 4, (c)
6, (d) 8 or (e) 20 POD modes of the velocity fluctuation field and ( f ) instantaneous velocity field. Red and blue
isosurfaces correspond to values of ±0.04w0.

the sixth mode (figure 12c), the ascending and descending sides of the LSC are shifted
in the direction normal to its plane and approach the sidewall on one side. The addition
of two more POD modes (figure 12d) does not introduce significant changes, whereas the
high-order POD modes (figure 12e, f ) seem to modify the region of the flow opposite to
the squeezed LSC. The case reported in figure 12 shows that the fifth and sixth modes are
responsible of the sloshing mode of the LSC, that has been reported and investigated in
numerous works (Brown & Ahlers 2009; Xi et al. 2009; Zhou et al. 2009).

5. Statistical analysis of the flow state

In this section the statistical behaviour of the LSC is analysed. In previous experimental
investigations the LSC orientation and characteristic modes have been identified by
measuring the azimuthal temperature distribution at the sidewall (Funfschilling et al.
2005; Brown & Ahlers 2006b; Funfschilling et al. 2008; Xi & Xia 2008; Weiss & Ahlers
2011b). Thermal probes are typically placed along circumferences at three different cell
heights, namely z = 0.25 H, z = 0.5 H and z = 0.75 H, with a uniform angular spacing;
the most common number of probes is eight. Since temperature measurements are not
available in the present study, a similar analysis is carried out by focusing on the azimuthal
profiles of the vertical velocity, as already done by Stevens et al. (2011) in their numerical
investigation. For this purpose, virtual anemometric probes are placed on circumferences
at one quarter, one half and three quarters of the cell height localized at a radial distance
of 0.9ri from the cylinder axis (ri = D/2 is the cylinder internal radius). Since the
present measurements are carried out in a relatively low Ra regime, as suggested by
Stevens et al. (2011) it is necessary to employ a number of probes much larger than
eight to have sufficient resolution to distinguish between the different states of the LSC.
Therefore, 98 probes are placed with an angular spacing of approximately Δϕ = 3.7◦
(linear spacing along the circumferences of approximately 2.11 mm, i.e. ≈ 30 voxels). The
probe measurements are obtained by interpolating the Lagrangian trajectories as explained
in § 2.3; since the resulting azimuthal profiles can be very noisy in the instantaneous
velocity field, a moving time-averaging filter is used, as is suggested in Stevens et al.
(2011). As a final step, the discrete vertical velocity measurements w(k)

j are fitted to a
cosine function according to the following model:

w(k)
j = wj + Aj cos(ϕ(k) − ϕj) + ε

(k)
j , (5.1)
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where ϕ(k) = kΔϕ with k = 0, 1, . . . , 97 are the angular positions of the probes, wj, Aj and
ϕj are the average velocity, the amplitude and the initial phase of the cosine fit at the jth
height where measurements are taken and ε

(k)
j is the residual error of the fit. The parameter

wj is computed as the average of the available measurements w(k)
j , while Aj and ϕj are

estimated via a least-squares procedure by minimizing the sum of the squared residual
errors

∑
k(ε

(k)
j )2. In the following, the indices b, m and t are used in place of the index

j to denote the quantities related to the heights z = 0.25 H (bottom), z = 0.5 H (middle)
and z = 0.75 H (top), respectively. In the literature, the LSC orientation is identified by
the angle ϕm, while the differences between each pair of the angles ϕb, ϕm and ϕt provide
insight into the current state of the LSC.

In addition to the above analysis, following Stevens et al. (2011), the time-resolved
relative LSC strength Sj at the generic height is also calculated as the ratio of the energy
Ẽ(1)

j (t) in the first Fourier mode of the azimuthal vertical velocity profile to the total energy
in all Fourier modes, according to the following equation:

Sj(t) =

⎛
⎜⎜⎜⎜⎜⎝

Ẽ(1)
j (t)

N∑
i=1

Ẽ(i)
j (t)

− 1
N

⎞
⎟⎟⎟⎟⎟⎠

/ (
1 − 1

N

)
, (5.2)

where N is the number of the available Fourier modes. A value of Sj greater than
0.5 indicates a high goodness of the cosine fit, which is a necessary condition for the
occurrence of the LSC, according to Stevens et al. (2011). Alternatively, the strength of
the LSC can be assessed based on the vertical velocity amplitudes Aj. According to Weiss
& Ahlers (2011b), the existence of the LSC in the SRS or the DRS implies that Ab, Am
and At have to be higher than a fixed threshold, otherwise a transitional state (TS) of the
turbulent convection is observed. Weiss & Ahlers (2011b) fixed as a reasonable threshold
15 % of the time-averaged amplitude Aj and defined as ‘events’ all the realizations in which
one of the three amplitudes is lower than such a threshold. In particular, the simultaneous
drop of all the amplitudes below the threshold is associated with a cessation of the LSC.

In the following, an analysis of the flow behaviour based on the cosine fits of the vertical
velocity profile is carried out for the purpose of comparison with the results existing in
the literature. In § 5.2, the identification of the SRS and the DRS is performed using the
criteria introduced by Xi & Xia (2008) and Weiss & Ahlers (2011b). Based on the latter, the
LSC is in the SRS when the three amplitudes Aj are simultaneously above the thresholds
0.15 Aj (i.e. the current state is not an event) and the phase differences |δϕij| = |ϕi − ϕj|
for each i /= j are lower than 60◦. On the other side, the occurrence of the DRS requires
|δϕtb| > 120◦ and the amplitudes of the top and the bottom vertical velocity profiles to
be above their thresholds. All the remaining states are identified as TSs. In § 5.3, the
relationship between the SRSs and DRSs identified with the above criteria and the POD
modes is investigated and the limitations of such an approach are shown. Contextually, a
more robust method based on the POD analysis is introduced.

5.1. Statistical behaviour of the LSC strength
Figure 13 reports the probability density functions (p.d.f.s) and the cumulative distribution
functions (c.d.f.s) of the amplitudes Aj for the top, middle and the bottom. With the
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Figure 13. Probability distribution of the vertical velocity amplitudes of the LSC at the bottom (z/H =
0.25), middle (z/H = 0.5) and top (z/H = 0.75): (a) p.d.f.; (b) c.d.f.. Each amplitude is normalized by the
corresponding time-averaged value.

chosen scaling (Aj normalized by its time-averaged value Aj), the three p.d.f.s essentially
collapse on each other, as already observed in the study of Weiss & Ahlers (2011b) for
Ra = 9 × 1010, Pr = 4.38 and Γ = 0.5. However, differently from the latter investigation,
in the present case the maximum of the p.d.f. is reached at a value lower than unity for
the middle and the top, whereas it is found at Aj = Aj for the bottom. In figure 13(b)
the dashed line represents the threshold indicated by Weiss & Ahlers (2011b) to identify
an event. The probability that Aj < 0.15Aj is 3.15 %, 1.73 % and 2.98 % for the bottom,
middle and top, respectively. These values correspond to frequencies of such events that
are, respectively, equal to 112τ−1

ν , 53τ−1
ν and 106τ−1

ν , with τν = H2/ν being the viscous
time. Such values are in agreement with the observations of Xi & Xia (2007) and Weiss &
Ahlers (2011b) for higher Rayleigh numbers (> 109) and lower Prandtl number (≈ 4.3).
However, a remarkable difference of the present experiment from the latter studies is that
the occurrence frequency of the events at midheight is found to be significantly lower than
(almost one half) those at the bottom and the top. Moreover, no cessations (i.e. events
when all the three amplitudes are below their thresholds) are observed in the present
investigation. This is consistent with the experimental observations of Weiss & Ahlers
(2011b), who found a frequency of occurrence of cessations equal to 1.1τ−1

ν , which turns
into a value of approximately 0.2 cessations per hour in the present case, although in
disagreement with the study of Xi & Xia (2007), which reported a considerably higher
frequency of cessations in analogous operating conditions (i.e. Ra in the range 1010–1011

and Pr between 4.38 and 5).
The statistical distributions of the LSC strengths Sj are reported in figure 14. The

behaviour of Sm (black dots) is similar to that reported in the numerical study of
Stevens et al. (2011) for analogous operating conditions (but with a perfect adiabatic wall
condition). Here Sm can be considered as representative of the strength of the LSC in the
SRS, while St (blue triangles) and Sb (red triangles) are related to both the SRS and the
DRS. Indeed, the higher values of the Sm p.d.f. compared with the p.d.f.s of Sb and St over
the range 0 < Sj < 0.2 are essentially related to the occurrence of the DRS which causes
Sm to have values statistically smaller than those of St and Sb. It is also noted that Sb
shows values of the p.d.f. greater than those related to St in the range 0 < Sj < 0.05. This
indicates that in the SRS the strength of the LSC in the top half of the cell is statistically
greater than that in the bottom half. Such an observation is corroborated by figure 14(b),
where it is apparent that the c.d.f. of St has lower values than those of Sm and Sb. The
reason for this behaviour can be found in the influence of the temperature condition at the
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Figure 14. Probability distribution of the LSC strength at the bottom (z/H = 0.25), middle (z/H = 0.5) and
top (z/H = 0.75) of the cell: (a) p.d.f.; (b) c.d.f..

external side of the sidewall: as aforementioned, hot plumes rising from the bottom are
subjected to a stronger heat transfer with the sidewall than the cold plumes and this results
in a weakening of the recirculation in the lower half of the cell.

5.2. Statistical occurrence and properties of the SRS and DRS
As commented above, the statistical distribution of the absolute differences |δϕij| provides
insight in the occurrence of the SRS and the DRS. Figure 15 reports the p.d.f.s of
the absolute differences |δϕtm| (blue triangles), |δϕbm| (red triangles) and |δϕtb| (black
squares). Such a diagram is obtained using only the samples that satisfy the criterion for
the LSC amplitude (Aj > 0.15Aj). The distributions of |δϕtm| and |δϕbm| are similar and
they exhibit a bell-like shape. This is in very good agreement with the experimental results
of Weiss & Ahlers (2011b) and the numerical results of Stevens et al. (2011). On the other
side, |δϕtb| shows higher values of the p.d.f. between 0◦ and 60◦ and lower values between
120◦ and 180◦. This suggests that the probability of occurrence of the DRS is slightly
lower than that of the SRS. Indeed, the computed values of such probabilities are 27 % and
29 %, respectively, for the DRS and the SRS; on the other hand, the TSs have a probability
of occurrence of 44 % among states that are not classified as events. Such results are in
agreement with the much longer experiments of Weiss & Ahlers (2011b), who observed
that, for Ra = 2 × 108 and Pr = 4.38, the flow state is undefined for approximately 50 %
of the time (in this regard, it is remarked that the events cover only 6 % of the total time in
the present experiments, thus the TSs constitute 41 % of the total duration).

Figure 16 shows the p.d.f.s of the LSC orientations at the top, middle and bottom
for both the SRS and the DRS. The p.d.f.s for the SRS (figure 16a) are essentially the
same at all the three levels and they exhibit a pronounced peak around ϕ = 0◦, while the
p.d.f.s go to zero towards ±180◦. The existence of a preferential orientation of the LSC
has already been noted in previous works. Brown & Ahlers (2006a) demonstrated that
symmetry-breaking inhomogeneities can be generated by several factors, among which
are the Earth’s Coriolis force and imperfections of the experimental apparatus such as a
slight tilt of the sample, small horizontal thermal gradients in the top and bottom plates
and eccentricity of the circular cross-section. However, the studies of Xi & Xia (2008) and
Weiss & Ahlers (2011b) have shown that the effect of the Earth’s Coriolis force seems
to be smaller in convection cells with Γ = 0.5 than those with Γ = 1. Interestingly, the
p.d.f.s of the LSC orientations for the DRS (figure 16b) are fairly uniform for the top and
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Figure 15. Probability distributions for the absolute differences between the orientation of the LSC at the
bottom (z/H = 0.25), middle (z/H = 0.5) and top (z/H = 0.75). Only the samples satisfying the criterion
for the amplitudes have been considered (see the text for explanation). When exceeding 180◦, the difference
|δϕij| was replaced by 360◦ − |δϕij|. The dashed lines indicate the thresholds for the identification of the SRS
(|δϕij| < 60◦ for any i /= j) and the DRS (|δϕtb| > 120◦) according to Xi & Xia (2008) and Weiss & Ahlers
(2011b).
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Figure 16. Probability distributions for the LSC orientation at the bottom (z/H = 0.25), middle (z/H = 0.5)
and top (z/H = 0.75) for (a) the SRS and (b) the DRS.

the bottom, whereas lower values around ±180◦ are found for the middle. In conclusion,
it is possible to assert that a preferential orientation does not exist for the DRS.

Figure 17 reports the p.d.f. of the LSC angular velocity estimated as the time derivative
of the LSC orientation at midheight ϕm. The p.d.f. computed using all the available
samples (blue dots) has a Gaussian shape in the central part with fairly heavy tails, in
agreement with the results from the previous investigations of Xi & Xia (2008) and Weiss
& Ahlers (2011b). In the same diagram, the p.d.f. for the samples satisfying the criterion
of Stevens et al. for identification of a coherent LSC based on circulation strength, i.e.
Sm > 0.5, (black squares) and the p.d.f. for the samples with Am > Am (red diamonds)
are also reported. Such curves exhibit an almost identical narrower Gaussian shape, which
indicates that the high values of the angular velocity of the LSC are indeed related to states
of the turbulent convection with a not-well defined LSC, in which the determination of the
LSC orientation is affected by greater uncertainty.

5.3. Relationship of the SRS and the DRS with low-order POD modes
In this section, the relationship of the SRS and the DRS with the first two pairs of POD
modes is investigated by focusing on the statistical behaviour of the corresponding POD

922 A35-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.554


Experimental determination of the 3-D characteristic modes

–0.15 –0.10 –0.05 0 0.05 0.10 0.15
10−2

10−1

100

101

102

dϕm/dt (rad s−1)

p.d.f.

All samples
S > 0.5

Am > Am

Figure 17. Probability distribution for the angular velocity of the LSC. The light-blue solid line is the
Gaussian fit to the data related to all samples in the range between ±0.05 rad s−1.
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Figure 18. Cumulative probability distributions of the energy contribution due to the (a) the first pair and (b)
the second pair of POD modes for the different states of the LSC. Energies are scaled by the maximum value
detected over the entire measurement duration.

coefficients, which are the projections of the snapshots onto the POD modes. Since the
first POD modes appear to be paired as shown above, it is convenient to define an energy
contribution related to a single pair of the POD modes and study the statistical distribution
of this quantity. In the following, the energy contribution due to the pair of the ith and the
jth POD mode is denoted with the symbol E(i−j).

Figure 18 reports the c.d.f.s of the energy contributions E(1−2) and E(3−4) distinguishing
between the samples in the SRS, in the DRS and in a TS. It is worth remarking that a high
value of the c.d.f. corresponding to a certain energy level E∗ means that the probability
that E(i−j) < E∗ is high. Consequently, figure 18(a) shows that the first pair of POD modes
statistically contributes more to the SRS than to the DRS. On the other side, figure 18(b)
shows that the second pair of POD modes statistically contributes more to the DRS than
to the SRS. It is also noted that the energetic contributions of the POD modes’ pairs to the
TSs are on an intermediate level between those related to the SRS and the DRS.

Another useful perspective on the relationship between the states of the LSC and the
POD modes is obtained by representing the c.d.f.s of the energies E(i−j) of the different
POD mode pairs for all the samples corresponding to a single state of the LSC. Such a
representation is given in figure 19 for the SRS and the DRS; here, energy values are scaled
by the mean energy E

(1−2)
contained in the first pair of POD mode in the corresponding

state of the LSC. Figure 19(a) shows that the contribution of the first pair of POD modes
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Figure 19. Cumulative probability distributions of the mode pair energies for (a) the SRS and (b) the DRS.
Energies are scaled by the average energy in the first pair of POD modes related to each state.

to the SRS is statistically preponderant with respect to the contributions of the remaining
modes. This could seem an obvious consideration since the POD modes retain most of the
time-averaged fluctuating kinetic energy. However, it should be remarked that the c.d.f.s
in figure 19(a) were constructed by using only the samples in the SRS and not the whole
ensemble. When a subset of samples is considered, it is not true in general that the first
two POD modes contain the greatest amount of kinetic energy. Indeed, in figure 19(b) it is
possible to note that the largest energy contribution to the snapshots in the DRS is provided
by the third and the fourth mode.

The above analysis suggests that the occurrence of the SRS is related to the dominance
of the energy contribution from the first two POD modes over the remaining modes, as well
as the appearance of the DRS in the unsteady evolution is associated with the energetic
prevalence of the third and the fourth POD modes. In order to better show this property
and also to discuss the limits of the criteria for the identification of the LSC states used up
to this point, in the following focus is given to the unsteady flow evolution over specific
time intervals of the experiment.

Figure 20 reports a time sequence related to a transition from the DRS to the SRS. In
figure 20(a) the time behaviour of the energy contributions from the POD modes to the
total kinetic energy of the fluctuating velocity field is represented, whereas figure 20(b–g)
show the 3-D structure of the first-order azimuthal Fourier modes of the instantaneous
vertical velocity field corresponding to the time instants marked with yellow lines in
figure 20(a). It is worth remarking that the first-order azimuthal Fourier mode is indeed the
harmonic regression (with zero mean) of the velocity signal along the azimuthal direction.
Therefore, such a mode reflects the current state of the LSC, provided that its energy is
larger enough than the higher-order azimuthal modes. Based on the approach of Stevens
et al. (2011), the relative strength of the first-order azimuthal Fourier mode is evaluated
using the following definition:

S(t) =

⎛
⎜⎜⎜⎜⎜⎝

Ẽ(1)(t)
N∑

i=1

Ẽ(i)(t)

− 1
N

⎞
⎟⎟⎟⎟⎟⎠

/(
1 − 1

N

)
. (5.3)
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Figure 20. A time sequence illustrating the transition from the DRS to the SRS. (a) Evolution of the
contributions from the POD modes to the total kinetic energy of the flow and of the strength S of the first-order
azimuthal Fourier mode of the 3-D velocity field. (b–g) First-order azimuthal Fourier mode of the vertical
velocity field at the time instants marked by the yellow vertical lines in panel (a): isosurfaces of the vertical
velocity corresponding to the values ±0.01w0 (red corresponds to the positive value).

Equation (5.3) is analogous to (5.2), except that here Ẽ(1)(t) and
∑N

i=1 Ẽ(i)(t), respectively,
define the energy in the first-order Fourier mode and the sum of the energies in all Fourier
modes of the 3-D velocity field (not only of the vertical component). In figure 20(a) the
behaviour of S(t) is also reported (pink curve). It is worth remarking that, according to
Stevens et al. (2011), S(t) > 0.5 indicates a secondary effect of the plumes and/or corner
flows on the coherence of the LSC (the first Fourier modes contains at least 50 % of the
energy of the velocity field). With regard to the time sequence of figure 20, S(t) is always
above this threshold, thus the flow is organized in a well-defined LSC.

In figure 20(a) the time is normalized by the free-fall time τ0 = H/w0 (which is
approximately 3.87 s in the present case). A different time scale is also reported based
on the convective time τc = D/uc with uc being the root mean square of the horizontal
velocity over the time and the cell volume. In the literature, the large-scale eddy turnover
time is usually estimated from the vertical velocity (e.g. see Bailon-Cuba et al. 2010). The
present choice of using the horizontal velocity is motivated by the observation that the
dynamics of some LSC oscillatory modes, such as the torsional and the sloshing mode, is
characterized by times faster than the LSC turnover time τLSC, and such times depend on
the horizontal motions in the cell. An estimate of τLSC is given by τLSC = H/wc with wc
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being the root mean square of the vertical velocity over the time and the cell volume. In
the present experiments τLSC ≈ 3τc ≈ 52τ0.

Focusing on the behaviour of the energy in the POD modes, from figure 20(a) it is
apparent that the energy in the POD modes 3–4, after an initial increase, monotonically
decreases across the DRS phase of the flow evolution and reaches a minimum in the
TS phase. Conversely, the energy contribution from the POD modes 1–2, despite some
fluctuations, undergoes a continual increase up to a maximum at the beginning of the
SRS phase. The energy in the POD modes 5–6 reaches relevant values at the turn of the
DRS phase and vanishes in the TS one. At the beginning of the sequence (time instant
(b)) the prominent value of the energy in the POD modes 3–4 results in a well-defined
planar double-roll structure of the flow (the two counter-rotating rolls lie in the same
plane), as visible in figure 20(b). The weakening of the contribution from the POD modes
3–4 and the gradual strengthening of that from the POD modes 1–2 during the DRS
phase is accompanied by a rotation of the roll in the lower half of the cell. A significant
misalignment of the two rolls is, however, observed only after the energy in the POD
modes 1–2 has reached a value equal to half of the energy in the POD modes 3–4 (time
instant (d), see figure 20c,d). In the TS phase, the flow is much more organized in a twisted
domain-filling circulation, as can be inferred from 20( f ). It is interesting to note that at
the time instant ( f ), despite the energies in the POD mode pairs 3–4 and 5–6 are in fact
insignificant compared with the energy in the POD modes 1–2, the LSC does not have
a planar structure. This can be associated with the non-negligible value of the energy in
the higher-order modes. Finally, a planar SR structure is attained in the SRS phase when
the energy in the POD modes 1–2 is dominant. In conclusion, the above example, on one
side, confirms that the occurrence of the SRS and of the DRS is related to the energetic
prevalence of the associated POD mode pairs, on the other side, it suggests that a possible
mechanism of the transition between the DRS to the SRS is the torsional mode of the LSC.

A distinct time sequence is reported in figure 21. In this case, the flow evolves through
an alternation of DRSs and TSs, identified via the criteria introduced above and based on
the comparative analysis of the azimuthal velocity profiles at three different heights. The
coherence of the LSC, indicated by the value of S, is lower than the previous case; however,
for most of the time, S(t) is around 0.5, thus the structure of the first-order azimuthal
Fourier mode (figure 21b–g) still provides a reliable description of the flow morphology.
Interestingly, the diagram in figure 21 shows that, except in the beginning and in the final
part of the selected time interval, the energy in the POD modes 3–4 is considerably smaller
than the energies in the POD modes 1–2 and 5–6. Indeed, a well-defined DRS is only
detectable in these two phases of the evolution (see figures 21b and 21g). At the other
stages (figure 21c– f ) the flow tends to organize itself in an SRS, although the LSC does
not exhibit an exactly planar structure at any time; indeed, it has a twisted shape (this is
associated with the contribution from the POD modes 5–6, which is comparable to that
of the POD modes 1–2). It is, therefore, clear that the adopted criteria for the detection
of the LSC state are imprecise in the present case. In particular, focusing on the time
instant (d), the flow state is classified as DRS based on such criteria, however, an LSC
in the SRS is detected both in the first-order azimuthal Fourier mode in figure 21(d) and
in the full instantaneous velocity field, which is represented in figure 22. Here, both the
isosurfaces (figure 22a) and the yz-slice (figure 22b) of the vertical velocity field show the
presence of an LSC in an SRS. Stevens et al. (2011) noticed that the misinterpretation of
the state of the large-scale flow assessed using a cosine fit procedure on the temperature
or the velocity profiles can be associated with passing plumes and/or the corner flows:
the lower the Rayleigh number and the cell aspect ratio, the more relevant such an issue.
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Figure 21. A time sequence illustrating an alternation between the DRS and the TS. (a) Evolution of the
contributions from the POD modes to the total kinetic energy of the flow and of the strength S of the first-order
azimuthal Fourier mode of the 3-D velocity field. (b–g) First-order azimuthal Fourier mode of the vertical
velocity field at the time instants marked by the yellow vertical lines in panel (a): isosurfaces of the vertical
velocity corresponding to the values ±0.01w0 (red corresponds to the positive value).

Figure 22(c) reports the azimuthal profiles of the vertical velocity at the heights z/H =
0.25, 0.5, 0.75 and radial position r/ri = 0.9, which have been used in the present case for
the determination of the LSC orientation. The diagram clearly shows the low correlation
of the cosine fits for the considered profiles; indeed, the corresponding strengths are Sb =
0.11, Sm = 0.01 and St = 0.11. Therefore, following the approach of Stevens et al. (2011),
one might conclude that the state of the LSC is not defined at the selected time instant.
Nevertheless, such a misinterpretation is purely related to the choice of the velocity probes
employed in the present case. To better show this, in figure 22(d) the azimuthal vertical
velocity profiles for the radial location r/ri = 0.4 at the bottom, the middle and the top are
reported. In this case, the cosine fits show a high goodness; the corresponding strengths
are Sb = 0.50, Sm = 0.81 and St = 0.81.

The above analysis reveals the limitations of the criteria for the identification of the
LSC state classically used in the literature. On the other side, the POD analysis appears as
a powerful tool for the characterization of the flow state and more reliable criteria can be
formulated on such a basis. It is evident that a well-defined LSC (in either the SRS or the
DRS) results from the energetic prevalence of the first two pairs of POD modes. Thus, after
denoting the energy contribution from these modes as E(1−4)(t), a first requirement for the
occurrence of a definite LSC is that E(1−4)(t)/Etot(t) > εLSC, where Etot(t) = ∑

i E(i)(t)
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Figure 22. Snapshot of the velocity at the time instant (d) of figure 21: (a) isosurfaces of vertical velocity
corresponding to the values ±0.02w0 (red and blue surfaces for the positive and the negative value,
respectively); (b) velocity vector map in the yz-plane, the velocity magnitude is coded in the vector length,
while the colour indicates the value of the vertical velocity (scaled by the free-fall velocity w0); (c,d) azimuthal
profiles of the vertical velocity at the heights z/H = 0.25 (red), z/H = 0.5 (green) and z/H = 0.75 (blue) for
radial positions (c) r/ri = 0.9 and (d) r/ri = 0.4. The data points represent the experimental measurements,
whereas the solid lines are the cosine fits based on this data.

is the total energy in the POD modes (equal to the energy of the instantaneous fluctuating
velocity field) and εLSC is a fixed threshold. On the other side, the occurrence of the SRS
or the DRS is related to the relative importance of the energy in the POD mode pairs
1–2 and 3–4, i.e. on the ratio E(3−4)(t)/E(1−2)(t). It is then convenient to define two
further thresholds: εSRS such that the SRS occurs when E(3−4)(t)/E(1−2)(t) < εSRS and
εDRS such that the DRS occurs when E(3−4)(t)/E(1−2)(t) > εDRS. The TSs are classified
as those realizations at any time t such that εSRS < E(3−4)(t)/E(1−2)(t) < εDRS. Obviously,
the above thresholds should be defined in such a way that 0 < εLSC < 1, 0 < εSRS < 1 and
εDRS > 1.

Figure 23 reports the p.d.f.s of both the quantities E(1−4)/Etot and E(3−4)/E(1−2). The
p.d.f. of E(1−4)/Etot (figure 23a) has a quasi-Gaussian shape with a peak around 0.19
which is indeed approximately equal to the sum of the percentage energy levels of the first
four POD modes (≈ 21 %), already reported in § 4. In figure 23(a) a threshold value εLSC
is also reported. This has been assumed equal to the sum of the percentage energy levels
of the POD modes 3–4, which is ≈ 8.4 %. Although arbitrary, such a choice is based on
the idea that, when the energy contribution from the POD modes 1–2 is negligible, the
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Figure 23. Criteria for the identification of the flow state based on POD analysis of the velocity field. (a) P.d.f.
of the ratio of the energy in the first four POD modes to the total energy of the fluctuating velocity field. The
dashed line indicates the threshold for the identification of a well-defined LSC. (b) P.d.f. of the ratio of the
energy in the POD modes 3–4 to the that in the POD modes 1–2. The dashed lines indicate the threshold for
the identification of the SRS and the DRS.

occurrence of the DRS requires the instantaneous contribution from the POD modes 3–4
to be greater than its averaged value. With this threshold, the probability of occurrence of
a well-defined LSC is estimated to be 89 %, thus the probability of an event is 11 %. In
figure 23(b) the p.d.f. of E(3−4)/E(1−2) is built by considering only the samples where a
well-defined LSC is detected (i.e. such that E(1−4)/Etot > εLSC = 8.4 %). It is possible to
see that this p.d.f. is monotonically decreasing and the probability that E(3−4) 	 E(1−2)

is small. The thresholds values εSRS and εDRS are also denoted in the same figure with
dashed lines. In particular, εSRS has been chosen equal to the statistically average value
of the quantity E(3−4)/E(1−2), whereas εDRS = 1 + (1 − εSRS); the resulting values are
εSRS = 0.67 and εDRS = 1.33. With these thresholds, the probability of occurrence for the
SRS, the TS and the DRS are, respectively, 49 %, 18 % and 33 %, among states that are
not classified as events. Therefore, compared with the values determined with the criteria
classically used in the literature (29 %, 44 % and 27 %, respectively, for the SRS, the
TS and the DRS), a greater frequency of occurrence of the SRS and lower frequency
of occurrence of the TS are found, whereas the frequency of occurrence of the DRS
is substantially unchanged. This suggests that the criteria adopted in the literature lead
essentially to a misinterpretation of the flow state in the SRS, which is often classified
erroneously as a TS.

The evidence that the first two POD modes contribute more to the SRS allows us to
conceive a different way of detecting the LSC orientation, based on the correlation of the
snapshots with the first two POD modes. Such a technique and its relationship with the
method adopted above is discussed in the next section.

5.4. Identification of LSC orientation based on POD
In this section, an alternative method of detecting the LSC orientation is introduced. Such
a method relies on an LOR of snapshots based on only the first two POD modes, which,
as aforementioned, contribute more to the SRS. In principle, the following steps have to
be performed: reconstructing each snapshot by combining the mean velocity field and
the contributions from the first two POD modes; extracting the azimuthal profile of the
vertical velocity at midheight; estimating the parameters of the cosine fit model and thus
the LSC orientation ϕm. The main advantage of this method is that the contributions of
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Figure 24. Statistical behaviour of the LSC orientation identified by means of the first two POD modes:
(a) p.d.f.; (b) comparison with the LSC orientation identified by the cosine fit of the azimuthal velocity profile
at z/H = 0.5. The SRS is identified with criteria based on the analysis of the vertical velocity azimuthal profile.

secondary modes, such as torsion and sloshing, are filtered out by the LOR process, since
they are related to the higher-order POD modes. To ease computation, in the second step,
it is possible to extract the azimuthal profiles of the vertical velocity at midheight for
the first and the second mode and combining them with the corresponding POD mode
temporal coefficients to obtain the velocity profile for a selected snapshot. A more robust
procedure consists in combining the profiles reported in figure 7, i.e. the azimuthal profiles
of the axially and radially averaged velocity for the first and the second mode. This is more
accurate since, as shown in § 4, the SR in the first two POD modes has a twisted structure.

Figure 24(a) presents the p.d.f. of the LSC orientation based on the method described
above (denoted by the symbol Φ). Differently from the p.d.f. of ϕm (figure 16a), the
p.d.f. of Φ does not feature a well-defined Gaussian distribution. However, a preferred
orientation is still detected, approximately at Φ ≈ −12◦. This indeed corresponds to the
phase angle of the blue curve in figure 7. Such a result is expected since the first POD
mode should in principle capture a preferential orientation of the LSC, if any. The fact
that the method based on the cosine fit of the azimuthal velocity profile at midheight does
not present a prominent peak at the LSC orientation of the first POD mode could indicate
a bias in the estimation of the LSC orientation. Indeed, when the p.d.f. of the difference
between Φ and ϕm is plotted (blue dots in figure 24b), a peak at the above-mentioned angle
is not observed. However, when restricting to only the samples related to the SRS, a peak
appears in the p.d.f. The origin of such a bias is not clear and further investigations are
needed on this point.

6. Conclusions

This work has investigated the statistical behaviour and the characteristic modes of RB
convection inside a cylinder with aspect ratio equal to one half at specific flow conditions,
namely Rayleigh and Prandtl numbers equal to 1.86 × 108 and 7.6 (the working fluid is
water). A peculiarity of the present experiment is that the convection cell has a smaller
size than systems that have been investigated previously in the literature, and this allows
velocimetry measurements in the whole interior of the convection cell. In such a way, it
has been possible to extract the full 3-D structure of the flow modes. Proper orthogonal
decomposition of the fluctuating velocity field has been used for such a purpose.
The structure of the POD modes reflects and gives a clear picture of the most characteristic
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patterns in which the LSC organizes itself in the instantaneous evolution. The SRS and
the DRS have been recognized in the first POD modes; the latter appear to be coupled
in pairs since any azimuthal orientation of the flow pattern is possible in the unsteady
evolution. Additionally, it has been shown that states of the LSC different from a pure
SRS or DRS, which are typically associated with the LSC oscillatory modes (such as
torsion and sloshing), are retrieved from the combination of the velocity field components
related to distinct POD mode pairs. This proves that the oscillatory modes are ascribable to
the dynamic evolution of the contributions from the POD velocity modes. A clear picture
of such mechanisms has been drawn by means of low-order reconstruction of specific
snapshots. To the authors’ knowledge, this is the first attempt to concretely visualize the
LSC oscillatory modes in the whole convection cell, which in previous studies have been
inferred and statistically analysed from the azimuthal measurements of the temperature at
the sidewall or two-dimensional velocimetry measurements.

In order to study the relationship between the occurrence of the SRS and the DRS in the
unsteady evolution and the energetic prevalence of the related POD modes, the statistical
behaviour of the LSC has been characterized with conventional diagnostic methods based
on the analysis of the azimuthal profiles of the vertical velocity near the cylinder sidewall
at three different heights, i.e. z/H = 0.25, z/H = 0.5 and z/H = 0.75. Results consistent
with the existing literature on the topic have been retrieved regarding the statistical analysis
of both the LSC strengths at the different heights and the LSC azimuthal orientation.
Moreover, it has been observed that the detection of the SRS is strictly correlated to the
energetic dominance of the POD modes 1–2, while the occurrence of the DRS is associated
with the prevalence of the POD modes 3–4. Nevertheless, specific time sequences have
been found, in which the criteria based on the cosine fits of the azimuthal velocity profiles
fail in the detection of the LSC state. Previous works (Stevens et al. 2011) have correctly
identified the reason for this failure in the passage of plumes and/or corner flows across
the locations of the probes for the measurement of the temperature or the vertical velocity.
The present study has shown that the bulk flow can exhibit a distinct organization from the
variety of plumes localized in the proximity of the sidewall. Such a complex flow structure
can lead to misinterpretation of the actual large-scale flow state inferred from the azimuthal
measurements at the bottom, middle and top of the cell in the proximity of the sidewall.
In the light of these findings, innovative criteria based on the POD analysis have been
proposed for the identification of the LSC states. More specifically, it is suggested that the
occurrence of a well-defined LSC is associated with a sufficiently high level of the energy
in the first four POD modes, such that E(1−4)/Etot > εLSC, with εLSC being a threshold
defined as a percentage of the total energy Etot in all POD modes. All the states that do
not satisfy such a condition are classified as events. Conversely, among the LSC states,
the distinction between the SRSs, the TSs and the DRSs can be made by evaluating the
ratio of the energy in the POD modes 3–4 to the energy in the POD modes 1–2, in such a
way that E(1−4)/E(1−2) < εSRS indicates an SRS, εSRS < E(1−4)/E(1−2) < εDRS indicates
a TS and E(1−4)/E(1−2) > εDRS indicates a DRS. Compared with the criteria based on the
cosine fits, the new criteria lead to a greater frequency of occurrence of the SRS and lower
frequency of occurrence of the TS. Thus, the SRS is found to be the most probable state
of the LSC in a cylinder with one-half aspect ratio. This result contrasts with the findings
from the previous work of Weiss & Ahlers (2011b), although in the latter study the Prandtl
number is different and the Rayleigh number is slightly higher.
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VERDOOLD, J., TUMMERS, M.J. & HANJALIĆ, K. 2009 Prime modes of fluid circulation in large-aspect-ratio
turbulent Rayleigh–Bénard convection. Phys. Rev. E 80 (3), 037301.

VERZICCO, R. 2004 Effects of nonperfect thermal sources in turbulent thermal convection. Phys. Fluids 16
(6), 1965–1979.

VERZICCO, R. & CAMUSSI, R. 1999 Prandtl number effects in convective turbulence. J. Fluid Mech. 383,
55–73.

VERZICCO, R. & CAMUSSI, R. 2003 Numerical experiments on strongly turbulent thermal convection in a
slender cylindrical cell. J. Fluid Mech. 477, 19–49.

VERZICCO, R. & ORLANDI, P. 1996 A finite-difference scheme for three-dimensional incompressible flows
in cylindrical coordinates. J. Comput. Phys. 123 (2), 402–414.

VILLERMAUX, E.L. 1995 Memory-induced low frequency oscillations in closed convection boxes. Phys. Rev.
Lett. 75 (25), 4618.

WEISS, S. & AHLERS, G. 2011a The large-scale flow structure in turbulent rotating Rayleigh–Bénard
convection. J. Fluid Mech. 688, 461.

WEISS, S. & AHLERS, G. 2011b Turbulent Rayleigh–Bénard convection in a cylindrical container with aspect
ratio Γ = 0.50 and Prandtl number Pr = 4.38. J. Fluid Mech. 676, 5–40.

WEISS, S. & AHLERS, G. 2013 Effect of tilting on turbulent convection: cylindrical samples with aspect ratio
Γ = 0.50. J. Fluid Mech. 715, 314–334.

WIENEKE, B. 2008 Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45 (4), 549–556.
WIENEKE, B. 2012 Iterative reconstruction of volumetric particle distribution. Meas. Sci. Technol. 24 (2),

024008.
XI, H.-D., LAM, S. & XIA, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale

circulation in turbulent thermal convection. J. Fluid Mech. 503, 47–56.
XI, H.-D. & XIA, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal

convection. Phys. Rev. E 75 (6), 066307:1–5.
XI, H.-D. & XIA, K.-Q. 2008 Flow mode transitions in turbulent thermal convection. Phys. Fluids 20 (5),

055104:1–14.
XI, H.-D., ZHANG, Y.-B., HAO, J.-T. & XIA, K.-Q. 2016 Higher-order flow modes in turbulent

Rayleigh–Bénard convection. J. Fluid Mech. 805, 31–51.
XI, H.-D., ZHOU, Q. & XIA, K.-Q. 2006 Azimuthal motion of the mean wind in turbulent thermal

convection. Phys. Rev. E 73 (5), 056312:1–13.
XI, H.-D., ZHOU, S.-Q., ZHOU, Q., CHAN, T.-S. & XIA, K.-Q. 2009 Origin of the temperature oscillation

in turbulent thermal convection. Phys. Rev. Lett. 102 (4), 044503:1–4.

922 A35-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.554


Experimental determination of the 3-D characteristic modes

XIA, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett.
3 (5), 052001.

XIA, K.-Q., SUN, C. & CHEUNG, Y.-H. 2008 Large scale velocity structures in turbulent thermal convection
with widely varying aspect ratio. In Proceedings of the 14th International Symposium on Applications of
Laser Techniques to Fluid Mechanics. Lisbon, Portugal, July 7–10.

ZHANG, Z. 2000 A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22
(11), 1330–1334.

ZHANG, Q., LIU, Y. & WANG, S. 2014 The identification of coherent structures using proper orthogonal
decomposition and dynamic mode decomposition. J. Fluids Struct. 49, 53–72.

ZHOU, Q., XI, H.-D., ZHOU, S.-Q., SUN, C. & XIA, K.-Q. 2009 Oscillations of the large-scale circulation
in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode.
J. Fluid Mech. 630, 367–390.

922 A35-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.554

	1 Introduction
	2 Experimental set-up and techniques
	2.1 The convection cell
	2.2 Imaging system and camera calibration
	2.3 Data acquisition and processing
	2.4 POD

	3 Structure of the mean velocity field and its relationship with the instantaneous evolution
	4 Characteristic modes of the turbulent convection
	5 Statistical analysis of the flow state
	5.1 Statistical behaviour of the LSC strength
	5.2 Statistical occurrence and properties of the SRS and DRS
	5.3 Relationship of the SRS and the DRS with low-order POD modes
	5.4 Identification of LSC orientation based on POD

	6 Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


