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Abstract

We extend the Burger—-Mozes theory of closed, nondiscrete, locally quasiprimitive automorphism
groups of locally finite, connected graphs to the semiprimitive case, and develop a generalization of
Burger—Mozes universal groups acting on the regular tree 7, of degree d € Ny3. Three applications are
given. First, we characterize the automorphism types that the quasicentre of a nondiscrete subgroup of
Aut(T,;) may feature in terms of the group’s local action. In doing so, we explicitly construct closed,
nondiscrete, compactly generated subgroups of Aut(7;) with nontrivial quasicentre, and see that the
Burger—Mozes theory does not extend further to the transitive case. We then characterize the (Py)-closures
of locally transitive subgroups of Aut(7,;) containing an involutive inversion, and thereby partially answer
two questions by Banks et al. [‘Simple groups of automorphisms of trees determined by their actions
on finite subtrees’, J. Group Theory 18(2) (2015), 235-261]. Finally, we offer a new view on the Weiss
conjecture.
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1. Introduction

In the structure theory of locally compact (1.c.) groups, totally disconnected (t.d.) ones
are in focus because any locally compact group G is an extension of its connected
component Gy by the totally disconnected quotient G/Gy,

1 Gy G G/Gy — 1,

and connected l.c. groups have been identified as inverse limits of Lie groups in
seminal work by Gleason [13], Montgomery and Zippin [20] and Yamabe [35].
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[2] Groups acting on trees 241

Every t.d.l.c. group can be viewed as a directed union of compactly generated open
subgroups. Among the latter, groups acting on regular graphs and trees stand out due
to the Cayley—Abels graph construction: every compactly generated t.d.l.c. group G
acts vertex-transitively on a connected regular graph I of finite degree d with compact
kernel K. In particular, the universal cover of I is the d-regular tree Ty and we obtain
a cocompact subgroup G of its automorphism group Aut(7,),

1 (D) G G/K —— 1,

as an extension of m;(I') by G/K; see [19, Section 11.3] and [15] for details.

In studying the automorphism group Aut(I') of a locally finite, connected graph
I' = (V,E), we follow the notation of Serre [25]. The group Aut(I') is t.d.l.c. when
equipped with the permutation topology for its action on V U E; see Section 2.1.
Given a subgroup H < Aut(I') and a vertex x € V, the stabilizer H, of x in H induces
a permutation group on the set E(x) := {e € E | o(e) = x} of edges issuing from x. We
say that H is locally ‘X’ if for every x € V the said permutation group satisfies property
‘X’ (for example, being transitive, semiprimitive or quasiprimitive).

In [2], Burger and Mozes develop a remarkable structure theory of closed,
nondiscrete, locally quasiprimitive subgroups of Aut(I'), which resembles the theory
of semisimple Lie groups; see Theorem 2.2. In Section 3 (specifically Theorem 3.14)
we show that this theory readily carries over to the semiprimitive case.

Let Q be a set of cardinality d € N3 and let T;=(V, E) be the d-regular tree. Burger
and Mozes complement their structure theory with a particularly accessible class of
subgroups of Aut(7,) with prescribed local action. Given F' < Sym(Q), their universal
group U(F) is closed in Aut(7,), vertex-transitive, compactly generated and locally
permutation isomorphic to F. It is discrete if and only if F is semiregular. When F
is transitive, U(F) is maximal up to conjugation among vertex-transitive subgroups of
Aut(T,) that are locally permutation isomorphic to F, hence universal.

We generalize the universal groups by prescribing the local action on balls of a
given radius k € N, the Burger—-Mozes construction corresponding to the case k=1.
Equip T, with a labelling, that is, a map / : E — Q such that for every x € V the map
L,:E(x)—Q, e l(e) is a bijection, and [(e)=I(e) for all ecE. Also, fix a tree By
that is isomorphic to a ball of radius k around a vertex in the labelled tree 7,; and let
IX: B(x, k) — By (x € V) be the unique label-respecting isomorphism. Then

o s Aut(Ty) X V — Aut(Bgg), (g,x) — l’g‘x ogo (l/’;)_1
captures the k-local action of g at the vertex x € V.
DEFINITION 1.1. Let F < Aut(Bg). Define

Ui(F) :={g e Aut(Ty) | forallx € V : oy(g,x) € F}.

While Uy(F) is always closed, vertex-transitive and compactly generated, other
properties of U(F) need not carry over. In particular, the group Ui(F) need not be
locally action isomorphic to F; we say that F < Aut(B, ) satisfies condition (C) if it is.
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This can be viewed as an interchangeability condition on neighbouring local actions;
see Section 4.4. There also is a discreteness condition (D) on F < Aut(Bgy) in terms
of certain stabilizers in F under which Uy (F) is discrete; see Section 4.2.2. Finally, the
groups Uy (F) are universal in a sense akin to the above by Theorem 4.34.

For F < Aut(Bgx), let F := nF < Sym(£€2) denote its projection to Aut(By,1), which
is naturally permutation isomorphic to Sym(€2) via the labelling of B, ;. The following
rigidity theorem is inspired by [2, Proposition 3.3.1].

THEOREM 1.2. Let F<Sym(Q) be 2-transitive and F,, (w€Q) simple nonabelian.
Further, let F < Aut(Bg ) with nF = F satisfy (C). Then Uy(F) equals either

Uy (I'(F)),  Ua(AF) or Ui(F).

Here, the groups I'(F), A(F) < Aut(B, ) of Section 4.4 satisty both (C) and (D) and
therefore yield discrete universal groups. Illustrating the necessity of the assumptions
in Theorem 4.32, we construct further universal groups in the case where either
point-stabilizers in F are not simple, F is not primitive, or F is not perfect; see, for
example, ®(F,N), O(F,P),II(F,p,X) < Aut(B,>) in Section 4.4.

In Section 5 we present three applications of the framework of universal groups.
First, we study the quasicentre of subgroups of Aut(7,). The quasicentre QZ(G)
of a topological group G consists of those elements whose centralizer in G is
open. It plays a major role in the Burger—Mozes structure theorem (Theorem 2.2): a
nondiscrete, locally quasiprimitive subgroup of Aut(7,;) does not feature any nontrivial
quasicentral elliptic elements. We extend this fact to the following local-to-global-type
characterization of the automorphism types that the quasicentre of a nondiscrete
subgroup of Aut(7,;) may feature in terms of the group’s local action.

THEOREM 1.3. Let H < Aut(T,) be nondiscrete. If H is locally:

(i)  Transitive, then QZ(H) contains no inversion.

(i)  Semiprimitive, then QZ(H) contains no nontrivial edge-fixating element.
(i)  Quasiprimitive, then QZ(H) contains no nontrivial elliptic element.

(iv)  k-transitive, (k € N) then QZ(H) contains no hyperbolic element of length k.

More importantly, the proof of the above theorem suggests using groups of the
form (e Up(F®) for appropriate local actions F® < Aut(Byy) in order to explicitly
construct nondiscrete subgroups of Aut(7,;) whose quasicentres contain certain types
of automorphisms. This leads to the following sharpness result.

THEOREM 1.4. There exist a d € Ns3 and a closed, nondiscrete, compactly generated
subgroup of Aut(Ty) that is locally:

(1)  Intransitive and contains a quasicentral inversion.

(i)  Transitive and contains a nontrivial quasicentral edge-fixating element.

(i)  Semiprimitive and contains a nontrivial quasicentral elliptic element.

(iv) (a) Intransitive and contains a quasicentral hyperbolic element of length 1.
(b)  Quasiprimitive and contains a quasicentral hyperbolic element of length 2.
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Part (ii) of this theorem can be strengthened to the following result which shows
that the Burger—Mozes theory does not extend further to locally transitive groups.

THEOREM 1.5. There exist d € Nx3 and a closed, nondiscrete, compactly generated,
locally transitive subgroup of Aut(T,) with open, hence nondiscrete, quasicentre.

We also give an algebraic characterization of the (P;)-closures of locally tran-
sitive subgroups of Aut(7,;) which contain an involutive inversion. Thereby, we
partially answer two questions by Banks et al. [1, page 259] who introduced the
term (Py)-closure in [1] and called it k-closure; however the term k-closure has an
established meaning for permutation groups due to Wielandt, so we use (Py)-closure
here. Recall (Section 2.2.2) that the (Py)-closure (k € N) of a subgroup H < Aut(7}) is
given by

H') = {g € Aut(T,) | forall x € V(T,) there exists i € H : glzory = hlaeen)-

THEOREM 1.6. Let H < Aut(T;) be locally transitive and contain an involutive
inversion. Then H*Y = Uy (F®) for some labelling 1 of T; and F® < Aut(Bg ).

Combined with the independence properties Py, k€N (Section 2.2.2), introduced
by Banks ef al. [1] as generalizations of Tits’ independence property, Theorem 5.31
entails the following characterization of universal groups.

COROLLARY 1.7. Let H < Aut(T;) be closed, locally transitive and contain an
involutive inversion. Then H = Up(F®) if and only if H satisfies property (Py).

Banks, Elder and Willis use subgroups of Aut(7,;) with pairwise distinct
(Py)-closures to construct infinitely many, pairwise nonconjugate, nondiscrete simple
subgroups of Aut(7,;) via Theorem 2.1 and ask whether they are also pairwise
nonisomorphic as topological groups. We partially answer this question in the
following theorem.

THEOREM 1.8. Let H < Aut(T,) be nondiscrete, locally permutation isomorphic to
F < Sym(Q) and contain an involutive inversion. Suppose that F is transitive and that

every nontrivial subnormal subgroup of F,, (weQ) is transitive on Q\{w}. If HPY #
H® for some k,1 € N then (H*Y)* and (H*?)*" are nonisomorphic.

Infinitely many families of pairwise nonisomorphic simple groups of this type, each
sharing a certain transitive local action, are constructed in Example 5.37.

Finally, Section 5.3 offers a new view on the Weiss conjecture [33] which states
that there are only finitely many conjugacy classes of discrete, locally primitive
and vertex-transitive subgroups of Aut(7}) for a given d € N,3. This conjecture was
extended by Potocnik ef al. in [21] to semiprimitive local actions, and impressive
partial results have been obtained by the same authors as well as by Giudici and
Morgan [11]. We show that under the additional assumption that each group contains
an involutive inversion, it suffices to show that for every semiprimitive F < Sym(€Q)
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there are only finitely many F< Aut(Bgy) (k € N) with nF = F that satisfy conditions
(C) and (D) in a minimal fashion; see Definition 5.42.

2. Preliminaries

This section gathers together preliminaries on permutation groups, graph theory
and Burger—Mozes theory. References are given in each subsection.

2.1. Permutation groups. Let Q be a set. In this section we give definitions and
results concerning the group Sym(Q) of bijections of Q. Refer to [6, 12, 22] and [15,
Section 1.2] for further details.

Let FF < Sym(Q). The degree of F is |Q)|. For w € Q, the stabilizer of win Fis F,, :=
{o € F | cw = w}. The subgroup of F generated by its point-stabilizers is denoted by
F* :={{F, | w € Q}). The permutation group F is semiregular, or free, if F,, = {id} for
all w € Q; equivalently, if F* is trivial. It is transitive if its action on Q is transitive,
and regular if it is both semiregular and transitive.

Let F < Sym(Q) be transitive. The rank of F is the number rank(F) := |F\Q?|
of orbits of the diagonal action o - (w,w’) := (Cw,cw’) of F on Q2. Equivalently,
rank(F) = |F,\Q| for all w € Q. Note that the diagonal A(Q) := {(w,w) | w € Q}
is always an orbit of the diagonal action F ~ Q2. The permutation group F is
2-transitive if it acts transitively on Q*\A(Q). In other words, rank(F) = 2.

We now define several classes of permutation groups lying in between the classes
of transitive and 2-transitive permutation groups. Let F < Sym(€2). A partition P :
Q = |ig; Q; of Q is preserved by F, or F-invariant, if for all o € F we have that
{ocQ; |ie I} ={CQ; | i € I}. The partitions Q = Q and Q = | | cq{w} are trivial. A map
a: Q — F is constant with respect to (w.r.t.) P if a(w) = a(w”) whenever w, v’ € Q;
for some i € I. The permutation group F is primitive if it is transitive and preserves
no nontrivial partition of Q. Equivalently, F is transitive and its point-stabilizers
are maximal subgroups. Given a normal subgroup N of F, the partition of Q into
N-orbits is F-invariant. Consequently, every nontrivial normal subgroup of a primitive
group is transitive. The permutation group F is quasiprimitive if it is transitive and
all its nontrivial normal subgroups are transitive. Finally, F' is semiprimitive if it
is transitive and all its normal subgroups are either transitive or semiregular. The
following implications among the above properties follow from the definitions; we
list examples illustrating that each implication is strict:

2-transitive = primitive = quasiprimitive = semiprimitive = transitive .
As ~ As/Ds As ~ As5/Cs Cy>Cy Dy > CryxCy

Note that As is simple and that Cs < Ds < As is a nonmaximal subgroup of As.

2.1.1. Permutation topology. Let X be a set and H < Sym(X). The basic open sets of
the permutation topology on H are U,, :={h€ H| foralli € {1,...,n}: h(x;) = y;},
where n € Nand x = (x1,...,X,),y = (J1,...,Yn) € X". This turns H into a Hausdorff,
t.d. group and makes the action map H X X — X continuous for the discrete topology
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on X. The group H is discrete if and only if the stabilizer in H of a finite subset of X
is trivial. It is compact if and only if it is closed and all its orbits are finite. Finally,
Sym(X) is second-countable if and only if X is countable.

2.2. Graph theory. We first recall Serre’s [25] notation and definitions in the
context of graphs and trees, and then give generalities about automorphisms of trees.
We conclude with an important simplicity criterion.

2.2.1. Definitions and notation. A graph T is a tuple (V, E) consisting of a vertex
set V and an edge set E, together with a fixed-point-free involution of E, denoted by
e — e, and maps o,t : E — V, providing the origin and terminus of an edge, such that
o(e) = t(e) and t(e) = o(e) for all e € E. Given e € E, the pair {e, e} is a geometric edge.
Forx € V, welet E(x) := 0~'(x) = {e € E | o(e) = x} be the set of edges issuing from x.
The valency of x € V is |E(x)|. A vertex of valency 1 is a leaf. A morphism between
graphs 'y = (V1,Ey) and I, = (V,, E) is a pair (ay,ag) of maps ay: V) — V;
and af : Ey — E, preserving the graph structure, that is, ay(o(e)) = o(ag(e)) and
ay(t(e)) = t(ag(e)) for all e € E.

For n € N, let Path, denote the graph with vertex set {0,...,n} and edge set
{(k,k+1),(k,k+ 1) |k €{0,...,n—1}}. A path of length n in a graph I is a morphism
v from Path,, to I It can be identified with (eq, ..., e,) € E(I')", where ¢, = y((k — 1, k))
for k € {1,...,n}. In this case, vy is a path from o(e) to t(e,).

Similarly, let Pathy, and Pathz be the graphs with vertex sets Ny and Z, and
edge sets {(k,k+ 1),(k,k+ 1) | k € No} and {(k,k + 1), (k,k + 1) | k € Z}, respectively.
A half-infinite path, or ray, in a graph I' is a morphism 7y from Pathy, to I'. It can
be identified with (e;)er € E(I)" where e; = y((k — 1,k)) for k € N. In this case, y
originates at, or issues from, o(ey). An infinite path, or line, in a graph I" is a morphism
from Pathz to I'. A pair (e, ex+1) = (e, ex) of edges in a path is a backtracking. A graph
is connected if any two of its vertices can be joined by a path. The maximal connected
subgraphs of a graph are its connected components.

A forest is a graph in which there are no nonbacktracking paths (ey,...,e,)
with o(e;) = t(e,), n € N. Consequently, a morphism of forests is determined by the
underlying vertex map. In particular, a path of length n € N in a forest is determined
by the images of the vertices of Path,,.

A tree is a connected forest. As a consequence of the above, the vertex set V of a
tree T admits a natural metric. Given x,y € V, define d(x, y) as the minimal length of
a path from x to y. A tree in which every vertex has valency d € N is d-regular. It is
unique up to isomorphism and denoted by 7.

Let T = (V,E) be a tree. For S € V U E, the subtree spanned by S is the unique
minimal subtree of T containing S. For x € V and n € Ny, the subtree spanned by {y €
V| d(y, x) < n} is the ball of radius n around x, denoted by B(x, n). Similarly, S(x, n) =
{y € V|d(y,x)=n} is the sphere of radius n around x, and the set of edges within
distance n of x is E(x,n) :={e € E | d(o(e), x),d(t(e),x) < n}. For a subtree 7" C T,
let 7:V — V(T’) denote the closest point projection, that is, m(x) =y whenever
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d(x,y) = mingey){d(x, z)}. In the case of an edge e = (x,y) € E, the half-trees T, and
T, are the subtrees spanned by 7! (x) and 77! (y), respectively.

Two nonbacktracking rays yi, 7y, : Pathy — T in T are equivalent, y, ~ vy,, if there
exist N,d € N such that y;(n) = y»(n + d) for all n > N. The boundary, or set of ends,
of T is the set T of equivalence classes of nonbacktracking rays in 7.

2.2.2. Automorphism groups of graphs. Let I' = (V,E) be a graph. We equip the
group Aut(I') of automorphisms of I with the permutation topology for its action on
VUE.

Notation. Let H < Aut(I'). Given a subgraph I'" C T, the pointwise stabilizer of T”
in H is denoted by Hr. Similarly, the setwise stabilizer of I in H is denoted by Hir).
In the case where I"” is a single vertex x, the permutation group that H, induces on
E(x) is denoted by HY < Sym(E(x)). Given a property ‘X’ of permutation groups, the
group H is locally ‘X’ if for every x € V the permutation group HY has “X’; with
the exception that H is locally k-transitive (k € Ny3) if H, acts transitively on the set
of nonbacktracking paths of length k issuing from x. It is locally co-transitive if it is
locally k-transitive for all k € N.

Let d e Ny3 and T, = (V,E) the d-regular tree. Then Aut(7T;) acts on 9T, by
g - [yl:=1g oyl Given [y] € 0T, the stabilizer of [yl in His H,; ={h€H | hoy ~ y}.

We let *H =({H,|x € V}) denote the subgroup of H generated by vertex-stabilizers
and H*=({H,|e € E}) the subgroup generated by edge-stabilizers. For a subtree T C
T, and k € N, let T* denote the subtree of 7,; spanned by {x € V | d(x, T) < k}. We set
H* = ({Hu-1 |e € E}). Then H"' = H* and

H'*"<H"<*H<H.

Classification of automorphisms. Automorphisms of T, can be divided into three
distinct types. Refer to [10, Section 6.2.2] for details.

For geAut(T,), set I[(g):=minyy d(x,gx) and V(g):={x € V|d(x,gx) = l(g)}. If
l(g) = 0 then g fixes a vertex. An automorphism of this kind is elliptic. Suppose now
that I(g) > 0. If V(g) is infinite then g is hyperbolic. Geometrically, it is a translation
of length I(g) along the line in T, defined by V(g). If V(g) is finite then I/(g) = 1 and g
maps some edge e € E to e and is termed an inversion.

Independence and simplicity. The base case of the simplicity criterion presented
below is due to Tits [29] and applies to sufficiently rich subgroups of Aut(7,;). The
generalized version is due to Banks ez al. [1]; see also [10].

Let C denote a path in 7, (finite, half-infinite or infinite). For every x € V(C) and
k € Ny, the pointwise stabilizer Ho« of C* induces an action Hgk) < Aut(r~'(x)) on
n~!(x), the subtree spanned by those vertices of T whose closest vertex in C is x. We
therefore obtain an injective homomorphism

) . (x)
(,DC . Hck g n HC),C,{
xeV(C)
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A subgroup H < Aut(7y) satisfies property (Py) (k € N) if go(C]H) is an isomorphism
for every path C in T,. If H < Aut(T,) is closed, it suffices to check the above
properties in the case where C is a single edge. For example, given a closed subgroup
H < Aut(T,), property (Py) is satisfied by its (Py)-closure:

H'"Y = {g € Aut(T,) | for all x € V(T there exists h € H : glper) = M-

THEOREM 2.1 [1, Theorem 7.3]. Let H < Aut(T,). Suppose H neither fixes an end nor
stabilizes a proper subtree of T, setwise, and that H satisfies property (Py). Then the
group H** is either trivial or simple.

2.3. Burger—-Mozes theory. In [2], Burger and Mozes develop a structure theory
of certain locally quasiprimitive automorphism groups of graphs which resembles the
theory of semisimple Lie groups. Their fundamental definitions are meaningful in the
setting of t.d.l.c. groups. Let H be a t.d.l.c. group. Define

H® .= ﬂ{N < H | N is closed and cocompact in H},
alternatively the intersection of all open finite-index subgroups of H, and
QZ(H) :={h € H| Zy(h) < H is open},

the quasicentre of H. Both H*® and QZ(H) are topologically characteristic subgroups
of H, that is, they are preserved by continuous automorphisms of H. Whereas H™ < H
is closed, the quasicentre need not be so.

Whereas for a general t.d.l.c. group H nothing much can be said about the size of
H) and QZ(H), Burger and Mozes show that good control can be obtained in the case
of certain locally quasiprimitive automorphism groups of graphs. The following result
summarizes their structure theory. It is a combination of Proposition 1.2.1, Corollary
1.5.1, Theorem 1.7.1 and Corollary 1.7.2 in [2].

THEOREM 2.2. Let I be a locally finite, connected graph. Further, let H < Aut(I') be
closed, nondiscrete and locally quasiprimitive. Then

(i) H™ is minimal closed normal cocompact in H;

(i) QZ(H) is maximal discrete normal, and noncocompact in H; and

(iii) HY/QZH)=H"/(QZ(H) N H*) admits minimal, nontrivial closed nor-
mal subgroups finite in number, H-conjugate and topologically simple.

If T is a tree and moreover H is locally primitive then
(iv) H®/QZ(H™) is a direct product of topologically simple groups.

2.3.1. Burger—Mozes universal groups. The first introduction of Burger-Mozes uni-
versal groups in [2, Section 3.2] was expanded in the introductory article [10], which
we follow closely. Most results are generalized in Section 4.

Let Q be a set of cardinality d € N3 and let T; = (V, E) denote the d-regular
tree. A labelling | of T; is a map [: E — Q such that for every x € V the map
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I, : E(x) = Q, e I(e) is a bijection, and I(e)=I(e) for all e € E. The local action
o(g,x) € Sym(Q) of an automorphism g € Aut(7y) at a vertex x € V is defined via

o Aut(Ty) X X — Sym(Q), (g,x) = 0(g,x) ;=080 l;l.
DEFINITION 2.3. Let F < Sym(Q) and / a labelling of 7;. Define
UD(F):={g € Aut(T,) | for all x € V : o(g, x) € F}.

The map o satisfies a cocycle identity: for all g,h € Aut(T;) and x € V we have
o(gh,x) = a(g, hx)o(h, x). As a consequence, UP(F) is a subgroup of Aut(Ty).

Passing to a different labelling amounts to passing to a conjugate of UV (F) inside
Aut(T,). We therefore omit reference to an explicit labelling from here onwards.

The following proposition collects several basic properties of Burger—-Mozes
groups. We refer the reader to [10, Section 6.4] for proofs.

PROPOSITION 2.4. Let F < Sym(Q). The group U(F) is

(i)  closed in Aut(T,),
(i)  vertex-transitive,
(i) compactly generated,
(iv) locally permutation isomorphic to F,
(V)  edge-transitive if and only if F is transitive, and
(vi) discrete if and only if F is semiregular.
Part (iii) of Proposition 2.4 relies on the following result which we include for future
reference. Given x € V and w € Q, let Lfff) € U{id}) denote the unique label-respecting
inversion of the edge e, € E with o(e,,) = x and l(e,) = w.

LEMMA 2.5. Letx € V. Then U({id}) = ({2 lw € Q}) = * (W)= % 7/27Z
weQ WeQ

PROOF. Every element of U({id}) is determined by its image on x. Hence, it suffices to
show that ({Lfff) | w € Q}) is vertex-transitive and has the asserted structure. Indeed, let
y € V\{x}, and let wy,...,w, € Q be the labels of the shortest path from x to y. Then
Lfffl) 0---0 Lf{f) maps x to y as every Lf{f) (w € Q) is label-respecting. Setting X,, := Tye,),
we have ¢,(X,,) C X,, for all distinct w, w’ € Q. Hence, the assertion follows from the
ping-pong lemma. ]

The name universal group is due to the following maximality statement. Its proof
(see [2, Proposition 3.2.2]) should be compared with the proof of Theorem 4.34.

PROPOSITION 2.6. 5 Let H < Aut(T;) be locally transitive and vertex-transitive.
Then there is a labelling | of T, such that H < UP(F) where F < Sym(Q) is action
isomorphic to the local action of H.

3. Structure theory of locally semiprimitive groups

We generalize the Burger—-Mozes theory of locally quasiprimitive automorphism
groups of graphs to the semiprimitive case. While this adjustment of Sections 1.1-1.5
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in [2] is straightforward and was initiated in [30, Section II.7] and [3, Section 6.2], we
provide a full account for the reader’s convenience.

3.1. General facts. Let I' = (V,E) be a connected graph. We first present a few
general facts about several classes of subgroups of Aut(I') for future reference.

LEMMA 3.1. Let H < Aut(') be locally transitive. Then *H is geometric edge transi-
tive and of index at most 2 in H.

PROOF. Since H is locally transitive, so is *H, given that *H, = H, for all x € V.
Hence, it is geometric edge transitive. In particular, it has at most two vertex orbits,
which implies the second assertion. o

LEMMA 3.2. Let H<Aut(I') and let T" = (V',E") be a connected subgraph of T.
Suppose R C H is such that for every x' € V' and e € E(x") there is r € R such that
re € E'. Then A := (R) satisfies | Jyep AT =T.

PROOF. By assumption, B(I", 1) € (Jyep AI”. Now suppose B(I",n) C (Jyep AI” for
some n € N. Let x’ € V(B(I"”,n)). Pick A € A such that A(x")€V’. Since A induces a
bijection between E(x") and E(A(x")) we conclude that B, n + 1) C (Jep AL O

Assume from now on that I is a locally finite, connected graph.

LEMMA 3.3. Let H < Aut(I). If H\I is finite then there is a finitely generated subgroup
A < H such that A\T is finite.

PROOF. Let I = (V',E’) CT be a connected subgraph that projects onto H\I'. For
every x’ € V' and e € E(x’), pick Ay, € H such that Ay .(e) € E’. Then the group
A= {Av. | ¥ € X, e € E(x')}) satisfies the conclusion by Lemma 3.2. O

LEMMA 3.4. Let A < Aut(I'). If A\I is finite then Zayr)(A) is discrete.

PROOF. Let F C E be finite such that | Jjcp AF = E and U := Ap N Zaym)(A), which
is open in Zayr(A). Given that U and A commute, U acts trivially on E = (J cp AF.
Hence, U = {id} and Zaur)(A) is discrete. O

LEMMA 3.5. Let Ay, Ay < Aut(). If A\T is finite and [A1, Ay] < Aut(T') is discrete
then Ay < Aut(') is discrete.

PROOF. Using Lemma 3.3 pick R € A; such that (R)\I" is finite. As [Aj, Ax]<Aut(I)
is discrete, there is an open subgroup U < Aj; such that [r, U] = {e} for all r € R. That
is, U < Zawm({R)). Hence, U is discrete by Lemma 3.4, and so is A,. O

LEMMA 3.6. Let H < Aut(I') be nondiscrete. Then QZ(H)\I is infinite.

PROOF. If QZ(H)\I is finite, there is a finitely generated subgroup A < QZ(H) such
that A\I is finite as well by Lemma 3.3. Hence, there is an open subgroup U < H with

U < Zawmy(A). Hence, U and therefore H are discrete by Lemma 3.4. O
LEMMA 3.7. Let A<Aut(I') be discrete. If A\I is finite then Nayr) (/) is discrete.
PROOF. Apply Lemma 3.5 to A := A and Ay := Nawm)(A). O
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3.2. Normal subgroups. Let I' = (V,E) denote a locally finite, connected graph.
For closed subgroups A < H of Aut(I') we define

Nu(H,A) ={N<H|A <N<H, N isclosed and does not act freely on E},

the set of closed normal subgroups of H that contain A and do not act freely on E. The
set Nye(H, A) is partially ordered by inclusion. We let My¢(H, A) € Nye(H, A) denote
the set of minimal elements in N s(H, A).

LEMMA 3.8. Let I'=(V, E) be a locally finite, connected graph and A < H<Aut(I'). If
H\T is finite and H does not act freely on E then Mys(H, A) # 0.

PROOF. We argue using Zorn’s lemma. First note that Nyr(H, A) is nonempty as it
contains H. Let C C Np(H, A) be a chain. Pick a finite set F' C E of representatives of
H\E.Forevery N € C,theset Fy := {e € F | N|, < Aut(e') is nontrivial} is nonempty.
Since F is finite and C is a chain it follows that (ycc Fy is nonempty, that is, there
exists e € F such that N|,: is nontrivial for every N € C. As before, we conclude that
M := (\yec Nl 1s nontrivial. For @ € M\{id}, N* := {g € N, | gl.» = @} is a nonempty
compact subset of H,, and since C is a chain every finite subset of {N* | N € C} has
nonempty intersection. Hence, (\yec N is nonempty and therefore N¢ := (\yec N 18
a closed normal subgroup of H containing A that does not act freely on E. Overall,
N¢ € Mnf(H, A). O

The following lemma is contained in the author’s PhD thesis [30, Section I1.7] and,
independently, in Caprace and Le Boudec [3, Section 6.2].

LEMMA 3.9. Let T' = (V,E) be a locally finite, connected graph. Further, let H <
Aut(I') be locally semiprimitive and N < H. Define

Vi :i={x e V|N, ~ Sx,1) is transitive and not semiregular},
Vo i={x e V|N, ~ S(x, 1) is semiregular}.

Then one of the following assertions holds.

(i) V =VyandN acts freely on E.

(i) V=V, and N is geometric edge transitive.

(i) V=V, UV, is an H-invariant partition of V and B(x, 1) is a fundamental
domain for the action of N on I for any x € V.

PROOF. Since H is locally semiprimitive and N is normal in H, we have V = V| LI V,.
If N does not act freely on E then there exist an edge e € E with N, # {id} and an
N,-fixed vertex x € V for which N, ~ S(x, 1) is not semiregular, hence transitive. That
is, V1 # 0. Now, either V,(N) = 0 in which case N is locally transitive and we are
in case (ii), or V,(N) # 0. Being locally transitive, H acts transitively on the set of
geometric edges and therefore has at most two vertex orbits. Given that both V; and V,
are nonempty and H-invariant, they constitute exactly the said orbits. Since any pair
of adjacent vertices (x, y) is a fundamental domain for the H-action on V, we conclude
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that if y € V, then x € V,. Thus every leaf of B(y, 1) is in V| and we are in case (iii) by
Lemma 3.2. O

3.3. The subquotient H /QZ(H*. In this section, we achieve control over H*
and QZ(H) as well as the normal subgroups of H in the semiprimitive case. We then
describe the structure of the subquotient H*/QZ(H). First, recall the following
lemma from topological group theory.

LEMMA 3.10. Let G be a topological group. If H < G is discrete then H C QZ(G).

PROOF. For h € H, the map ¢, : G — H, g — ghg™' is well defined because H < G,
and continuous. Hence, there is an open set U C G containing 1 € G and such that
en(U) C {h}, thatis, U € Zg(h). o

PROPOSITION 3.11. Let T = (V,E) be a locally finite, connected graph. Further, let
H < Aut(T') be closed, nondiscrete and locally semiprimitive. Then the following
assertions hold.

(i) H/H™ is compact.

(i) QZ(H) acts freely on E, and is discrete noncocompact in H.

(iii)) For any closed normal subgroup N < H, either N is nondiscrete cocompact and
N> H®™) or N is discrete and N < QZ(H).

(iv) QZ(H®™) = QZ(H) N H™ acts freely on E without inversions.

(v)  For any open normal subgroup N < H* we have N = H®).

(vi) H®™ is topologically perfect, that is, H® = [H®, H®].

PROOF. For (i), let N < H be closed and cocompact. Since H is nondiscrete, so is N
in view of Lemma 3.7. Hence, N € Nys(H, {id}). Conversely, if N € N¢(H, {id}) then
N is cocompact in H by Lemma 3.9. We conclude that H* = N Ns(H, {id}). This
intersection is in fact given by a single minimal element of N,¢(H, {id}). Using Lemma
3.8, pick M € M¢(H, {id}), and let N € N¢(H,{id}). Suppose N 2 M. Because M is
minimal, N N M acts freely on E. In particular, N N M is discrete. Since both N and
M are normal in H, we also have N N M 2 [N, M] and hence N and M are discrete by
Lemma 3.5. Then so is H C Nayq)(H) by Lemma 3.7. Overall, H™ =M € My¢(H, {id})
and the assertion now follows from Lemma 3.9.

As to (ii), the group QZ(H) is noncocompact by Lemma 3.6 and therefore acts freely
on E by Lemma 3.9. In particular, it is discrete.

For (iii), let N < H be a closed normal subgroup. If N acts freely on E, then N is
discrete and hence contained in QZ(H) by Lemma 3.10. If N does not act freely on E
then N is cocompact in H by Lemma 3.9 and therefore contains H*.

Concerning (iv), the inclusion QZ(H) N H*™ c QZ(H)) is automatic. Further,
QZ(H™) is normal in H because it is topologically characteristic in H™ < H.
Therefore, if QZ(H™) ¢ QZ(H), then QZ(H) is nondiscrete by part (iii) and does
not act freely on E. Then QZ(H)\T is finite by Lemma 3.9, contradicting Lemma
3.6 applied to H™ which is nondiscrete because QZ(H®) < H*® is. Consequently,
QZ(H"™) < QZ(H), which proves the assertion.
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For part (v), note that My:(H,{id}) is nonempty by Lemma 3.8 as H™ is
cocompact in Aut(I") by part (i) and nondiscrete by part (iii). Further, since QZ(H)
acts freely on E, every N € Ns(H®, {id}) is nondiscrete by part (iii) as well. Given an
open subgroup U < H™ and N € My¢(H*, {id}), the group U N N is normal in H
and nondiscrete. In particular, U N N does not act freely on £ and hence UNN = N.
Thus U contains the subgroup of H® generated by the elements of M,:(H, {id}),
which is closed, normal and nondiscrete. Hence, U = H®.

As to (vi), the group [H™, H®] is nondiscrete by part (i) and Lemma 3.5. Hence,
so is [H(®), H*)] 1 H®, Now apply part (iii). O

PROPOSITION 3.12. Let I = (V,E) be a locally finite, connected graph. Further, let
H < Aut(T') be closed, nondiscrete and locally semiprimitive. Finally, let A < H such
that A < QZ(H). Then the following assertions hold.

(i) (a) The group H acts transitively on Mys(H™, A).
(b)  The set My(H®, A) is finite and nonempty.
(i) Let M € Muy(H®™, A).

(@) The group M/ is topologically perfect.
(b)  The group QZ(M) acts freely on E and QZ(M) = QZ(H™) N M.
(c¢) The group M /QZ(M) is topologically simple.

(iii) For every N € Nps(H™, A) there is M € Mys(H®, A) with N D M.

PROOF. Since every discrete normal subgroup of H* is contained in QZ(H™) by
Lemma 3.10 (iii), and the latter acts freely on E by Proposition 3.11(iii), every element
of Nyui(H®, A) is nondiscrete. We proceed with a number of claims.

(1) Forevery N € Nyt(H, A) we have [H™,N] ¢ QZ(H®).
This follows from the above combined with Proposition 3.11(i) and Lemma 3.5.

In the following, given S € Mu(H®, A), we let Ms := (M | M € Sy < H denote
the subgroup of H™ generated by | /s M.

(2) The group H acts transitively on My(H*™, A).
Let S be an orbit for the action of H on My(H, A), and suppose there is an
element M € My(H®, A)\S. For every N € S, the subgroup N N M is normal
in H® and acts freely on E by minimality of M, hence is discrete. The same
therefore holds for [N,M] C N N M. Thus [N, M] C QZ(H™). As QZ(H®) is
discrete by Proposition 3.11 and therefore closed in H™ we conclude [Ms, M] C
QZ(H™). On the other hand, ATS is normal in H since S is an H-orbit. It is
also closed in H, and nondiscrete by the above. Thus Mg = H™ by Proposition
3.11(iii), and [H™, M] € QZ(H), which contradicts part (1).

(3) Forevery M € My(H™, A) we have [M,M]-A = M.
Note that [M,M]-A is a group because A is normal in M. Suppose there
is an element My € My (H™, A) with [My, My] - A < My. Then [My, My] - A
acts freely on E by minimality of My and is discrete. Since [My, My] is also

https://doi.org/10.1017/51446788722000143 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788722000143

[14] Groups acting on trees 253

normal in H®, we obtain [My, My] C QZ(H"). Part (2) now implies that
[M,M] C QZ(H") for all M € My(H™, A). Given that [M,M’] € QZ(H*)
for all distinct M, M’ in My:(H®, A) as well, we conclude that [H™, H®™] C
QZ(H™), which contradicts part (1).

(4) Forevery N € Ny(H™, A) there is M € My(H®, A) with N 2 M.
Let S:={M e My (H®, A)|N 2 M}. Then [Mg, N]CQZ(H™) as above. On the
other hand, for T := My(H*, A), the group My C H* is closed, nondiscrete
and normal in H, thus M7 = H®. Using (1), we conclude that S # T, which
proves the assertion.

(5) LetS,S be disjoint subsets of My(H™, A). Then Ms N Mg € QZ(H®).
If not, we have Ms N Mg € My(H™, A) and there is, by part (4), an element
M € Muy(H™, A) with M € Mg N Mg. However, this implies that [M,M] C
[Mg, Mg C QZ(H), which contradicts part (3).

(6) The set My (H™, A) is finite and nonempty.
The set Mnf(H(m) A) is nonempty by Lemma 3.8. Let G = | J Mg, where the
union is taken over all finite subsets S of the set My:(H®,A). Then G is
nondiscrete and normal in H. Hence, G = H™ by Proposition 3.11(iii). Since
H is second-countable and locally compact, it is metrizable. Hence, H* is a
separable metric space and the same holds for G. Let L C G be a countable dense
subgroup, and fix an exhaustion F; C F, C --- C F of F by finite sets. Let (S),),en
be an increasing sequence of finite subsets of My(H, A) such that F,, C M. S,
In particular,

LCMU and thus MU S, —H(oo)

neN Sn

which by (5) and (1) implies Mys(H, A) = U, Sp. Thus Mys(H®, A) is
countable. Next, fix M € My(H®, A). Then Ny(M) is closed and of countable
index in H, and thus has nonempty interior as H is a Baire space. Hence, Ny(M) is
open in H. Given that Ny(M) contains H®, we conclude that Ny (M) is of finite
index in H using Proposition 3.11(i). Since H acts transitively on M(H®, A)
by (2) we conclude that M,;(H*, A) is finite by the orbit—stabilizer theorem.

The above claims yield parts (i)(a), (i)(b), (ii)(a) and (iii) of Proposition 3.12. We
now turn to parts (ii)(b) and (ii)(c).

(ii)(b) Using part (6), let My(H ™, A) = {M,, ..., M,} and define
Q:=QZMy)----- QZ(M,).

Note that since QZ(M,) is characteristic in M;, which is normal in H*, the
quasicentres in the above definition normalize each other, so Q is a group.
It is then normal in H. If Q does not act freely on E then Q\I is finite by
Lemma 3.9 and there exist Ay, ..., 4; € Q by Lemma 3.3 such that for Q' :=
(41, ..., Ax) the quotient Q'\I" is finite. For every i € {1,...,k}, write 4; = a;b;
where a; € QZ(M)) and b; € QZ(M3) - - - - - QZ(M,). Let U; < M, be an open
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subgroup such that [a;, U;] = {e} foralli € {1,...,k}. Since [M ---M,,M ] C
QZ(H™), there is an open subgroup U, < M, such that [b;, U,] = {e} for all
iefl,...,k}. Hence, U := U; N Uy < M, is contained in Zaum(€'), which
by Lemma 3.4 implies that U and hence M is discrete, a contradiction. Thus
Q acts freely on E, is discrete and therefore Q C QZ(H). That is, QZ(M;) C
QZ(H™) N M;. The opposite inclusion follows from the definitions.

(ii)(c) LetM € My (H®, A)andlet N < M be a closed subgroup containing QZ(M).
For every M’ € Mps(H®, A) with M # M’ we have

[M',M]C M’ CM C QZH™).

This implies [M’,N] € QZ(H) N M = QZ(M) C N; that is, M’ normal-
izes N. Since N <M, this implies N < H®; and hence, by minimality
of M, we have either that N =M or else that N acts freely on E and
N C QZH™)NM = QZ(M). |

COROLLARY 3.13. LetT" = (V, E) be alocally finite, connected graph. Further, let H <
Aut(I') be closed, nondiscrete and locally semiprimitive. Minimal, nontrivial closed
normal subgroups of H*)/QZ(H™) exist. They are all H-conjugate, finite in number
and topologically simple.

PROOF. Apply Proposition 3.12 to A = QZ(H®). O

We summarize the previous results in the following theorem, which is a verbatim
copy of Burger and Mozes’ Theorem 2.2, except that the local action need only be
semiprimitive, not quasiprimitive.

THEOREM 3.14. Let I be a locally finite, connected graph. Further, let H<Aut(I')

be closed, nondiscrete and locally semiprimitive. Then the following assertions
hold.

(i) H® is minimal closed normal cocompact in H.

(i) QZ(H) is maximal discrete normal, and noncocompact in H.

(iii) H/QZH)=H"/(QZ(H) N H™) admits minimal, nontrivial closed nor-
mal subgroups finite in number, H-conjugate and topologically simple.

If T is a tree, and, in addition, H is locally primitive then
(iv) H®/QZ(H™) is a direct product of topologically simple groups.
PROOF. Parts (i) and (ii) stem from parts (i), (ii) and (iii) of Proposition 3.11 in
combination with Section 2.3. For part (iii), use part (iv) of Proposition 3.11 and
Corollary 3.13. Finally, part (iv) is Corollary 1.7.2 in [2]. It follows from Theorem 1.7.1

in [2] as the commutator of any two distinct elements in M,;(H®, A) is contained in
QZ(H™)). O
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4. Universal groups

In this section, we develop a generalization of Burger—Mozes universal groups that
arises through prescribing the local action on balls of a given radius k € N around
vertices. The Burger—-Mozes construction corresponds to the case k = 1.

Whereas many properties of the original construction carry over to the new
set-up, others require adjustments. Notably, there are compatibility and discreteness
conditions on the local action F under which the associated universal group is locally
action isomorphic to F and discrete, respectively.

We then exhibit examples and (non)rigidity phenomena of our construction. Finally,
a universality statement holds under an additional assumption.

4.1. Definition and basic properties.

4.1.1. Definition. Let Q be a set of cardinality d € N3 and let T, = (V, E) denote the
d-regular tree. A labelling [ of T;is amap [ : E — Q such that for every x € V the map
I;: E(x) = Q, e — I(e) is a bijection, and I(e) = I(e) for all e € E.

For every k € N, fix a tree B, that is isomorphic to a ball of radius k around a vertex
in T,. Let b denote its centre and carry over the labelling of 7, to B, via the chosen
isomorphism. Then for every x € V there is a unique, label-respecting isomorphism I :
B(x,k) = Byj. We define the k-local action o(g, x)€ Aut(B,x) of an automorphism
geAut(T,) at a vertex x € V via

ok 2 Aut(Ty) X V = Aut(Byy), (8,%) - (g, %) := I, 0 go (1)
DEFINITION 4.1. Let F < Aut(B,;) and [ be a labelling of T,;. Define
UP(F) = {g € Aut(T,) | for all x € V : o4 (g, x) € F).

The following lemma states that the maps o7 satisfy a cocycle identity which
implies that U,(f)(F ) is a subgroup of Aut(7y) for every F < Aut(Byx).

LEMMA 4.2. Let x € V and g, h € Aut(Ty). Then o(gh, x) = (g, hx)oi(h, x).
PROOF. We compute

Tr(gh, x) = Iy, 0 gh o ()" = Ly,

= ll((gh)x ogo (ll;m)_1 o ll;lx oho (lﬁ)_1 = oi(g, hx)ai(h, x). o

ogoho(ly!

4.1.2. Basic properties. Note that the group U(ll)(F ) of Definition 4.1 coincides with
the Burger-Mozes universal group U (F) introduced in [2, Section 3.2] under the
natural isomorphism Aut(B,;) = Sym(Q2). Several basic properties of the latter group
carry over to the generalized set-up. First of all, passing between different labellings of
T, amounts to conjugating in Aut(7,). Subsequently, we therefore omit the reference
to an explicit labelling.

LEMMA 4.3. For every quadruple (I,I',x,x") of labellings L,I" of T, and vertices
x,x' €V, there is a unique automorphism g € Aut(Ty) with gx = x" and !’ =lo g.
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PROOF. Set gx :=x'. Now assume inductively that g is uniquely determined on
B(x,n), n € Ny, and let v € S(x,n). Then g is also uniquely determined on E(v) by
the requirement [ = / o g, namely g|g,) := l|E(1gv) o l'lgw)- O

PROPOSITION 4.4. Let F < Aut(Byy). Further, let | and I' be labellings of T;. Then
the groups UZI)(F ) and U;(l )(F ) are conjugate in Aut(Ty).

PROOF. Choose x € V. Let 7 € Aut(7,) denote the automorphism of T, associated to
(I, 7', x, x) by Lemma 4.3. Then UY(F) = U (F)r ™. O

The following basic properties of Ui(F) are as in Proposition 2.4.

PROPOSITION 4.5. Let F < Aut(Byz). The group Ui(F) is

(i)  closed in Aut(Ty),
(i)  vertex-transitive, and
(ili) compactly generated.

PROOF. For (i), note that if g ¢ Ui(F) then oy(g,x) ¢ F for some x € V. In this
case, the open neighbourhood {h € Aut(Ty) | hlpx) = &l i) of g in Aut(Ty) is also
contained in the complement of U, (F).

For (ii), let x,x” € V and let g € Aut(7,) be the automorphism of 7 associated to
(I,1,x,x") by Lemma 4.3. Then g € Uy(F) as o(g,v) =id € Fforallve V.

To prove (iii), fix x € V. We show that U (F) is generated by the join of the compact
set Uy(F), and the finite generating set of U;({id}) = Ui({id}) < Up(F) guaranteed by
Lemma 2.5. Indeed, for g € Uy (F) pick g’ in the finitely generated, vertex-transitive
subgroup U ({id}) of Ui(F) such that g’gx = x. We then have g’g € Uy (F), and the
assertion follows. O

For completeness, we explicitly state the following proposition.

PROPOSITION 4.6. Let F < Aut(Bgy). Then Ur(F) is a compactly generated, totally
disconnected, locally compact, second countable group.

PROOF. The group Ui(F) is totally disconnected, locally compact, second countable
as a closed subgroup of Aut(7,), and compactly generated by Proposition 4.5. ]

Finally, we record that the groups U (F) are (Py)-closed.
PROPOSITION 4.7. Let F' < Aut(By ). Then Ui(F) satisfies property (Py).

PROOF. Let e = (x,y) € E. Clearly, Ug(F)x 2 Up(F) et 1, - Ur(F) et 1, Conversely, con-
sider g € Ux(F). and define g, € Aut(7,) and g, € Aut(T,) by

or(g,v) veV(T,) id v e V(Ty)
O-k(gy, V) =9. and O—k(gx, V) =
id ve V() oi(g,v) veV(T,),
respectively. Then gy € Up(F)p 7., &x € Up(F)er 7, and g = gy © gx. ]
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4.2. Compatibility and discreteness. We now generalize parts (iv) and (vi)
of Burger and Mozes’ Proposition 2.4. There are compatibility and discreteness
conditions (C) and (D) on subgroups F < Aut(B;;) that hold if and only if
the associated universal group is locally action isomorphic to F and discrete,
respectively.

We introduce the following notation for vertices in the labelled tree (7, /). Given
xeVand € = (wy,...,w,) € Q"(n € Ny), set xg := yy¢(n) where

w1 w9

V& Pathg) =

. —o—)Td

1 2 B n

is the unique label-respecting morphism sending 0 to x € V. If £ is the empty word,
set xg := x. Whenever admissible, we also adopt this notation in the case of By
and its labelling. In particular, S(x,n) is in natural bijection with the set Q" :=
{(wiy...,w,) € Q| forallk e {l,...,n—1}: Wiy # Wi}

4.2.1. Compatibility. First, we ask whether U, (F) locally acts like F, that is, whether
the actions Uy(F), ~ B(x, k) and F ~ B are isomorphic for every x € V. Whereas
this always holds for k = 1 by Proposition 2.4(iv), it need not be true for k > 2, the
issue being (non)compatibility among elements of F. See Example 4.9. The condition
developed in this section allows for computations. A more practical version from a
theoretical viewpoint follows in Section 4.4.

Now, let x € V and suppose that a € Uy(F), realizes a € F at x, that is,

gy = ) oao Lk,

Then given the condition that o(«, x,,) is in F for all w € €, we obtain the following
necessary compatibility condition on F for Uy(F) to act like F' atx € V:

for all a € F, for all w € Q : there exists a,, € F :

) eaolls, =, cayoll s,
where S, := B(x, k) N B(x,,k) C T,;.SetT,, := l’;(Sw) C B, . Then the above condition
can be rewritten as

foralla € F, for all w € Q : there exists a,, € F :

k ky-1 ko ok -1
aylr, = loy, 0 (L)~ caolio(ly ) |r,.

Now note the following observations. First, a@x,, depends only on a. Second, the subtree

T,, of By does not depend on x. Third, ¢, := K|t o (% )~'[> is the unique nontrivial,

involutive and label-respecting automorphism of 7,; it is given by

T,

w - Sm .
to = Bl o (5 ) : Ty = Su = Tas be o Xug o b
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for admissible words &. Hence, the above condition may be rewritten as
forall a € F, for all w € Q : there exists a,, € F : aylr, = taw © a © L. ©)
In this situation we say that a,, is compatible with a in direction w.

PROPOSITION 4.8. Let F < Aut(B;x). Then Ui(F) is locally action isomorphic to F if
and only if F satisfies (C).

PROOF. By the above, condition (C) is necessary. To show that it is also sufficient, let
x € V and a € F. We aim to define an automorphism a € Ui(F), which realizes a at x.
This forces us to define

B = (l)lﬁ)_1 oao l];.

Now, assume inductively that @ is defined consistently on B(x,n) in the sense that
or(a,y) € Fforall y € B(x, n) with B(y, k) C B(x, n). In order to extend a to B(x,n + 1),
lety € S(x,n —k + 1) and let w € Q be the unique label such that y,, € S(x,n — k). Set
¢ := oy(a,y,). Applying condition (C) to the pair (¢, w) yields an element c,, € F such
that

() ocoly|s, = (s ocy 0k,
where S, := B(y, k) N B(y,, k) and we have realized

k T, kn—1,S k
L, as lymlsz o (ly) |TZ and (., as !/

T, ko \—1asS
aryl w o (layw) @ o

aS, Tew
Now extend @ consistently to B(v,n + 1) by setting @l = (£,)" o ¢,, o IX. O

EXAMPLE 4.9. Let Q :={1,2,3} and a € Aut(B3,) be the element that swaps the
leaves byp and bj3 of B3,. Then F :=(a) = {id,a} does not contain an element
compatible with a in direction 1 € Q and hence does not satisfy condition (C).

We show that it suffices to check condition (C) on the elements of a generating set.
Let F < Aut(Byy) and a,b € F. Set ¢ := ab. Then

Colt, = tew ©a0b oLy = (Lew © A © tpy) © (tpw © b 0 L)
= (La(bw) cao wa) © (wa obo Lw)- (M)

Let Cr(a, w) denote the compatibility set of elements in F' that are compatible with a €
F in direction w € Q. Then (M) shows that Cr(ab, w) 2 Cr(a, bw)Cr(b, w). It therefore
suffices to check condition (C) on a generating set of F.

Given S C Q, we also define Cr(a, S) := (yes Cr(a, w), the set of elements in F that
are compatible with a € F in all directions from S. We omit F in this notation when it
is clear from the context.

As a consequence, we obtain the following description of the local action of Uy (F)
when F does not satisfy condition (C).

PROPOSITION 4.10. Let F <Aut(Bgx). Then F has a unique maximal subgroup C(F)
that satisfies (C). We have C(C(F))=C(F) and Up(F)=U,(C(F)).
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PROOF. By the above, C(F):=(H < F | H satisfies (C)) < F satisfies condition (C). It
is the unique maximal such subgroup of F by definition, and C(C(F)) = C(F).

Furthermore, U, (C(F)) < Ui(F). Conversely, suppose g € Ui(F)\Ui(C(F)). Then
there is x € V such that (g, x) € F\C(F) and the group

C(F) <(C(F), {ow(g. ) [ xe V) < F

satisfies condition (C), too, as can be seen by setting o(g,x), := o(g,X,). This
contradicts the maximality of C(F). O

REMARK 4.11. Let F < Aut(Bgy) satisfy (C). The proof of Proposition 4.8 shows
that elements of U(F) are readily constructed. Given x,y € V(T,) and a € F, define
g : B(x,k) — B(y, k) by setting g(x) =y and o(g,x) = a. Then, given elements a, €
F(w € Q) such that a,, € Cp(a,w) for all w € Q, there is a unique extension of g to
B(x,k + 1) so that o4(g, x,,) = a,, for all w € Q. Proceed iteratively.

4.2.2. Discreteness. The group F < Aut(Bgy) also determines whether or not U(F)
is discrete. In fact, the following proposition generalizes Proposition 2.4(vi).

PROPOSITION 4.12. Let F < Aut(Bg ). Then Uy(F) is discrete if F satisfies
forallw € Q: Fr, = {id}. D)
Conversely, if Uy (F) is discrete and F satisfies (C), then F satisfies (D).

Alternatively, Ui (F) is discrete if and only if C(F) satisfies (D). Example 4.9 shows
that condition (C) is necessary for the second part of Proposition 4.12.
Finally, note that F satisfies (D) if and only if Cr(id, w) = {id} for all w € Q.

PROOF OF PROPOSITION 4.12. Fix x € V. A subgroup H < Aut(7,) is nondiscrete if
and only if for every n € N there is 4 € H\{id} such that A|p( ) = id.

Suppose that Ui(F) is nondiscrete. Then there are n € Ny, and «a € Ui(F)
such that alpu,) =1id and a@|pn.+1) # id. Hence, there is y € S(x,n —k+ 1) with
a := oy(a,y) #id. In particular, a € Fr \{id} where w is the label of the unique
edge e € E with o(e) = y and d(x,y) = d(x, t(e)) + 1.

Conversely, suppose that F satisfies (C) and Fr, # {id} for some w € Q. Then
for every n € Ny, we define an automorphism « € Up(F) with alp,) =id and
alpinsr) #1d. If @lp,yy = id, then o (e, y) € F for all y € B(x,n — k). Choose e € E
withy :=o(e) € S(x,n — k + 1) and t(e) € S(x, n — k) such that /(¢) = w. We extend a to
B(y, k) by setting e/|gyx := lf, oso (l’y‘)‘1 where s € Fr, \{id}. Finally, we extend a to T

using (C). O
We define the following condition (CD) on F' < Aut(B,) as the conjunction of (C)

and (D):
for all a € F, for all w € Q : there exists a,, € F : aulr, = taw © a0 Ly. (CD)

The following description is immediate from the above. When F satisfies (CD), an
element of Uy(F), is determined by its action on B(x, k). Hence, Ui (F), = F for every
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x €V and Up(F)y) = Fopp,) for every (x,y) € E with I(x,y) = w. Furthermore, F
admits a unique involutive compatibility cocycle, that is, a map z: FXQ — F,
(a, w) — a,, which for all a, b € F and w € Q satisfies

(1)  (compatibility) z(a, w) € Cr(a, w),
(i)  (cocycle) z(ab, w) = z(a, bw)z(b, w), and
(iii)  (involutive) z(z(a, w), w) = a.

Note that z restricts to an automorphism z,, of Fpp,)(w € ) of order at most 2.

4.3. Group structure. For F < Aut(Bgz), let F := nF < Sym(€2) denote the pro-
jection of F onto Aut(By,1) = Sym(Q2). As an illustration, we record that the group
structure of Uy(F) is particularly clear when F is regular.

PROPOSITION 4.13. Let F< Aut(Bgy) satisfy (C). Suppose F := F is regular. Then
UF)=U(F)=F=Z/2Z.

PROOF. Fix x € V. Since F is transitive, the group Uk(f) is generated by Uk(F)x and an
involution ¢ inverting an edge with origin x. Given @ € Uy(F),, regularity of F' implies
that oi(a,y) = oy(@,x) € F for all y € V. Now, the subgroups H; := Uy(F), = F and
H, = {t) of Up(F) generate a free product within Ui(F) by the ping-pong lemma.
Put X := V(Ty) and X, := V(T,, ). Any nontrivial element of H; maps X, into X; as
F,, = {id}, and ¢ € H, maps X| into X>. O

More generally, Bass—Serre theory [25] identifies the universal groups Ui(F) as
amalgamated free products, taking into account that Uy (F) acts with inversions.

PROPOSITION 4.14. Let F < Aut(Byy) satisfy (C) (and (D)). If nF is transitive then

UL(F) = Ug(F)y Uk<F>gx,y]( = F o (Fpp, = Z/2 Z>)
Ur(F)y) Fop,)

for any edge (x,y) € E, where w = l(x,y) and Z|2Z acts on F,p,) as z,.

COROLLARY 4.15. Let F,F’' <Aut®B,y) satisfy (CD). If there are w,w’ € Q and an

isomorphism ¢ F — F' such that o(Fp,)) = F(’b buy then Up(F) = Up(F).

Note that Corollary 4.15 applies to conjugate subgroups of Aut(B,;) that satisfy
(CD). The following example shows that the assumption that both F' and F’ in
Corollary 4.15 satisfy (CD) is indeed necessary.

EXAMPLE 4.16. Let Q :={1,2,3} and ¢ € Aut(B3,) be the element that swaps the
leaves xj; and xj3 of Bs,. Using the notation of Section 4.4.1 below, consider the
group I'(A3) <Aut(Bs,) which satisfies (C). In particular, U,(I'(A3))=A3 * Z/2Z by
Proposition 4.13. On the other hand, set F’ := {I'(A3)t™'. Then nF’ = A3, while for
a nontrivial element a of F’ we have o(a, b,) €S3\A3 for some w € Q. Therefore,
U, (F") = Uy({id}) is isomorphic to Z/2 Z « Z/2 Z = Z/2 Z by Lemma 2.5. In particular,
U,(I'(A3)) and U,(T'(A3)¢™") are not isomorphic.
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Conversely, the following proposition based on [23, Appendix A], which states that
in certain cases the tree can be recovered from the topological group structure of a
subgroup of Aut(7,), applies to appropriate universal groups.

PROPOSITION 4.17. Let H,H' < Aut(T,) be closed and locally transitive with distinct
point-stabilizers. Then H and H' are isomorphic topological groups if and only if they
are conjugate in Aut(T).

PROOF. By [8], every compact subgroup of H is either contained in a vertex stabilizer
H (x € V) or, in case H £ Aut(T,)*, in a geometric edge stabilizer H.z (e € E). Since
H is locally transitive, the above are pairwise distinct.

The vertex stabilizers are precisely those maximal compact subgroups K < H for
which there is no maximal compact subgroup K’ with [K : K N K’] = 2. Indeed, fore €
E and x € {o(e), t(e)} we have [H|.5) : H(5 N H,] = 2, whereas [H, : H, N H,] > 3 and
[H, : H, N Hz] > 3 for all distinct x,y € V and e € E by the orbit—stabilizer theorem
because d > 3 and H is locally transitive.

Adjacency can be expressed in terms of indices as well, Let x,y € V be distinct.
Then (x,y) € E if and only if [H, : H, N H,] < [H, : H, N H;] for all z € V. Indeed,
if (x,y) € E, then [H, : H, N H,] = d by the orbit—stabilizer theorem, given that H
is locally transitive. If z € V is not adjacent to x then [H, : H, N H,] > d because
point-stabilizers of every local action of H are distinct.

Now, let ® : H — H’ be an isomorphism of topological groups. Then ® induces a
bijection between the maximal compact subgroups of H and H’, and preserves indices.
Hence, there is an automorphism ¢ € Aut(7,) such that ®(H,) = H:D(x) forall xe V.
Furthermore, since vertex stabilizers in H’ are pairwise distinct and

H. )i = OHpg1n) = PhH 1 oh™") = OH,O(h™Y) = Hy,,
for all x € V, we have phg™' = ®(h) forall h € H. O

The following corollary uses the notation ®*(F”) from Section 4.4.2.

COROLLARY 4.18. Let F<Aut(Byy) and F’' < Aut(B, ) satisfy (C). Assume k>k' and
aF,7nF’ <Sym(Q) are transitive with distinct point-stabilizers. If Uy(F) and Uy (F")
are isomorphic topological groups then F, ®*(F') < Aut@®qy) are conjugate.

PROOF. By Proposition 4.17, the groups Ux(F) and U, (F’) are conjugate in Aut(7,);
hence so are U (F), and Uy (F"), for every x € V, and the assertion follows. O

EXAMPLE 4.19. Section 4.4.1 introduces the isomorphic, nonconjugate subgroups
I1(S3, sgn, {1}) and II(S3,sgn,{0,1}) of Aut(Bs,), both of which project onto S3
and satisfy (C) but not (D). An explicit isomorphism satisfies the assumption of
Corollary 4.15. However, by Corollary 4.18 the universal groups U,(I1(S3, sgn, {1}))
and U,(I1(S3, sgn, {0, 1})) are nonisomorphic. Therefore, Corollary 4.15 does not
generalize to the nondiscrete case.

QUESTION 4.20. Let F, F" < Aut(B,y) satisfy (C) and be conjugate. Are the associ-
ated universal groups Uy (F) and Ui(F”’) necessarily isomorphic?
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In the following, we determine the Burger-Mozes subquotient H*)/QZ(H™) of
Theorem 3.14 for nondiscrete, locally semiprimitive universal groups.

PROPOSITION 4.21. Let F < Aut(Bgy) satisfy (C). If, in addition, F satisfies (D) then
QZ(Ui(F)) = Ui(F). Otherwise, QZ(Uy(F)) = {id}.

PROOF. If F satisfies (D) then Ui(F) is discrete and hence QZ(Uy(F)) = Ui(F).
Conversely, if F satisfies (C) but not (D) then the stabilizer of any half-tree T C T, in
Ui(F) is nontrivial: we have T € {T,T,} for some edge e := (x,y) € E. Since Up(F)
is nondiscrete by Proposition 4.12 and has property (Py) by Proposition 4.7, the
group Up(F)x = Up(F)er 1, - Up(F)ex 7, 1s nontrivial. In particular, either Uy(F)r, or
Ur(F)r, is nontrivial. In view of the existence of label-respecting inversions, both are
nontrivial and hence so is Ug(F)r. Therefore, Uy(F) has Property H of Moller—Vonk
[18, Definition 2.3] and [18, Proposition 2.6] implies that Ui(F) has trivial
quasicentre. |

PROPOSITION 4.22. Let F < Aut(Byy) satisfy (C) but not (D). Suppose that nF is
semiprimitive. Then Ui(F)* |QZ(Ux(F)) = Up(F)™ = Ui(F)*.

PROOF. The subgroup Ui(F)** < Uy(F) is open, hence closed, and normal in U(F)
by definition. Since Ui(F) is nondiscrete by Proposition 4.12, so is Uy(F)**. Using
Proposition 3.11(iii), we conclude that Uy(F)*™ > Ui(F)*). Since Uy(F) satisfies
property (P;) by Proposition 4.7, the group Ui(F)** is simple due to Theorem
2.1. Thus Up(F)* = Up(F)®™. Given that QZ(U(F)®) = QZ(U(F)) N Ux(F)* by
Proposition 3.11(iv), the assertion follows from Proposition 4.21. |

In the context of Proposition 4.22, the group Ui(F)** is simple, compactly gen-
erated, nondiscrete, totally disconnected, locally compact, second countable. Compact
generation follows from [15, Corollary 2.11], given that U, (F)** is cocompact in U, (F)
by Proposition 3.11(i).

4.4. Examples. We now construct various classes of examples of subgroups of
Aut(B,) satisfying (C) or (CD), and prove a rigidity result for certain local actions.

First, we give a suitable realization of Aut(B,) and conditions (C) and (D). Namely,
we view an automorphism « of Bgy as the set {o—1(@,Vv) | v € B(b, 1)} as follows.
Let Aut(B,;) = Sym(€2) be the natural isomorphism. For k > 2, we iteratively identify
Aut(Bg ) with its image under the map

Au(Bu) = AutBuit) < | | AutBasr), @ o (0u1(@,b), (041(@, bo))o)

we)

where Aut(Bg-1) acts on [[,cq Aut(Bgx-1) by permuting the factors according to its
action on S(b, 1) = Q. That is, multiplication in Aut(B,;) is given by

((I, (a'w)wEQ) o (ﬁ’ (ﬁw)wEQ) = (a'ﬁs (aﬁwﬁm)weﬂ)-
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Consider the homomorphism m_; : Aut(Bgx) = Aut(Bix-1), a — ox-1(a,b), the
projections pr,, : Aut(Bgx) — Aut(Bgi-1), @ = or-1(a, b,) (w € Q), and

Pow = (Mp-1,P1,) : Aut(Bgg) = Aut(Bgy-1) X Aut(Bgx-1),

whose image we interpret as a relation on Aut(B,4_;). Conditions (C) and (D) for a
subgroup F < Aut(B,) now read as follows:

forall w € Q : p,(F) is symmetric; ©
forall w e Q : pwlgl(id, id) = {id}. D)

4.4.1. The case k = 2. We first consider the case k = 2 which is all-encompassing in
certain situations; see Theorem 4.32. By the above, Aut(By,) is realized as follows:
Aut(B;2) = {(a, (aw)wen) | a € Sym(Q), forallw € Q : a, € Sym(Q) and a,w = aw}.

Consider the map y : Sym(Q2) — Aut(B;2), a — (a,(a,...,a)) € Aut(By,), using
the realization of Aut(B,;,) from above. For every F < Sym(Q), the image

I'(F):=im(ylp) = {(a,(a,...,a)) |lae F} = F

is a subgroup of Aut(B,,) which is isomorphic to F and satisfies both (C) and (D).
The involutive compatibility cocycle is given by ['(F) X Q — I['(F), (y(a),w) — y(a).
Note that I'(F) = F implements the diagonal action F ~ Q? on S(b,2) = Q® c Q2.

We obtain Uy(I'(F)) ={a € Aut(T,) | thereexistsa € F : forallxeV : oi(a,x)=a}
=: D(F), following the notation of [1]. Moreover, there is the following description of
all subgroups F' < Aut(B,,) with nF = F that satisfy (C) and contain I'(F).

PROPOSITION 4.23. Let F < Sym(Q). Given K < [[,eq Fo = kerm < Aut(By ), there
is F < Aut(By) satisfying (C) and fitting into the split exact sequence

1*>K>;>F$F*>1

if and only if K is preserved by the action F ~ []yeo Fo» @ - (A0)ew 1= (@dg1,a"")e.

PROOF. If there is a split exact sequence as above then K < F is invariant under
conjugation by I'(F) < F, hence the assertion.
Conversely, if K is invariant under the given action, then

F :={(a, (aa,)y) | a € F, (a,), € K)

fits into the sequence. First, note that F contains both K and ['(F). It is also a subgroup
of Aut(B,,): for (a, (aa,)w), (b, (bb,),) € F we have

(a, (aaw)w) © (b’ (bbw)w) = (Clb, (aabwbbw)w) = ([lb, (Clb © b_labwb o bw)w) € F

by assumption. In particular, F = (I'(F), K). It suffices to check condition (C) on these
generators of F. As before, y(a) € C(y(a),w) for all a € F and w € Q. Now let k € K.
Then y(pr, k)k! € C(k, w) for all w € Q. O
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EXAMPLE 4.24. We show that for certain dihedral groups there are only four groups
of the type given in Proposition 4.23. Set F' := D, < Sym(p) for some prime p > 3.
Then F, = (F,, +). Hence, U:=[],cq F. is a p-dimensional vector space over F, and
the F-action on it permutes coordinates. When 2 € (Z /pZ)* is primitive, there are
only four F-invariant subspaces of U: the trivial subspace; the diagonal subspace
((1,..., 1)); the whole space; and K := kero = ]F(z”_l) where o: U — F, is given by
Wi, vp) Zf:l v;. Note that K is F-invariant because the homomorphism o is.
Conjecturally, there are infinitely many primes for which 2 € (Z /pZ)* is primitive.
The list starts with 3, 5, 11, 13, .. .; see [26, A001122].

Suppose that W < U is F-invariant. It suffices to show that W contains K as
soon as W Nkero contains a nontrivial element w. To see this, we show that the
orbit of w under the cyclic group (o) = C, < D, generates a (p — 1)-dimensional
subspace of K which hence equals K. Indeed, the rank of the circulant matrix
C = (w,ow, 0w, ...,0" Yw) equals p — deg(ged(x” — 1, f(x))) where f(x) € F,[x] is
the polynomial f(x) = w,,x’"1 + .-+ wox + wy; see, for example, [5, Corollary 1].
The polynomial x” — 1 € F,[x] factors into the irreducibles (x*~! + xP2 + .- + x + 1)
(x — 1) by the assumption on p. Since f has an even number of nonzero coefficients,
we conclude that rank(C) = p — 1.

The following subgroups of Aut(B,») are of the type given in Proposition 4.23.
Let F < Sym(Q) be transitive. Fix wy € Q, let C < Z(F,,,) and let N < F,,, be normal.
Furthermore, fix elements f,, € F (w € Q) satisfying f,,(wp) = w. We define

A(F,C) :={(a,(ao foaof, o) |a € F, ag € C} = F X C,
D(F,N) = {(a,(@o foal”f; o) la € F, forallw e Q: al” € N} = F < N

In the case of A(F,C) we have K = {(f,a0f,;")w | ao € C}, whereas in the case of
®(F,N) we have K = {(f,a\” ;") | forallw € Q: a\ € N}. In both cases, invari-
ance under the action of F is readily verified, as is condition (D) for A(F, C).

The group A(F, F,,,) can be defined for nonabelian F,,, as well, namely,

AF) = {(a, (funfy" © foa0fy Vo) | a € Foag € Fup} = F X F,,.

However, it need not contain I'(F). Note that ®(F, N) does not depend on the choice
of the elements (f,)weq as N is normal in F,,, whereas A(F,C) and A(F) may.
However, any group of the form {(a, (z(a, w)a(ao))w) | a € F, ag € F,,}, where zis a
compatibility cocycle of F and , : F,,, = F,(w € Q) are isomorphisms, that satisfies
(C) and in which {(a, (z(a, w)),,) | a € F} and {(id, (2, (a0)).) | ao € F,,} commute, will
be referred to as A(F) in view of Corollary 4.15.

The group O(F, F,,) can be defined without assuming transitivity of F, namely,

O(F) := {(a, (ay)e) |a € F,forall w € Q : a, € Cr(a, w)} = F ]_[ F..

weQ

We conclude that Uy (O(F)) = U (F) for every F < Sym(Q).
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When F' < Sym(Q) preserves a partition £ : Q = | |;c; ©; of Q, we define

O(F,P) :={(a,(ay)y) |a €F, a, € Cr(a, w) constant w.r.t. P} = F = l_[FQi.
iel
The group ®(F, P) satisfies (C) as well and features prominently in Section 5.1.

The following kind of 2-local action generalizes the sign construction in [23]. Let
F < Sym(Q) and letp : F - A be a homomorphism to an abelian group A. Define

.. (1) = {(@ (@) € o) [ [ ptan) = 1),

weQ

G, .10, 1) 1= {(@ (@))€ @(F)' p(@ [ ] ptan) =1},

weQ

This construction is generalized to k > 2 in Section 4.4.2 where the third entry of IT is
a set of radii over which the defining product is taken.

PROPOSITION 4.25. Let F < Sym() and let p : F - A be a homomorphism to an
abelian group A. Let F € {II(F, p, {1}), II(F, p, {0, ID}. If p(F,,) = A for all w € € then
nF = F and F satisfies (C).

PROOF. As Cr(a,w)=aF,, and p(F,)=A for all w € Q, an element (a, (ay).) € P(F)
can be turned into an element of F by changing a,, for a single, arbitrary weQ. We
conclude that 7F = F and that F satisfies ©). O

4.4.2. General case. We extend some constructions of Section 4.4.1 to arbitrary k.
Given F < Aut(B,;) satisfying (C), define the subgroup

O (F) :={(a, (@p)w) | € Fforall w € Q : a, € Cp(a, w)} < Aut(Bgi+1)-

Then ®(F) inherits condition (C) from F and we obtain U, (®r(F)) = Up(F).
Concerning the construction I we have the following proposition.

PROPOSITION 4.26. Let F<Aut(Bgy) satisfy (C). Then there exists a group I'y(F) <
Aut(Bg+1) satisfying (CD) such that miy|r ) is an isomorphism onto F if and only if F
admits an involutive compatibility cocycle z.

PROOF. If F admits an involutive compatibility cocycle z, define
[e(F) = {(a, @@, w))w) | @ € F} < Aut(Bg 1)

Then vy, : F = I'\(F), aw— (a,(z(a,w)),) is an isomorphism and the involutive
compatibility cocycle of I't(F) is given by 7 : (y.(@), w) — y.(z(a, w)). Conversely, if
a group ['x(F) with the asserted properties exists, set z : (@, w) = pr, n,;la. ]

Let F < Aut(Byy) satisty (C) and let [ > k. We set T'(F) :=T)_; 0--- o I'x(F) for an
implicit sequence of involutive compatibility cocycles. Similarly, we define O/(F) :=
Dy o+ 0 O(F). Now, let F < Aut(Byy). Assume F := rF < Sym(€2) preserves a
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partition P : Q = | |;c; Q; of Q. Define the group
O(F, P) := {(@, (@)w) | @ € F, @, € Cx(@, w) is constant w.r.t. P).

If Cz(a, <) is nonempty for all « € F and i € I then ®y(F,P) satisfies (C), and if
Cz(id, €;) is nontrivial for all i € I then @(F, $) does not satisfy (D).
The following statement generalizes Proposition 4.23.

PROPOSITION 4.27. Let F < Aut(Byy) satisfy (C). Suppose F admits an involutive
compatibility cocycle z. Given K < Oy(F) N ker(my), there is F < Aut(Bg 1) satisfying
(C) and fitting into the split exact sequence

1*>K>;>F$F4>1

if and only if T'(F) normalizes K, and for all k € K and w € Q there is k,, € K such
that pr, k, = z(pr, k, w) L.

PROOF. If there is a split exact sequence as above then K <F is invariant under
conjugation by I'x(F). Moreover, all elements of F have the form (e, (z(@, w)ay),)
for some a € F and ()., € K. This implies the second assertion on K.

Conversely, if K satisfies the assumptions, then

F = {(o, @@, 0)@w)o) | @ € F, (@w)o € K}

fits into the sequence. First, note that F contains both K and [, (F). It is also a subgroup
of Aut(Byss1): for (@, (2(@, @)@w)), (B, (2B, w)Bu)w) € F we have

(@, (2(, W)¥0)w) © B, (2(B, W)Bu)w) = (@B, (2@, Bw)¥pu2(B, @)Bu)w)
= (e, (@, Bw)z(B, w) 0 2(B, W) ' apLz(B, W) © Bu)w)
= (B, (2(af, W) B)w) € F

for some (a),), € K because I';+(F) normalizes K. In particular, F= (I't(F),K). We
check condition (C) on these generators. As before, v,(z(@, w)) € C(y, (@), w) for all
a € F and w € Q because z is involutive. Now, let k € K. We then have y.(pr,, k)k,, €
C(k, w) for all w € Q by the assumption on k. O

In the split situation of Proposition 4.27 we also denote F by Zi(F, K). For instance,
the group II(S3,sgn,{1}) of Proposition 4.25 satisfies (C), admits an involutive
compatibility cocycle but does not satisfy (D); see Section 5.3.

Now, let F < Sym(Q) and p: F - A a homomorphism to an abelian group A.
Further, let k e Nand X C {0, ...,k — 1}. Define

[1 1 per@m =1}

reX xeS(b,r)

PROPOSITION 4.28. Let F<Sym(Q) and let p:F -»A be a homomorphism to an

abelian group A. Further, let k € N and X C {0, ...,k — 1} be nonempty and nonzero
withk—1€X. If p(F.,) =A for all weQ then n(1IIX(F, p, X)) =F and TI*(F, p, X) has (C).

*(F, p,X) := {a/ € OX(F)
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PROOF. As Cr(a,w) = aF,, and p(F,) = A for all w € Q, an element a € ®*(F) can
be turned into an element of IT(F, p, X) by changing o1 (, x) for a single, arbitrary x €
S(b,k — 1). When X is nonzero we conclude that 7(IT*(F, p, X)) = F and that IT*(F, p, X)
satisfies (C). O

4.4.3. A rigid case. For certain F < Sym(€) the groups I'(F), A(F) and ®(F) already
yield all possible Uy(F) with 7F = F. The main argument is based on Sections 3.4 and
3.5 of [2]. We first record the following lemma whose proof is due to M. Giudici by
personal communication.

LEMMA 4.29. Let F < Sym(Q) be 2-transitive and F,, (w € Q) simple nonabelian.
Then every extension F of F, (w € Q) by F is equivalent to F, X F.

PROOF. Regarding F,, as a normal subgroup of F, consider the conjugation map
¢ F — Aut(F,). We show that K :=kerp =Zz(F,)<F complements F, in
F. Since Z(F,) = {id}, we have F, N K ={id}. Hence, F,K < F. Next, consider
F/(F,K) < Out(F,). By the solution of Schreier’s conjecture, Out(F,,) is solvable.
Since F/F,, = F is not solvable we conclude K # {id}. Now, by a theorem of Burnside,
every 2-transitive permutation group F is either almost simple or of affine type; see
[6, Theorem 4.1B and Section 4.8].

In the first case, F is actually simple: Let N < F. Then F, NN < F,. Hence,
either F, "N = {id} or F, "N = F,,. Since F is 2-transitive and therefore primitive,
every normal subgroup acts transitively. Hence, in the first case, N is regular, which
contradicts F' being almost simple. Thus the second case holds and N = NF,, = F.
Now F/F,K is a proper quotient of F and therefore trivial. We conclude that
F=F,K=F,xKandK =F/F,=F.

In the second case, F = Fa, 3 CZ for some d € N and prime p. Given that K is

nontrivial and K = F,K/F, 3 F, it contains the unique minimal normal subgroup
Cd JIK JF. Since F/ Cd F,, is nonabelian simple whereas the proper quotient
F/F K of F is solvable, K * Cd But F/C" F, is simple, so F,K = F. O

The following propositions are of independent interest and used in Theorem 4.32
below. We introduce the following notation. Let F'<Aut(B;x) and K < F b, for some
E=(wi,...,wp-1) € QD We set K = 01(K, bg) < Sym(Q),,, -

PROPOSITION 4.30. Let F < Aut(Bgy) satisfy (C). Suppose F := ﬂz is transitive.

Further, let w€Q and £=(wy, . .. , wr—1) €QYD with wy #w. Then me(Fp,Nker ) and
neFr, are subnormal in F,, | of depth at most k — 1 and k, respectively.

PROOF. We argue by induction on k>2. For k=2, the assertion that~n§(be N ker )
is normal in F,, is a consequence of condition (C). Now, suppose F < Aut(Bg+1)
satisfies the assumptions, and let w € Q and & = (wy,...,wy) € Q® be such that
w) #w. Since F satisfies (C), we have pr, (be N ker ) < (mF)p,, Nkerm, where & =
(w2, . ..,wk-1) and the right-hand-side 7 1mp11c1t1y has domain zrkF Hence,

ﬂg(?b; Nkern) = 7r§r(prwl(Fbg Nkern)) < ﬂg!((ﬂ'kf)bf, Nkerm) < F,, |

by the induction hypothesis. The second assertion follows as fTw < fbf Nkerm. ]
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PROPOSITION 4.31. Let F < Aut(Byy) satisfy (C) but not (D). Suppose F :=rF is
transitive, and every nontrivial subnormal subgroup of F,, (w € Q) of depth at most
k — 1 is transitive on Q\{w}. Then Ui(F) is locally k-transitive.

PROOF. We argue by induction on k. For k = 1, the assertion follows from transitivity
of F. Now, let F < Aut(Byx+1) satisfy (C) but not (D). Then the same holds for
F® := mF < Aut(Byy). Given & & € QP write £ = (£, w) and & = (&, w’) where
£, € Q%D and w,w’ € Q. By the induction hypothesis, the group F® acts transi-
tively on S(b, k). Hence, using (C), there is g € F such that gbs = byr. As F does not
satisfy (D) the said transitivity further implies that 7r§,(F b, N kerm)) is nontrivial. By
Proposition 4.30, it is also subnormal of depth at most k — 1 in F,,, and thus transitive.
Hence, there is g’ € F},, with g'gbz = b. ]

The following theorem is closely related to [2, Proposition 3.3.1].

THEOREM 4.32. Let F <Sym(Q) be 2-transitive and F,, (w€Q) simple nonabelian.
Further, let F< Aut(Bg ) with nF = F satisfy (C). Then Uk(F ) equals

Uu(T'i(F),  Ua(A(F)) or Ux(®(F)) = Uy(F).

PROOF. Since Uy(F) = U(®(F)), we may assume k > 2. Given that F< Aut(Bgx)
satisfies (C), so does the restriction F® := m,F < ®(F) < Aut(B,,). Consider the
projection 7 : F® - F. We have kern < [[,eq F. and pr, kern < F,, for all w € Q
by Proposition 4.30. Since F,, is simple, kerm < F® and F is transitive, this implies
that either pr, ker m = {id} for all w € Q or pr kern = F,, for all w € Q.

In the first case, 7 : F? — F is an isomorphism. Hence, F* satisfies (CD) and
Ui (F)=U, (' (F)) for an involutive compatibility cocycle of F' by Proposition 4.26.

In the second case, fix wg € Q. We have kerm < [[yeq Fu = Fff)0 by transitivity
of F. Since F,, is simple nonabelian, [23, Lemma 2.3] implies that the
group kerm is a product of subdiagonals preserved by the primitive action
of F on the index set of Ff)o. Hence, either there is just one block and
kerm = {(id, (@, (a0)),,)} for some isomorphisms «,, : Fy,, — F,, or all blocks are
singletons and kerm = [ eq Fu = Ff)o. In the first case, there is a compatibility
cocycle z of F such that F = {(a, (z(a, w)),,) | a € F} < F® commutes with ker 7 < F®
by Lemma 4.29. Thus F® = {a, (z(a, w)a(ao))w | a € F, ag € F,,}. In particular, F' @)
satisfies (CD). Hence, Uk(F ) = U2(A(F)).

When ker r = Fdo we have Uk(F) = U, (F) by [2, Proposition 3.3.1]. O

If F does not have simple point-stabilizers or preserves a nontrivial partition, more
universal groups are given by U,(®(F, N)) and U, (®(F, P)); see Section 4.4.1. When
F is 2-transitive and has abelian point-stabilizers, F'= AGL(1, g) for some prime power
q by [14]. Hence, point-stabilizers in F are isomorphic to [y and simple if and only if

— 1 is a Mersenne prime. For any value of ¢, the prOJectlon p : AGL(l, ¢) — F sat-
1sﬁes the assumptions of Proposition 4.28 and so the groups U;(IT*(AGL(1, g), p, X))
provide further examples. The following question remains.
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QUESTION 4.33. Let F <Sym(Q) be primitive and F,(w € Q) simple nonabelian. Is
there F < Aut(B;;) with (C) and 7F = F other than [*(F), A(F) and ®*(F)?

4.5. Universality. The constructed groups Ui(F) are universal in the sense of the
following maximality statement, which should be compared to Proposition 2.6.

THEOREM 4.34. Let H < Aut(Ty) be locally transitive and contain an involutive
inversion. Then there is a labelling | of T, such that

UPFED) > UPF?) > 2 UPFEP) > - > 7 > U0(id))
where F® < Aut(Bgy) is action isomorphic to the k-local action of H.

PROOF. First, we construct a labelling / of T,; such that H > U(ll)({id}). Fix x € V and
choose a bijection [, : E(x) — €. By the assumptions, there is an involutive inversion
L, € H of the edge (x,x,) € E for every w € Q. Using these inversions, we define the
announced labelling inductively. Set /|y := I, and assume that / is defined on E(x, n).
For e € E(x,n + 1)\E(x, n) put l(e) := l(¢,,(e)) if x,, is part of the unique reduced path
from x to o(e). Since the ¢, (w € Q) have order 2, we obtain o(t,,y) = id for all
weQ and y € V. Therefore, ({1, | w € Q}) = U({id}) < H, following the proof of
Lemma 2.5.

Now, leth € H and y € V. Further, let (x, x1, ..., x,,¥) and (x, X/, ..., x;,, A(y)) be the
unique reduced paths from x to y and A(y), respectively. Since U(ll)({id}) < H, the group
H contains the unique label-respecting inversion ¢, of every edge e € E. We therefore
have

= _1 “ .. - _1 ..
S = b b, b)) © houy,) oty € H.

1

Also, s stabilizes x. The cocycle identity implies for every k € N that
or(h,y) = O-k(L(h(y),x]’n) ol x) 08O L(_xll,x) oo L&{Xn),y) = oy(s,x) € F(k),

where F®' < Aut(B,;) is defined by I o H,|g.x) o ()7L O

REMARK 4.35. Retain the notation of Theorem 4.34. By Proposition 2.6, there is a
labelling [ of T; such that U(ll) (FV) > H regardless of the minimal order of an inversion
in H. This labelling may be distinct from that of Theorem 4.34 which fails without
assuming the existence of an involutive inversion. For example, a vertex-stabilizer of
the group Gé of Example 5.39 below is action isomorphic to I'(S3) but G; £ U(zl)(F(S3))
for any labelling / because (G}, = Z /4 Z, whereas

U(ZZ)(F(S3)){b,bw} = I'(S3)p,) NZ[2Z =Z]2ZXZ[2Z
by Proposition 4.14.

We complement Theorem 4.34 with the following criterion for certain subgroups
of Aut(7,) to contain an involutive inversion.

PROPOSITION 4.36. Let H < Aut(T;) be locally transitive with odd-order point-
stabilizers. If H contains a finite-order inversion then it contains an involutive one.
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PROOF. Let ¢ € H be a finite-order inversion of an edge e € E and ord(t) = 2% - m
for some odd m € N and some k € N. It suffices to show that k = 1, in which case
(™ is an involutive inversion. Suppose k > 1. Then 2" is nontrivial and fixes the
edge e. Because point-stabilizers in the local action of H have odd order, it follows that
(27" is nontrivial as well, but (2~ "™)2 = (710 = id, O

For example, Proposition 4.36 applies when H is discrete and vertex-transitive:
Combined with local transitivity this implies the existence of a finite-order inversion.

We remark that primitive permutation groups with odd-order point-stabilizers were
classified in [17]. For instance, they include PSL(2, g) ~ P! (F,) for any prime power
q that satisfies ¢ = 3 mod 4.

4.6. A bipartite version. In this section we introduce a bipartite version of
the universal groups developed above which plays a critical role in the proof of
Theorem 5.2(iv)(b). As before, let T; = (V, E) denote the d-regular tree. Fix a regular
bipartition V = V| U V; of T,.

4.6.1. Definition and basic properties. The groups to be defined are subgroups
of *Aut(T,) < Aut(T,), the maximal subgroup of Aut(7,) preserving the bipartition
V =V, U V,. Alternatively, it can be described as the subgroup generated by all
point-stabilizers, or all edge-stabilizers.

DEFINITION 4.37. Let F' < Aut(B;2) and [ be a labelling of T,. Define
BU(ZZZ(F) = {a € Aut(Ty) | forall v € V; : oo(a,v) € F).

Note that BU(zli(F) is a subgroup of *Aut(7,) thanks to Lemma 4.2 and the
assumption that it is a subset of *Aut(7,). Further, Proposition 4.4 carries over to
the groups BU(zlz(F ). We therefore omit the reference to an explicit labelling in the

following. Also, we recover the following basic properties.
PROPOSITION 4.38. Let F < Aut(Bgx). The group BUy(F) is

(i)  closed in Aut(T,)
(i1)  transitive on both V| and V,, and
(iii)) compactly generated.

Parts (i) and (ii) are proven as their analogues in Proposition 4.5, whereas part
(iii) relies on part (ii) and the subsequent analogue of Lemma 2.5, for which
we introduce the following notation: Given x € V and £ € Q@0 Jet téx) € BU,({id})
denote the unique label-respecting translation with 19 (x) = x¢. Given an element
E=(wr,...,0n) € QA weset & := (W, ..., w1) € Q. Then (tff))‘l =, and if
Q% c Q@ jg sugh that for eyery ¢ € Q@M exactly one of {£, £} belongs to d(fk), then
QM = QP Q7 where Q= (& | £ e Q).

LEMMA 4.39. Let x € V. Then BU,({id}) = ({téx) | € € QP = Foo, the free group
on the set Q. ’
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PROOF. Every element of BUy({id}) is uniquely determined by its image on x. To see
that BU,({id}) = ({£{” | £ € Q@) it thus suffices to show that {1{” |£ € Q@) is transitive
on Vy. Indeed, let y € V;. Then y = x; for some ¢ € QY where 2k = d(x, y). Write
£= (6., E) € Q). Then £ 0 -+ 0 1) = 17 as every £ (i € {1,...,k}) is label

& 3

respecting. Hence, tg) 0:++0 tg)(x) = yand

) 2
(1016 € QD) > Foe, tfx) ST Q(*Z)
¥ e =& §EQ7

yields a well-defined isomorphism. ]

4.6.2. Compatibility and discreteness. In order to describe the compatibility and the
discreteness condition in the bipartite setting, we first introduce a suitable realization
of Aut(B,21) (k € N), similar to that at the beginning of Section 4.4. Let Aut(B;,1) =
Sym(€2) and Aut(B,,) be as before. For k > 2, we inductively identify Aut(B, ;) with
its image under

Aut(Bgpor) — Aut(Bgoi-1)) n Aut(Bgoi-1))
£eQ@
a = (oap-ny(a, b), (0201 (@, be))e)
where Aut(B,ox-1y) acts on Q) by permuting the factors according to its action on

S(b,2) = Q?. In addition, consider the map pr : Aut(Bya) = Aut(Byog-1)), @ =
Ta-1)(@, be) for every ¢ € QP as well as

Pe = (Mok-1), Pre) * Aut(Baok) = Aut(Bypk-1)) X Aut(Byok-1))-
For k > 2, conditions (C) and (D) for F' < Aut(B;2x) now read as follows:
forall @ € F, forall £ € Q® : there exists a€F:
Tok-1)(@g) = Pre(@), pre(ag) = mg-1)(@); ©
for all ¢ € Q@ : el (id, id) = {id}. (D)
For k = 1 we have, using the maps pr,, (w € ) as in Section 4.4,

forall @ € F,forall ¢ = (wy,wy) € Q@ : there exists ag € F :pr, (a;) = pr, (@),
©
forallw e Q: pr, |;1(id) = {id}. (D)

Analogues of Proposition 4.12 are proven using the discreteness conditions (D) above.
We do not introduce new notation for any of the above as the context always implies
which condition is to be considered. The definition of the compatibility sets Cr(a, S)
for F < Aut(Byo;) and S € Q@ carries over from Section 4.2 in a straightforward
fashion.
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4.6.3. Examples. Let F < Sym(€). Then the group I'(F) < Aut(B,;) introduced in
Section 4.4.1 satisfies conditions (C) and (D) for the case kK = 1 above, and we have
BUy(I'(F)) = Ux(I'(F)) N *Aut(Ty).

Similarly, the group ®(F) < Aut(B,>) satisfies condition (C) for the case k = 1 as
['(F) < ®(F), and we have BU,(®(F)) = U(F) N *Aut(Ty).

The following example gives an analogue of the groups ®(F, N). Notice, however,
that in this case the second argument is a subgroup of F rather than F,, and need not
be normal, as the 1-local action at vertices in V; and V, need not be the same.

EXAMPLE 4.40. Let F’ < F < Sym(Q). Then
BO(F,F’) :={(a,(au)weq) |a € F, forallw € Q : a, € Cr(a,w) N F'} < Aut(By»)

satisfies condition (C) for the case k =1 above, given that ['(F’) < BO(F, F’). If
F'\Q = F\Q, the 1-local action of BO(F, F’) at vertices in V; is indeed F, whereas
itis F'* at vertices in V5. This construction is similar to U (M, N) in [27].

The next example constitutes the base case in Section 5.1.5 below.

EXAMPLE 4.41. Let F < Sym(€). Suppose F preserves a nontrivial partition P : Q =
| lics Qi of Q. Then

Qéz) = {(wy, wy) | there exists i € I : wy, wy € Q;} € QP

is preserved by the action of ®(F) on S(b,2) = Q®. Let a=(a, (a,),)€P(F) and
(w1, wH) € ng). Then a(wi, wz) = (awy, Ay, w2) = (Ay, W1, Ay, W) € QE)Z). Also, note
that if £ = (w1, w2) € QY then also & = (wy, wy) € QY.

The subgroup of ®(F) consisting of those elements which are self-compatible in all
directions from Qg) is precisely given by

F® :={(a,(ay),) | a € F,a, € Cr(a, w) constant w.r.t. P}
in view of condition (C) for the case k = 1 above.

Suppose now that F' < Aut(B,; ) satisfies (C). Analogous to the group @(F) of
Section 4.4.2, we define

BDy(F):={(a, (@)scqe) | €F, forall €€Q? : age Cp(a, &)} < Aut(Byows1))

Then BOy (F) < Aut(Bd,z(k_,.])) satisfies (C) and BUz(k+1)(Bq)2k(F)) = BUy(F). Given
I > k, we also set BO?(F) := B®y_1) 0 - -+ 0 BOy(F); cf. Section 4.4.2.

5. Applications

In this section we give three applications of the framework of universal groups.
First, we characterize the automorphism types that the quasicentre of a nondiscrete
subgroup of Aut(7,;) may feature in terms of the group’s local action, and see that
the Burger—-Mozes theory does not extend to the transitive case. Second, we give
an algebraic characterization of the (Pj)-closures of locally transitive subgroups of
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Aut(Ty) containing an involutive inversion, and thereby partially answer two questions
by Banks, Elder and Willis. Third, we offer a new view on the Weiss conjecture.

5.1. Groups acting on trees with nontrivial quasicentre. By Proposition 3.11(ii),
a nondiscrete, locally semiprimitive subgroup of Aut(7;) does not contain any
nontrivial quasicentral edge-fixating elements. We extend this fact to the following
local-to-global-type characterization of quasicentral elements.

THEOREM 5.1. Let H < Aut(Ty) be nondiscrete. If H is locally:

(i)  Transitive, then QZ(H) contains no inversion.

(i)  Semiprimitive, then QZ(H) contains no nontrivial edge-fixating element.
(iil)) Quasiprimitive, then QZ(H) contains no nontrivial elliptic element.

(iv) k-transitive, (k € N) then QZ(H) contains no hyperbolic element of length k.

THEOREM 5.2. There is a d € Ns3 and a closed, nondiscrete, compactly generated
subgroup of Aut(T,) which is locally:

(1)  Intransitive and contains a quasicentral inversion.

(i)  Transitive and contains a nontrivial quasicentral edge-fixating element.

(ili) Semiprimitive and contains a nontrivial quasicentral elliptic element.

(iv) (a) Intransitive and contains a quasicentral hyperbolic element of length 1.
(b)  Quasiprimitive and contains a quasicentral hyperbolic element of length 2.

PROOF OF THEOREM 5.1. Fix a labelling of 7, and let H < Aut(7,) be nondiscrete.

For (i), suppose ¢ € QZ(H) inverts (x,x,) € E. Since H is locally transitive and
QZ(H) < H, there is an inversion ¢, € QZ(H) of (x,x,) € E for all we Q. By
definition, the centralizer of ¢, in H is open for all w € Q. Hence, using the
nondiscreteness of H, there is n € N such that Hp,,) commutes with ¢, for all w € Q
and Hp(xn+1) # {id}. However, Hp ) = toHpamty! = Hpg,n for all w € Q; that is,
Hp(xn+1) € Hp(x,ny in contradiction to the above.

Part (ii) is Proposition 3.11(ii) and part (iii) is [2, Proposition 1.2.1(ii)]. Here, the
closedness assumption is unnecessary.

For part (iv), suppose 7 € QZ(H) is a translation of length k that maps x € V
to xg € V for some & € QW Since H is locally k-transitive and QZ(H) < H, there
is a translation 7, € QZ(H) that maps x to x; for all £ € Q®. By definition, the
centralizer of 7z in H is open for all ¢ € Q®. Hence, using the nondiscreteness of H,
there is n € N such that Hp, ;) commutes with 7 for all &£ € QW and Hp(, 11 # {id}.
However, HB(x,n) = TgHB(x,n)Tgl = HB(xg,n) for all IS Q(k); that is, HB(x,n+k) - HB(x,n) in
contradiction to the above. O

We complement part (ii) of Theorem 5.1 with the following result which is inspired
by [2, Proposition 3.1.2] and [24, Conjecture 2.63],

PROPOSITION 5.3. Let H < Aut(T;) be nondiscrete and locally semiprimitive. If all
orbits of H ~ 0T, are uncountable then QZ(H) is trivial.
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PROOF. By Theorem 5.1, the group QZ(H) contains no inversions. Let S C 9T, be
the set of fixed points of hyperbolic elements in QZ(H). Since QZ(H) < H, the set §
is H-invariant. Also, QZ(H) is discrete by Theorem 5.1 and hence countable as H is
second-countable. Thus S is countable and hence empty. We conclude that QZ(H) < H
does not contain elliptic elements in view of [10, Lemma 6.4]. O

The following strengthening of Theorem 5.2(i1) proved in Section 5.1.2 below shows
that the Burger-Mozes theory does not generalize to the locally transitive case.

THEOREM 5.4. There exist d € Ns3 and a closed, nondiscrete, compactly generated,
locally transitive subgroup of Aut(T,) with open, hence nondiscrete, quasicentre.

We prove Theorem 5.2 by construction in the rest of this subsection. Whereas
parts (i)—(iv)(a) all use groups of the form (;c;y Ux(F®) for appropriate local actions
F® < Aut(Byy), part (iv)(b) uses a group of the form (e BU(F?Y). The various
parts appear similar at first glance but vary in detail.

PROOF OF THEOREM 5.2(i). For certain intransitive F < Sym({)) we construct a
closed, nondiscrete, compactly generated, vertex-transitive group H(F) < Aut(T,)
which locally acts like F and contains a quasicentral involutive inversion.

Let F < Sym(Q). Assume that the partition F\Q = | |;; ©; of Q into F-orbits has at
least three elements and that Fq, # {id} for all i € 1.

Fix an orbit Qy of size at least 2 and wy € Q. Define groups F® < Aut(By) for
k € N inductively by FV := F and

F&D = {(a, (@))€ F®, @, € Crw (@, w) constant w.r.t. F\Q, Ay, =) O

PROPOSITION 5.5. The groups F® < Aut(Bs;) (k € N) defined above satisfy the
following assertions.

(i)  Every a € F® is self-compatible in directions from Q.

(i) The compatibility set Crw(a, <) is nonempty for all « € F® and iel. In
particular, the group F® satisfies (C).

(iii))  The compatibility set Crw(id, ;) is nontrivial for all Q; # Q. In particular, the
group F® does not satisfy (D).

PROOF. We prove all three properties simultaneously by induction. For k = 1, asser-
tions (i) and (ii) are trivial. Assertion (iii) translates to Fg, being nontrivial for all
Q; # Qq, which is an assumption. Now, assume that all properties hold for F®). Then
the definition of F**! is meaningful because of (i) and it is a subgroup of Aut(By1)
because F preserves each €; (i € I). Assertion (i) is now evident. Assertion (ii) carries
over from F® to F*_So does (iii) since |F\Q| > 3. O

DEFINITION 5.6. Retain the above notation. Define H(F) := (e Ur(F®).

Now, H(F) is compactly generated, vertex-transitive and contains an involutive
inversion because U;({id}) < H(F). Also, H(F) is closed as an intersection of closed
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sets. The 1-local action of H is given by F = F(") because I'*(F) < F® for all k € N,
and therefore D(F) < H(F).

LEMMA 5.7. The group H(F) is nondiscrete.

PROOF. Let x € V and n € N. We construct a nontrivial element & € H(F) which
fixes B(x,n). Set a, := id € F™. By parts (i) and (iii) of Proposition 5.5 as well as
the definition of F"*D there is a nontrivial element @,,; € F™*D with 7,041 = ;.
Applying parts (i) and (ii) of Proposition 5.5 repeatedly, we obtain nontrivial elements
€ F® for all k > n + 1 with mays = ax. Set @y := ide F® for all k<n and define
he Aut(T,), by fixing x and setting o (h,x):=a; € F®. Since F <®/(F®) for all
k<1, we conclude that h € oy Ur(F®) = H(F). O

PROPOSITION 5.8. The quasicentre of H(F) contains an involutive inversion.

PROOF. Let xeV. We show that the group QZ(H(F)) contains the label-respecting
inversion ¢, of (x,x,)€E for all wey. To see this, let A€ H(F)p,1) and weQy.
Then hty,(x) =x, =t,h(x) and oy (hty, x) = or(h, X))k (ty, X) = ok (h, X,) = Tk(Ly, hx)
or(h, x) = o (t,h, x) for all k € N since h € Uy, (F*®*D). That is, ¢, commutes with
H(F)pw,1)- O

PROOF OF THEOREM 5.2(ii). For certain transitive F < Sym({)) we construct a
closed, nondiscrete, compactly generated, vertex-transitive group H(F) < Aut(7y) that
locally acts like F' and has open quasicentre.

Let F < Sym(£2) be transitive. Assume that F' preserves a nontrivial partition P :
Q = | ;s Q; of Q and that Fg, # {id} for all i € I. Further, suppose that F* is abelian
and preserves P setwise. ]

EXAMPLE 5.9. Let F’ < Sym(€’) be regular abelian and P < Sym(A) regular. Then
F := F' 1 P < Sym(Q’ X A) satisfies the above properties as F* = [ e F'.

Define groups F®' < Aut(B,) for k € N inductively by F( := F and
F&D = (@, (@p)o) | @ € FP, @, € Crw(a, w) constant w.r.t. P}.

PROPOSITION 5.10. The groups F® < Aut(B,;) (k € N) defined above satisfy the
following assertions.

(i)  The compatibility set Crw(a, ;) is nonempty for all « € F® and i€l In
particular, the group F® satisfies (C).

(1)  The compatibility set Crw(id, ;) is nontrivial for all i € I. In particular, the
group F® does not satisfy (D).

(iii) The group F® n ®X(F*) is abelian.

PROOF. We prove all three properties simultaneously by induction. For k = 1, asser-
tion (i) is trivial whereas (iii) is an assumption. Assertion (ii) translates to Fq, being
nontrivial for all i € I, which is an assumption. Now, assume all properties hold for
F®_ Then the definition of F**1 is meaningful because of (i) and it is a subgroup of
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Aut(Bg) because F preserves P. Assertion (ii) carries over from F® to F**D_ Finally,
(iii) follows inductively because F* preserves P setwise. ]

DEFINITION 5.11. Retain the above notation. Define H(F) := ey Ur(F®).

Now, H(F) is compactly generated, vertex-transitive and contains an involutive
inversion because U;({id}) < H(F). Also, H(F) is closed as an intersection of closed
sets. The 1-local action of H is given by F = F)) because I'y(F) < F® for all k e N
and therefore D(F) < H(F).

LEMMA 5.12. The group H(F) is nondiscrete.

PROOF. Let x € V and n € N. We construct a nontrivial element & € H(F) that fixes
B(x,n). Consider a, :=id € F®. By part (ii) of Proposition 5.10 as well as the
definition of F"*V | there is a nontrivial element «@,,; € F™ with m,a,1 = @,.
Applying part (i) of Proposition 5.10 repeatedly, we obtain nontrivial elements
o € F® forall k > n + 1 with myaxs; = ax. Set i = id € F® for all k < n and define
h € Aut(T,), by fixing x and setting o (h,x) := a; € F®. Since F <®'(F®) for all
k<1, we conclude that h € oy Ur(F®) = H(F). O

PROPOSITION 5.13. The group H(F) has open quasicentre.

PROOF. The group H(F)g,1) is a subgroup of the group H(F*), which is abelian by
part (iii) of Proposition 5.10. Hence, H(F)p.1y < QZ(H(F)). O

REMARK 5.14. Without assuming local transitivity one can achieve abelian
point-stabilizers, following the construction of the previous section. This cannot
happen for nondiscrete locally transitive groups H < Aut(7,) that are vertex-transitive
as the following argument shows. By Proposition 2.6, the group H is contained in
U(F) where F < Sym(Q) is the local action of H. If H, is abelian, then so is F. Since
any transitive abelian permutation group is regular we conclude that U(F) and hence
H are discrete. In this sense, the construction of this section is efficient.

PROOF OF THEOREM 5.2(iii). For certain semiprimitive F' < Sym(£2) we construct a
closed, nondiscrete, compactly generated, vertex-transitive group H(F) < Aut(7,) that
locally acts like F and contains a nontrivial quasicentral elliptic element.

Let F<Sym(€2) be semiprimitive. Suppose F preserves a nontrivial partition P :
Q = | |;c; Q; of Q and that Fq, # {id} for all i € I. Further, suppose that F' contains a
nontrivial central element T which preserves P setwise. ]

ExAMPLE 5.15. Consider SL(2,3) ~ IF% \{0} = {xeq, xep, £(e) + €2), £(e1 — )}
where e, e, are the standard basis vectors. We have Z(SL(2, 3)) = {#1d}. The blocks
of size 2 are as listed above, given that SL(2, 3),, <, +SL(2, 3),,.

Define groups F®' < Aut(B,) for k € N inductively by F() := F and

F&D = (@, (@p)o) | @ € FP, @, € Crw(a, w) constant w.r.t. P}.
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PROPOSITION 5.16. The groups F® < Aut(Byx) (k € N) defined above satisfy the
following assertions.

(i)  The compatibility set Cpw(a, ;) is nonempty for all « € F® and i€l In
particular, the group F® satisfies (C).

(1)  The compatibility set Crw(id, ;) is nontrivial for all i € I. In particular, the
group F® does not satisfy (D).

(iii) The element y;(t) € Aut(Byy) is central in F®,

PROOF. We prove all three properties simultaneously by induction. For k = 1, asser-
tion (i) is trivial whereas (iii) is an assumption. Assertion (ii) translates to Fq, being
nontrivial for all i € I, which is an assumption. Now, assume all properties hold for
F®_ Then the definition of F**V is meaningful because of (i) and it is a subgroup
of Aut(Byyy1) because F preserves P. Assertion (ii) carries over from F® to F&*D,
Finally, (iii) follows inductively because 7 and hence 7~!' preserves P setwise: for
@ = (@, (@y)y) € F&V we have

YH@oa" @ = @y @ @ oy @ ). o
DEFINITION 5.17. Retain the above notation. Define H(F) := ey Ur(F®).

Now, H(F) is compactly generated, vertex-transitive and contains an involutive
inversion because U;({id}) < H(F). Also, H(F) is closed as an intersection of closed
sets. The 1-local action of H is given by F = F)) because T'*(F) < F® for all k e N
and therefore D(F) < H(F).

LEMMA 5.18. The group H(F) is nondiscrete.

PROOF. Let x € V and n € N. We construct a nontrivial element & € H(F) that fixes
B(x,n). Consider a, :=id € F™. By part (ii) of Proposition 5.16 and the definition
of F"*D  there is a nontrivial a,,; € F"*V with m,a,,; = a,. Applying part (i) of
Proposition 5.16 repeatedly, we obtain nontrivial elements o € F® for all k > n + 1
with meags1 = a. Set ay := id € F® for all k < n and define h € Aut(T}), by fixing x
and setting o (h, x) := o € F®. Since F® < ®/(F®) for all k < [, we conclude that
h € Niew Uk(F®) = H(F). m

PROPOSITION 5.19. The quasicentre of H(F) contains a nontrivial elliptic element.

PROOF. By Proposition 5.16, the element d(7) that fixes x and whose 1-local action is
T everywhere commutes with H(F),. Hence, d(t) € QZ(H(F)). O

REMARK 5.20. The argument of this section does not work in the quasiprimitive
case because a quasiprimitive group F < Sym(€2) with nontrivial centre is abelian
and regular. If Z(F) < F is nontrivial then it is transitive, and it suffices to show
that F* is trivial. Suppose a € F,, moves w’ € Q. Pick z € Z(F) with z(w) = «’. Then
za(w) = W’ # az(w), contradicting the assumption that z € Z(F).
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PROOF OF THEOREM 5.2(iv)(a). For certain intransitive F' < Sym(Q2) we construct a
closed, nondiscrete, compactly generated, vertex-transitive group H(F) < Aut(7y) that
locally acts like F' and contains a quasicentral hyperbolic element of length 1.

Let F < Sym(€2). Assume that the partition F\Q = | |;; Q; of Q has at least three
elements and that Z(F) # {id}. Choose a nontrivial element 7 € Z(F) and wy € Q) €
F\Q with 7(wp) # wy. Further, suppose that Fg, # {id} for all Q; # €.

Define groups F®' < Aut(B,) for k € N inductively by FV := F and

F&D = ((a, (@w)) @€ F®, a, € Crw(a, w) constant w.r.t. F\Q, a,,=a). O

PROPOSITION 5.21. The groups F® < Aut(B,;) (k € N) defined above satisfy the
following assertions.

(i)  Every a € FW is self-compatible in directions from Q.

(i) The compatibility set Crw(a, ) is nonempty for all @ € F® and i€l In
particular, the group F® satisfies (C).

(iii) The compatibility set Crw(id, ;) is nontrivial for all i € I\{0}. In particular, the
group F® does not satisfy (D).

(iv)  The element y,(t) € Aut(Byy) is central in F®.

PROOF. We prove all four properties simultaneously by induction. For k = 1, asser-
tions (i) and (ii) are trivial. Assertion (iii) translates to Fgq, being nontrivial for all
i € I\{0}, which is an assumption, as is (iv). Now, assume that all properties hold for
F®_ Then the definition of F**1 is meaningful because of (i) and it is a subgroup of
Aut(B,) because F preserves F\Q. Assertion (i) is now evident. Assertions (ii) and
(iii) carry over from F® to F®*D_Finally, (iv) follows inductively because T and hence
77! preserves F\Q setwise: for @ = (a, (ay).) € F** we have

Yo' 0 = (@ @7 a1y @ 7). o
DEFINITION 5.22. Retain the above notation. Define H(F) := ey Ur(F®).

Now, H(F) is compactly generated, vertex-transitive and contains an involutive
inversion because U;({id}) < H(F). Also, H(F) is closed as the intersection of all its
(P;)-closures. The 1-local action of H is given by F = F) as T*(F) < F® forall k e N
and therefore D(F) < H.

LEMMA 5.23. The group H(F) is nondiscrete.

PROOF. Let x € V and n € N. We construct a nontrivial element 4 € H(F) which fixes
B(x, n). Consider a,, := id € F™. By parts (i) and (iii) of Proposition 5.21 as well as
the definition of F"*D there is a nontrivial element a,,; € F™D with 7,041 = .
Applying parts (i) and (ii) of Proposition 5.21 repeatedly, we obtain nontrivial elements
ay € F® forall k > n + 1 with meas; = ax. Set @y := id € F® for all k < n, and define
h € Aut(T,), by fixing x and setting o (h, x) := a; € F®. Since F? < ®/(FW) for all
k < I we conclude that & € Ny Ur(F®) = H(F). O

PROPOSITION 5.24. The quasicentre of H(F) contains a translation of length 1.
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PROOF. Fix x € V and let 7 be as above. Consider the line L through x with labels
. ,T_za)(), T_la)(), wo, TWo, T2w0, R

Define ¢ € D(F) by #(x) = x,, and o1(t,y) = 7 for all y € V. Then ¢ is a translation of
length 1 along L. Furthermore, ¢ commutes with H(F)p,1). Indeed, let g € H(F)p(,1)-
Then (g1)(x) = t(x) = (tg)(x) and

k(8. x) = 0(8, X)oi(t, x) = ok (t, )0k (8, x) = ok (t, gX)0k(8, X) = T(1g, x)
for all k € N because o(t, x) = (1) € Z(FP) and g € Uy 1 (F**D)pe. ). O

PROOF OF THEOREM 5.2(iv)(b). For certain quasiprimitive F' < Sym(£2) we construct
a closed, nondiscrete, compactly generated group H(F) < Aut(7}) that locally acts like
F and contains a quasicentral hyperbolic element of length 2.

Let F<Sym(£2) be quasiprimitive. Suppose F preserves a nontrivial partition P :
Q = | |;e; ©Q;. Further, suppose that Fg, #{id} and that F,,, ~ Q;\{w;} is transitive for
alli e I and w; € Q;. O

EXAMPLE 5.25. Consider the action A5 ~ As/Cs. It has blocks of size [Ds : C5] = 2
and nontrivial block stabilizers as Cs N 7Cst~! = Cs for all 7 € D5 given that Cs < Ds.

Retain the notation of Example 4.41. Define groups FP < Aut(Bgy;) for ke N
inductively by F® = {(a, (a,).) | a € F,a, € Cr(a, w) constant w.r.t. P} and

FPED) = {(a, (@p)e) | @ € F, 0 € Cren(a, &), forall é € Q) : ag = a).

PROPOSITION 5.26. The groups F®® < Aut(B;oi) (k € N) defined above satisfy the
following assertions.

(i)  Every a € FV s self-compatible in all directions from QE)Z).

(i) The compatibility set Cron(a,&) is nonempty for all a€ F® and £€Q®. In
particular, the group F®® satisfies (C).

(iii) The compatibility set Crev(id, £) is nontrivial for all ¢ € QP. In particular, the
group F®® does not satisfy (D).

PROOF. We prove all three properties simultaneously by induction. For k = 1, asser-
tion (i) holds by construction of F®, as do (ii) and (iii). Now assume that all properties
hold for F®®. Then the definition of F®**1) is meaningful because of (i) and it is
a subgroup because F@ preserves Q. Also, FA**1) satisfies (i) because Q7 is
inversion-closed. Assertions (ii) and (iii) carry over from F®®, O

DEFINITION 5.27. Retain the above notation. Define H(F) := ;e BUw(F@P).

Now, H(F) is closed as an intersection of closed sets and compactly generated by
H(F), for some x € Vi and a finite generating set of BU,({id})*; see Lemma 4.39. For
vertices in V;, the 1-local action is F because I'’**(F) < F®®_ For vertices in V, the
1-local action is F* = F as T2(F) < F®.

LEMMA 5.28. The group H(F) is nondiscrete.
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PROOF. Let x € V; and n € N. We construct a nontrivial element 2 € H(F') that fixes
B(x,2n). Consider ay, := id € F®": By parts (i) and (iii) of Proposition 5.5 and the
definition of F*1)_there is a nontrivial element ay(,+1y € F"D) with my,a0(41) =
ay,. Applying parts (i) and (ii) of Proposition 5.26 repeatedly, we obtain nontrivial
elements @y, € F@ for all k > n + 1 with m,a2**D = ay;. Set ay; := id € F@ for all
k < n and define h € Aut(T,), by fixing x and setting o5 (h, x) := @ € F?P. Since
FC) <B®(F0) for all k<[, we conclude that & € gy BUw(F®Y) = H(F). O

PROPOSITION 5.29. The quasicentre of H(F) contains a translation of length 2.
PROOF. Fix xeV; and é =(w;, wy) € QE)Z). Consider the line L through b with labels
- W1, W2, W1, W, . ..

Define t € D(F) by #(x) = xz and o((t,y) = id for all y € V. Then ¢ is a translation of
length 2 along L. Furthermore, t commutes with H(F)p ). Indeed, let g € H(F)p(x2).
Then gt(x) = t(x) = tg(x) and, for all k € N,

o (g1, x) = oo (g, X)oak(t, x) = 024 (g, X¢)
= 02k(8, X) = o (1, gx)o2k (g, X) = 02 (18, X)

as oy(t,y) = id for all / € N and y € V(T,), and g € BUyqs 1) (FE*E D), o). O

REMARK 5.30. We argue that the construction of this section does not carry over to
any primitive F < Sym(Q) and I'(F) < F® < ®(F).

First, note that ®F)\Q? =T(F)\Q?. For « :=(a,(a,)peq) € P(F) and
(w1, w)€Q? we have a(w;,ws) = (awy, ay,ws) € {(awy, aF,, w1)} € T(F)(wy, wy).
We now observe the following obstruction to nondiscreteness. Given any orbit
Q(z) € O(F)\Q? = FO\Q®?, the subgroup of ®(F) consisting of elements that are
self compatible in all directions from Q( ) is precisely I'(F).

Indeed, every element of I'(F) is self—compatlble in all directions from Q® DQ2
Conversely, let (a, (a,)w) € O(F) be self-compatible in all directions from Q(z) Con-
sider the equivalence relation on Q defined by w; ~ w; if and only if a,, = a,,. Since
dy, = a,, whenever € := (w1, wy) € Q( ) thlS relation is F-invariant. Since F(F) <
O(F) we have y(a)(wy, wy) = (acul,awz) € Q 2 for all a € F whenever (w1, wy) € Q
Since F is primitive, it is the universal relatlon so (a, (ay)w) €T (F).

5.2. Banks-Elder—Willis (Py)-closures. Theorem 4.34 yields a description of the
(Py)-closures of locally transitive subgroups of Aut(7,) that contain an involutive
inversion, and therefore a characterization of the locally transitive universal groups.
Recall that the (Py)-closure of a subgroup H < Aut(7y) is

HP = {g € Aut(T,) | for all x € V there exists & € H : glpuk) = hlpei)-

Combined with Corollary 4.18 the following partially answers the question for an
algebraic description of a group’s (Py)-closure in the last paragraph of [1].
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THEOREM 5.31. Let H < Aut(Ty) be locally transitive and contain an involutive
inversion. Then H"Y = U(Z)(F(k))for some labelling | of T; and F® < Aut(Bg ).

PROOF. Let [ and F® < Aut(By,;) be as in Theorem 4.34. Then HP¥) = (l)(F .

Let g € Up(F®) and x € V. Since U()({ld}) < H there is I € U(l)({ld}) < H with
I’ (x) = g(x), and since H is k-locally action isomorphic to F® there is "’ € H, such
that oy (h”,x) = o(g,x). Then h := h'h"’ € H satisfies glpu i) = hlpri)-

Conversely, let g € H"V, Then all k-local actions of g stem from elements of H.
Given that H < U;(F®) by Theorem 4.34, we conclude that g € U;(F®). O

COROLLARY 5.32. Let H < Aut(T;) be closed, locally transitive and contain an
involutive inversion. Then H = U,({l)(F(k)) for some labelling | of T; and an action
F® < Aut(Bgy) if and only if H satisfies property (Py).

PROOF. If H = UY(F®) then H satisfies property (Py) by Proposition 4.7. Conversely,
if H satisfies Property (P;) then H = H =H®o by [1, Theorem 5.4] and the assertion
follows from Theorem 5.31. O

Banks, Elder and Willis use certain subgroups of Aut(7,) with pairwise distinct
(Py)-closures to construct infinitely many, pairwise nonconjugate, nondiscrete simple
subgroups of Aut(7,;) via Theorem 2.1 and [l, Theorem 8.2]. For example, the
group PGL(2,Q,) < Aut(7)+1) qualifies by the argument in [1, Section 4.1]. Whereas
PGL(2, Q) has trivial quasicentre given that it is simple, certain groups with nontrivial
quasicentre always have infinitely many distinct (Py)-closures.

PROPOSITION 5.33. Let H < Aut(T,) be closed, nondiscrete, locally transitive and
contain an involutive inversion. If also H has nontrivial quasicentre then H has
infinitely many distinct (Py)-closures.

PROOF. We have H¥ = Uy(F®) by Theorem 5.31. Therefore, H = (e U(F®)
by [1, Proposition 3.4(iii)]. If H had only finitely many distinct (Pj)-closures, the
sequence (H'PW); i of subgroups of Aut(7,;) would be eventually constant and equal
to, say, H™ = U,(F™) > H. However, since H is nondiscrete, so is U,(F"™) which
thus has trivial quasicentre by Proposition 4.21. ]

Banks, Elder and Willis ask whether the infinitely many, pairwise nonconjugate,
nondiscrete simple subgroups of Aut(7,) they construct are also pairwise nonisomor-
phic as topological groups. By Proposition 4.17, this is the case if the said simple
groups are locally transitive with distinct point-stabilizers, which can be determined
from the original group’s k-local actions thanks to Theorem 5.31.

THEOREM 5.34. Let H < Aut(Ty) be nondiscrete, locally permutation isomorphic to
F < Sym(Q) and contain an involutive inversion. Suppose that F is transitive and that
every nontrivial subnormal subgroup of F,, (we€Q) is transitive on Q\{w}. If HFY #
HP) for some k,1 € N then (HO)* and (HFP)*' are nonisomorphic.

PROOF. In view of [1, Theorem 8.2], the groups (H'"V)** and (H*?)*’ are nonconju-
gate. We show that they satisfy the assumptions of Proposition 4.17 which then implies
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the assertion. It suffices to consider H"¥. By Theorem 5.31, we have H"¥ = U, (F®)
for some F® < Aut(Bg). By virtue of Proposition 4.10, we may assume that F (k)
satisfies (C). Since H is nondiscrete, so is H¥ = Uy(F®). Therefore, F® does
not satisfy (D); see Proposmon 4 12. Hence, in view of the local action of H and
Proposition 4.31, the group JTgF is nontrivial and thus transitive by Proposition 4.30
for all € = (wy, ..., wi) € QK f and w € Q\{w;}. Now, let x € V(T,). For every w €
Q pick & = (wl, Wi, w) € QD Let y € V(T,) be such that x = y. Since 7:Fy
is transitive for every w’ € Q\{w;} we conclude that (H"V)* is locally 2- transmve
at x. So Proposition 4.17 applies. O

EXAMPLE 5.35. Theorem 5.34 applies to PGL(2,Q,)<Aut(7)) for any prime p
by Lemma 5.36 below. In fact, the local action is given by PGL(2, Fp)mPl(Fp),
point-stabilizers of which act like AGL(1, p)=F, x<F, ~ F,. Retaining the notation
of [1, Section 4.1], an involutive inversion in PGL(2,Q,) is given by

10 1 .. o |p O0]_|1 O
wi=|y of wmer=]p of=[5 9|

Indeed, o swaps the vertices v and L.

LEMMA 5.36. Let F < Sym(Q) be 2-transitive. If |QQ| — 1 is prime then every nontrivial
subnormal subgroup of F, (w € Q) acts transitively on Q\{w)}.

PROOF. Since F, acts transitively on Q\{w}, which has prime order, F, is primitive.
So every nontrivial normal subgroup of F,, acts transitively on Q\{w}. Iterate. |

EXAMPLE 5.37. The proof of Theorem 5.34 shows that the assumptions on F can be
replaced with asking that (H*¥)** be locally transitive with distinct point-stabilizers,
which may be feasible to check in a given example.

For instance, let F <Sym(Q) be transitive with distinct point-stabilizers. Assume
that F' preserves a nontrivial partition P : Q = | |;; ©; of Q and that it is generated by
its block stabilizers, that is, F' = ({Fq, | i € I}).

Let p:Q — I be such that w € Q,, for all w € Q. Inductively define groups
F® < Aut(Byy) by FV := F and F&D := @, (F®, P), and check that

(i)  Crw(a,Q;) is nonempty for all « € F® and i € I,

(i) Crw(id, ;) is nontrivial for all i € 1,

(i) F*D < @(F®), and

(v) mFy=Fq,  forallweQandé=(wy.... w-1)€Q D with wi ¢ Q.

In particular, F® satisfies (C) but not (D) for all k € N. Set H := ey Ut(F®).
By the above, H is nondiscrete and contains both D(F) and U;({id}). Hence, Theorem
5.31 applies and we have H'PY = Uy(F®). From item (iii), we conclude that the H"%
(k € N) are pairwise distinct. Given that (H*¥)** locally acts like F due to item (iv),
the (H"V)* (k € N) are hence pairwise nonisomorphic.

PWE_1
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5.3. A view on the Weiss conjecture. The Weiss conjecture states that there are
only finitely many conjugacy classes of discrete, vertex-transitive, locally primitive
subgroups of Aut(7,) for a given d € Ny3. We now study the universal group
construction in the discrete case and offer a new view on this conjecture. Under
the additional assumption that each group contains an involutive inversion, it suf-
fices to show that for every primitive F' < Sym((2) there are only finitely many
F < Aut(B;y) (k € N) with nF = F and that satisfy (CD) in a minimal fashion; see
Definition 5.42 and the discussion thereafter.

The following consequence of Theorem 5.31 identifies certain groups relevant to
the Weiss conjecture as universal groups for local actions satisfying condition (CD).

COROLLARY 5.38. Let H < Aut(T,) be discrete, locally transitive and contain an
involutive inversion. Then H = U;(l)(F(k)) for some k €N, a labelling | of T; and
F® < Aut(Bgy) satisfying (CD) that is isomorphic to the k-local action of H.

PROOF. Discreteness of H implies property (Py) for every k € N such that stabilizers
in H of balls of radius k in 7} are trivial. Then apply Theorem 5.31. ]

Therefore, the study of the class of groups given in Corollary 5.38 reduces to
the study of subgroups F < Aut(B;;) (k € N) that satisfy (CD) and for which nF
is transitive. By Corollary 4.15, any two conjugate such groups yield isomorphic
universal groups. In this sense, it suffices to examine conjugacy classes of subgroups
of Aut(B, ). This can be done computationally using the description of conditions (C)
and (D) developed in Section 4.2, using, for example, [9].

EXAMPLE 5.39. Consider the case d=3. By [7, 31, 32], there are, up to conjugacy,
seven discrete, vertex-transitive and locally transitive subgroups of Aut(73). We denote
them by Gy, G, Gé, G3, Gy, Gi and Gs. The subscript n determines the isomorphism
class of the vertex stabilizer, whose order is 3 -2"~!. A group contains an involutive
inversion if and only if it has no superscript. The minimal order of an inversion in Gé
and G}1 is 4. See also [4]. By Corollary 5.38, the groups G, (n€{l,...,5}) are of the
form U (F). We recover their local actions in Table 1. The list is complete for k = 2,
and for k = 3 in the case of (CD).

The column labelled ‘i.c.c.” records whether F' admits an involutive compatibility
cocycle. This can be determined in [9] and is automatic in the case of (CD). The group
I1(S3, sgn, {1}) of Proposition 4.25 admits an involutive compatibility cocycle z which
we describe as follows. Suppose Q:={1, 2, 3}. Let #; € Sym(Q) be the transposition that
fixes i, and let 7; €T1(S3, sgn, {1}) be the element whose 1-local action is ¢; everywhere
except at b;. Then I1(S3, sgn, {1}) = (71, 72, T3). Further, let «; € T1(S3, sgn, {1}) Nkerx
be the nontrivial element with o (;, b;) = e. We then have z(t;,1) = k;—; and z(7;,j) =
7;k; for all distinct i, j € Q, with cyclic notation.

The kernel K is the diagonal subgroup of Z/2 73CD = kerm, < Aut(Bs3). Using
the above, we conclude that G| = U (A3), G, = Ux(I'(S3)), G5 = Uy(A(S3)), G4 =
Us (T2 (T1(S3, sgn, {1}))) and Gs = Uz(Z2(T1(S3, sgn, {1}), K3)).
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TABLE. 1. Conjugacy class representatives of subgroups F of Aut(B3,) and Aut(Bj3) that satisfy (C) and
project onto a transitive subgroup of Ss.

Description of F k nF [Fl () (D) icec.
D(A3) 2 Aj 3 yes yes yes

I'(S3) 2 S3 6 yes  yes yes

A(S3) 2 S3 12 yes yes yes

I1(S3, sgn, {0, 1}) 2 S3 24 yes no no
I1(S3, sgn, {1}) 2 S5 24 yes no yes
D(S3) 2 S5 48  yes no no
Description of F k mF |F| ©) (D) ic.c.

I (T1(S3, sgn, {1})) 3 I1(S3, sgn, {1}) 24 yes yes yes
2o (I1(S3,sgn, {1}),K>) 3 TI(S3,sgn,{1})) 48 yes yes yes

QUESTION 5.40. Can the groups Gé and Gi be described as universal groups with
prescribed local actions on edge neighbourhoods that prevent involutive inversions?

The long-standing Weiss conjecture [33] states that there are only finitely many
conjugacy classes of discrete, vertex-transitive, locally primitive subgroups of Aut(7,)
for a given d € Nsj. Potocnic et al. [21] show that a permutation group F < Sym(Q2),
for which there are only finitely many conjugacy classes of discrete, vertex-transitive
subgroups of Aut(7;) that locally act like F, is necessarily semiprimitive, and
conjecture the converse. Promising partial results were obtained in the same article
as well as by Giudici and Morgan in [11].

Corollary 5.38 suggests restricting to discrete, locally semiprimitive subgroups of
Aut(Ty) containing an involutive inversion.

CONJECTURE 5.41. Let F < Sym(€) be semiprimitive. Then there are only finitely
many conjugacy classes of discrete subgroups of Aut(7}) that locally act like F and
contain an involutive inversion.

For a transitive permutation group F < Sym(Q), let H denote the collection of
subgroups of Aut(7,) that are discrete, locally act like F and contain an involutive
inversion. Then the following definition is meaningful by Corollary 5.38.

DEFINITION 5.42. Let F < Sym(Q) be transitive. Define

dimep(F) := maxmin{k € N| there exists F® e Aut(Byy) with (CD) : H=U(FV))
€Hr

if the maximum exists and dimcp(F) = oo otherwise.

Given Definition 5.42, Conjecture 5.41 is equivalent to asserting that dimcp(F)
is finite whenever F' < Sym(Q) is semiprimitive. The remainder of this subsection is
devoted to determining dimcp for certain classes of transitive permutation groups.
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PROPOSITION 5.43. Let F < Sym(Q) be transitive. Then dimcp(F) = 1 if and only if
F is regular.

PROOF. If F is regular, then dimcp(F) =1 by Proposition 4.13. Conversely, if
dimep(F) =1 then Uy(A(F)) = Ui(F) = Up(I'(F)). Hence, I'(F) = A(F), which
implies that F, is trivial for all w € Q. That is, F is regular. O

The next proposition provides a large class of primitive groups of dimension 2. It
relies on the following relations between various characteristic subgroups of a finite
group. Recall that the socle of a finite group is the subgroup generated by its minimal
normal subgroups, which form a direct product.

LEMMA 5.44. Let G be a finite group. Then the following assertions are equivalent.

(1)  The socle soc(G) has no abelian factor.
(ii)  The solvable radical O (G) is trivial.
(iii))  The nilpotent radical Fit(G) is trivial.

PROOF. If soc(G) has no abelian factor then O, (G) is trivial: a nontrivial solvable
normal subgroup of G would contain a minimal solvable normal subgroup of G which
is necessarily abelian. Next, (ii) implies (iii) as every nilpotent group is solvable.
Finally, if soc(G) has an abelian factor then G contains a (minimal) normal abelian,
hence nilpotent subgroup. Thus (iii) implies (i). ]

PROPOSITION 5.45. Let F < Sym(Q) be primitive, nonregular and assume that F,,
has trivial nilpotent radical for all w € Q. Then dimcp(F) = 2

PROOF. Suppose that F® < Aut(B,») satisfies (C) and that the sequence

1 ker 7 FO _*,F 1

is exact. Fix wy € Q. Then kerm < [[ eq Fw = Fd Since F® satisfies (C), we have
pr,(kerm) < F,, for all w € Q, and since F is transmve these projections all coincide
with the same N < F,,,. Now consider F(z) kerpr,, lkerr < kerﬂ for some w € Q.
Either F() is trivial, in which case F(z) has (CD), or F is nontrivial. In the
latter case suppose Ny, = pr,, F; ) is nontrivial for some ' € Q. Then Ny 18
subnormal in F,,, as N, IN < Fw and therefore has trivial nilpotent radical. The
Thompson—Wielandt theorem [28, 34] (cf. [2, Theorem 2.1.1]) now implies that there
is no F® < Aut(By), k > 3, satisfying mpF® = F® and (CD). Thus dimcp(F) < 2.
Equality holds by Proposition 5.43. o

Proposition 5.45 applies to Alt(d) and Sym(d), d > 6, whose point-stabilizers have
nonabelian simple socle Alt(d — 1). It also applies to primitive groups of O’Nan—Scott
type (TW) and (HS), whose point-stabilizers have trivial solvable radical [6, Theorem
4.7B] and simple nonabelian socle [16], respectively.

EXAMPLE 5.46. By Example 5.39, we have dimcp(S3) > 3. The article [7] shows that
in fact dimCD(S3) =3
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To contrast the primitive case, we show that imprimitive wreath products have
dimension at least 3, illustrating the use of involutive compatibility cocycles. Recall
that for F < Sym(Q) and P < Sym(A) the wreath product F ¢ P := FAl < P admits
a natural imprimitive action on QX A with the partition | |;cp Q X {4}, namely
(a1, 0) - (W, ) = (agryw, o).

PROPOSITION 5.47. Let Q and A be finite sets of size at least 2. Furthermore, let
F < Sym(Q) and P < Sym(A) be transitive. Then dimcp(F ¢ P) > 3.

PROOF. We define a subgroup W(F, P) < Aut(Bjgxa)2) that projects onto F? P, sat-
isfies (C), does not satisfy (D) but admits an involutive compatibility cocycle. This
suffices by Lemma 4.26. For A € A, let ¢, denote the Ath embedding of F into
F P = (][] ep F) = P. Recall the map vy from Section 4.4.1 and consider

va i F — Aut(Biaxa2), a = (@), (@) w1, (d)wr=1)),
7;2) 1 F — Aut(Bjoxal2), a = (d, ((d)(w,1), (@) w,r+1)-
Furthermore, let ¢ denote the embedding of P into F'¢ P. We define
W(F,P) := (a(@), ¥ (@), y(@) | A€ A, a € F, g € P).

By construction, W(F, P) does not satisfy (D). To see that W(F,P) admits an
involutive compatibility cocycle, we first determine its group structure. Consider
the subgroups V :=(y\(a)| 1€ A, a€F) and V= (zf)(a) |1€ A, aeF). Then
W(F,P) = (V,V,T(«(P))). Observe that V = FAl and V = FIAl commute, intersect
trivially, and that I'(¢(P)) permutes the factors of each product. Hence,

W(F,P) = (VxV)xP = (FMNxFAy P,
An involutive compatibility cocycle z of W(F, P) may now be defined by setting
Y@ =2
ya@) A+

for all 1€ A, a€F, and z(y(«(0)), (w, 1) := ¥((o)) for all o € P. In fact, the map
z extends to an involutive compatibility cocycle of V x V < W(F, P) which in turn
extends to an involutive compatibility cocycle of W(F, P). ]

Yal@)y A=A ©)

Z(?’/l(a), (CL), /l,)) = {7512)(61) A+ X s Z(y,l (a),(a), /1/)) = {
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