
J. Aust. Math. Soc. 115 (2023), 240–288
doi:10.1017/S1446788722000143

GROUPS ACTING ON TREES
WITH PRESCRIBED LOCAL ACTION

STEPHAN TORNIER

(Received 12 October 2021; accepted 21 May 2022; first published online 12 September 2022)

Communicated by Michael Giudici

Abstract

We extend the Burger–Mozes theory of closed, nondiscrete, locally quasiprimitive automorphism
groups of locally finite, connected graphs to the semiprimitive case, and develop a generalization of
Burger–Mozes universal groups acting on the regular tree Td of degree d ∈ N≥3. Three applications are
given. First, we characterize the automorphism types that the quasicentre of a nondiscrete subgroup of
Aut(Td) may feature in terms of the group’s local action. In doing so, we explicitly construct closed,
nondiscrete, compactly generated subgroups of Aut(Td) with nontrivial quasicentre, and see that the
Burger–Mozes theory does not extend further to the transitive case. We then characterize the (Pk)-closures
of locally transitive subgroups of Aut(Td) containing an involutive inversion, and thereby partially answer
two questions by Banks et al. [‘Simple groups of automorphisms of trees determined by their actions
on finite subtrees’, J. Group Theory 18(2) (2015), 235–261]. Finally, we offer a new view on the Weiss
conjecture.
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1. Introduction

In the structure theory of locally compact (l.c.) groups, totally disconnected (t.d.) ones
are in focus because any locally compact group G is an extension of its connected
component G0 by the totally disconnected quotient G/G0,

1 �� G0 �� G �� G/G0 �� 1,

and connected l.c. groups have been identified as inverse limits of Lie groups in
seminal work by Gleason [13], Montgomery and Zippin [20] and Yamabe [35].
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[2] Groups acting on trees 241

Every t.d.l.c. group can be viewed as a directed union of compactly generated open
subgroups. Among the latter, groups acting on regular graphs and trees stand out due
to the Cayley–Abels graph construction: every compactly generated t.d.l.c. group G
acts vertex-transitively on a connected regular graph Γ of finite degree d with compact
kernel K. In particular, the universal cover of Γ is the d-regular tree Td and we obtain
a cocompact subgroup G̃ of its automorphism group Aut(Td),

1 �� π1(Γ) �� G̃ �� G/K �� 1,

as an extension of π1(Γ) by G/K; see [19, Section 11.3] and [15] for details.
In studying the automorphism group Aut(Γ) of a locally finite, connected graph

Γ = (V , E), we follow the notation of Serre [25]. The group Aut(Γ) is t.d.l.c. when
equipped with the permutation topology for its action on V ∪ E; see Section 2.1.
Given a subgroup H ≤ Aut(Γ) and a vertex x ∈ V , the stabilizer Hx of x in H induces
a permutation group on the set E(x) := {e ∈ E | o(e) = x} of edges issuing from x. We
say that H is locally ‘X’ if for every x ∈ V the said permutation group satisfies property
‘X’ (for example, being transitive, semiprimitive or quasiprimitive).

In [2], Burger and Mozes develop a remarkable structure theory of closed,
nondiscrete, locally quasiprimitive subgroups of Aut(Γ), which resembles the theory
of semisimple Lie groups; see Theorem 2.2. In Section 3 (specifically Theorem 3.14)
we show that this theory readily carries over to the semiprimitive case.

Let Ω be a set of cardinality d∈N≥3 and let Td= (V , E) be the d-regular tree. Burger
and Mozes complement their structure theory with a particularly accessible class of
subgroups of Aut(Td) with prescribed local action. Given F ≤ Sym(Ω), their universal
group U(F) is closed in Aut(Td), vertex-transitive, compactly generated and locally
permutation isomorphic to F. It is discrete if and only if F is semiregular. When F
is transitive, U(F) is maximal up to conjugation among vertex-transitive subgroups of
Aut(Td) that are locally permutation isomorphic to F, hence universal.

We generalize the universal groups by prescribing the local action on balls of a
given radius k ∈ N, the Burger–Mozes construction corresponding to the case k=1.
Equip Td with a labelling, that is, a map l : E → Ω such that for every x ∈ V the map
lx :E(x)→Ω, e �→ l(e) is a bijection, and l(e)= l(e) for all e∈E. Also, fix a tree Bd,k
that is isomorphic to a ball of radius k around a vertex in the labelled tree Td and let
lkx : B(x, k)→ Bd,k (x ∈ V) be the unique label-respecting isomorphism. Then

σk : Aut(Td) × V → Aut(Bd,k), (g, x) �→ lkgx ◦ g ◦ (lkx)−1

captures the k-local action of g at the vertex x ∈ V .

DEFINITION 1.1. Let F ≤ Aut(Bd,k). Define

Uk(F) := {g ∈ Aut(Td) | for all x ∈ V : σk(g, x) ∈ F}.

While Uk(F) is always closed, vertex-transitive and compactly generated, other
properties of U(F) need not carry over. In particular, the group Uk(F) need not be
locally action isomorphic to F; we say that F ≤ Aut(Bd,k) satisfies condition (C) if it is.
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This can be viewed as an interchangeability condition on neighbouring local actions;
see Section 4.4. There also is a discreteness condition (D) on F ≤ Aut(Bd,k) in terms
of certain stabilizers in F under which Uk(F) is discrete; see Section 4.2.2. Finally, the
groups Uk(F) are universal in a sense akin to the above by Theorem 4.34.

For F̃ ≤ Aut(Bd,k), let F := πF̃ ≤ Sym(Ω) denote its projection to Aut(Bd,1), which
is naturally permutation isomorphic to Sym(Ω) via the labelling of Bd,1. The following
rigidity theorem is inspired by [2, Proposition 3.3.1].

THEOREM 1.2. Let F≤Sym(Ω) be 2-transitive and Fω (ω∈Ω) simple nonabelian.
Further, let F̃ ≤ Aut(Bd,k) with πF̃ = F satisfy (C). Then Uk(F̃) equals either

U2(Γ(F)), U2(Δ(F)) or U1(F).

Here, the groups Γ(F),Δ(F)≤Aut(Bd,2) of Section 4.4 satisfy both (C) and (D) and
therefore yield discrete universal groups. Illustrating the necessity of the assumptions
in Theorem 4.32, we construct further universal groups in the case where either
point-stabilizers in F are not simple, F is not primitive, or F is not perfect; see, for
example, Φ(F, N),Φ(F,P),Π(F, ρ, X) ≤ Aut(Bd,2) in Section 4.4.

In Section 5 we present three applications of the framework of universal groups.
First, we study the quasicentre of subgroups of Aut(Td). The quasicentre QZ(G)
of a topological group G consists of those elements whose centralizer in G is
open. It plays a major role in the Burger–Mozes structure theorem (Theorem 2.2): a
nondiscrete, locally quasiprimitive subgroup of Aut(Td) does not feature any nontrivial
quasicentral elliptic elements. We extend this fact to the following local-to-global-type
characterization of the automorphism types that the quasicentre of a nondiscrete
subgroup of Aut(Td) may feature in terms of the group’s local action.

THEOREM 1.3. Let H ≤ Aut(Td) be nondiscrete. If H is locally:

(i) Transitive, then QZ(H) contains no inversion.
(ii) Semiprimitive, then QZ(H) contains no nontrivial edge-fixating element.
(iii) Quasiprimitive, then QZ(H) contains no nontrivial elliptic element.
(iv) k-transitive, (k ∈ N) then QZ(H) contains no hyperbolic element of length k.

More importantly, the proof of the above theorem suggests using groups of the
form

⋂
k∈NUk(F(k)) for appropriate local actions F(k) ≤ Aut(Bd,k) in order to explicitly

construct nondiscrete subgroups of Aut(Td) whose quasicentres contain certain types
of automorphisms. This leads to the following sharpness result.

THEOREM 1.4. There exist a d ∈ N≥3 and a closed, nondiscrete, compactly generated
subgroup of Aut(Td) that is locally:

(i) Intransitive and contains a quasicentral inversion.
(ii) Transitive and contains a nontrivial quasicentral edge-fixating element.
(iii) Semiprimitive and contains a nontrivial quasicentral elliptic element.
(iv) (a) Intransitive and contains a quasicentral hyperbolic element of length 1.

(b) Quasiprimitive and contains a quasicentral hyperbolic element of length 2.
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Part (ii) of this theorem can be strengthened to the following result which shows
that the Burger–Mozes theory does not extend further to locally transitive groups.

THEOREM 1.5. There exist d ∈ N≥3 and a closed, nondiscrete, compactly generated,
locally transitive subgroup of Aut(Td) with open, hence nondiscrete, quasicentre.

We also give an algebraic characterization of the (Pk)-closures of locally tran-
sitive subgroups of Aut(Td) which contain an involutive inversion. Thereby, we
partially answer two questions by Banks et al. [1, page 259] who introduced the
term (Pk)-closure in [1] and called it k-closure; however the term k-closure has an
established meaning for permutation groups due to Wielandt, so we use (Pk)-closure
here. Recall (Section 2.2.2) that the (Pk)-closure (k ∈ N) of a subgroup H ≤ Aut(Td) is
given by

H(Pk) = {g ∈ Aut(Td) | for all x ∈ V(Td) there exists h ∈ H : g|B(x,k) = h|B(x,k)}.

THEOREM 1.6. Let H ≤ Aut(Td) be locally transitive and contain an involutive
inversion. Then H(Pk) = Uk(F(k)) for some labelling l of Td and F(k) ≤ Aut(Bd,k).

Combined with the independence properties (Pk), k∈N (Section 2.2.2), introduced
by Banks et al. [1] as generalizations of Tits’ independence property, Theorem 5.31
entails the following characterization of universal groups.

COROLLARY 1.7. Let H ≤ Aut(Td) be closed, locally transitive and contain an
involutive inversion. Then H = Uk(F(k)) if and only if H satisfies property (Pk).

Banks, Elder and Willis use subgroups of Aut(Td) with pairwise distinct
(Pk)-closures to construct infinitely many, pairwise nonconjugate, nondiscrete simple
subgroups of Aut(Td) via Theorem 2.1 and ask whether they are also pairwise
nonisomorphic as topological groups. We partially answer this question in the
following theorem.

THEOREM 1.8. Let H ≤ Aut(Td) be nondiscrete, locally permutation isomorphic to
F ≤ Sym(Ω) and contain an involutive inversion. Suppose that F is transitive and that
every nontrivial subnormal subgroup of Fω (ω∈Ω) is transitive on Ω\{ω}. If H(Pk) �
H(Pl) for some k, l ∈ N then (H(Pk))+k and (H(Pl))+l are nonisomorphic.

Infinitely many families of pairwise nonisomorphic simple groups of this type, each
sharing a certain transitive local action, are constructed in Example 5.37.

Finally, Section 5.3 offers a new view on the Weiss conjecture [33] which states
that there are only finitely many conjugacy classes of discrete, locally primitive
and vertex-transitive subgroups of Aut(Td) for a given d ∈ N≥3. This conjecture was
extended by Potočnik et al. in [21] to semiprimitive local actions, and impressive
partial results have been obtained by the same authors as well as by Giudici and
Morgan [11]. We show that under the additional assumption that each group contains
an involutive inversion, it suffices to show that for every semiprimitive F ≤ Sym(Ω)
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there are only finitely many F̃ ≤ Aut(Bd,k) (k ∈ N) with πF̃ = F that satisfy conditions
(C) and (D) in a minimal fashion; see Definition 5.42.

2. Preliminaries

This section gathers together preliminaries on permutation groups, graph theory
and Burger–Mozes theory. References are given in each subsection.

2.1. Permutation groups. Let Ω be a set. In this section we give definitions and
results concerning the group Sym(Ω) of bijections of Ω. Refer to [6, 12, 22] and [15,
Section 1.2] for further details.

Let F ≤ Sym(Ω). The degree of F is |Ω|. For ω ∈ Ω, the stabilizer of ω in F is Fω :=
{σ ∈ F | σω = ω}. The subgroup of F generated by its point-stabilizers is denoted by
F+ := 〈{Fω | ω ∈ Ω}〉. The permutation group F is semiregular, or free, if Fω = {id} for
all ω ∈ Ω; equivalently, if F+ is trivial. It is transitive if its action on Ω is transitive,
and regular if it is both semiregular and transitive.

Let F ≤ Sym(Ω) be transitive. The rank of F is the number rank(F) := |F\Ω2|
of orbits of the diagonal action σ · (ω,ω′) := (σω,σω′) of F on Ω2. Equivalently,
rank(F) = |Fω\Ω| for all ω ∈ Ω. Note that the diagonal Δ(Ω) := {(ω,ω) | ω ∈ Ω}
is always an orbit of the diagonal action F� Ω2. The permutation group F is
2-transitive if it acts transitively on Ω2\Δ(Ω). In other words, rank(F) = 2.

We now define several classes of permutation groups lying in between the classes
of transitive and 2-transitive permutation groups. Let F ≤ Sym(Ω). A partition P :
Ω =
⊔

i∈I Ωi of Ω is preserved by F, or F-invariant, if for all σ ∈ F we have that
{σΩi | i ∈ I} = {Ωi | i ∈ I}. The partitions Ω = Ω and Ω =

⊔
ω∈Ω{ω} are trivial. A map

a : Ω→ F is constant with respect to (w.r.t.) P if a(ω) = a(ω′) whenever ω,ω′ ∈ Ωi
for some i ∈ I. The permutation group F is primitive if it is transitive and preserves
no nontrivial partition of Ω. Equivalently, F is transitive and its point-stabilizers
are maximal subgroups. Given a normal subgroup N of F, the partition of Ω into
N-orbits is F-invariant. Consequently, every nontrivial normal subgroup of a primitive
group is transitive. The permutation group F is quasiprimitive if it is transitive and
all its nontrivial normal subgroups are transitive. Finally, F is semiprimitive if it
is transitive and all its normal subgroups are either transitive or semiregular. The
following implications among the above properties follow from the definitions; we
list examples illustrating that each implication is strict:

2-transitive⇒ primitive
A5 � A5/D5

⇒ quasiprimitive
A5 � A5/C5

⇒ semiprimitive
C4 � C2

⇒ transitive
D4 � C2×C2

.

Note that A5 is simple and that C5 � D5 � A5 is a nonmaximal subgroup of A5.

2.1.1. Permutation topology. Let X be a set and H ≤ Sym(X). The basic open sets of
the permutation topology on H are Ux,y := {h ∈ H | for all i ∈ {1, . . . , n} : h(xi) = yi},
where n ∈ N and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Xn. This turns H into a Hausdorff,
t.d. group and makes the action map H × X → X continuous for the discrete topology
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on X. The group H is discrete if and only if the stabilizer in H of a finite subset of X
is trivial. It is compact if and only if it is closed and all its orbits are finite. Finally,
Sym(X) is second-countable if and only if X is countable.

2.2. Graph theory. We first recall Serre’s [25] notation and definitions in the
context of graphs and trees, and then give generalities about automorphisms of trees.
We conclude with an important simplicity criterion.

2.2.1. Definitions and notation. A graph Γ is a tuple (V , E) consisting of a vertex
set V and an edge set E, together with a fixed-point-free involution of E, denoted by
e �→ e, and maps o, t : E → V , providing the origin and terminus of an edge, such that
o(e) = t(e) and t(e) = o(e) for all e ∈ E. Given e ∈ E, the pair {e, e} is a geometric edge.
For x ∈ V , we let E(x) := o−1(x) = {e ∈ E | o(e) = x} be the set of edges issuing from x.
The valency of x ∈ V is |E(x)|. A vertex of valency 1 is a leaf. A morphism between
graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) is a pair (αV ,αE) of maps αV : V1 → V2
and αE : E1 → E2 preserving the graph structure, that is, αV (o(e)) = o(αE(e)) and
αV (t(e)) = t(αE(e)) for all e ∈ E.

For n ∈ N, let Pathn denote the graph with vertex set {0, . . . , n} and edge set
{(k, k + 1), (k, k + 1) | k ∈ {0, . . . , n − 1}}. A path of length n in a graph Γ is a morphism
γ from Pathn to Γ. It can be identified with (e1, . . . , en) ∈ E(Γ)n, where ek = γ((k − 1, k))
for k ∈ {1, . . . , n}. In this case, γ is a path from o(e1) to t(en).

Similarly, let PathN0 and PathZ be the graphs with vertex sets N0 and Z, and
edge sets {(k, k + 1), (k, k + 1) | k ∈ N0} and {(k, k + 1), (k, k + 1) | k ∈ Z}, respectively.
A half-infinite path, or ray, in a graph Γ is a morphism γ from PathN0 to Γ. It can
be identified with (ek)k∈N ∈ E(Γ)N where ek = γ((k − 1, k)) for k ∈ N. In this case, γ
originates at, or issues from, o(e1). An infinite path, or line, in a graph Γ is a morphism
from PathZ to Γ. A pair (ek, ek+1) = (ek, ek) of edges in a path is a backtracking. A graph
is connected if any two of its vertices can be joined by a path. The maximal connected
subgraphs of a graph are its connected components.

A forest is a graph in which there are no nonbacktracking paths (e1, . . . , en)
with o(e1) = t(en), n ∈ N. Consequently, a morphism of forests is determined by the
underlying vertex map. In particular, a path of length n ∈ N in a forest is determined
by the images of the vertices of Pathn.

A tree is a connected forest. As a consequence of the above, the vertex set V of a
tree T admits a natural metric. Given x, y ∈ V , define d(x, y) as the minimal length of
a path from x to y. A tree in which every vertex has valency d ∈ N is d-regular. It is
unique up to isomorphism and denoted by Td.

Let T = (V , E) be a tree. For S ⊆ V ∪ E, the subtree spanned by S is the unique
minimal subtree of T containing S. For x ∈ V and n ∈ N0, the subtree spanned by {y ∈
V | d(y, x) ≤ n} is the ball of radius n around x, denoted by B(x, n). Similarly, S(x, n) =
{y ∈ V | d(y, x)=n} is the sphere of radius n around x, and the set of edges within
distance n of x is E(x, n) := {e ∈ E | d(o(e), x), d(t(e), x) ≤ n}. For a subtree T ′ ⊆ T ,
let π : V → V(T ′) denote the closest point projection, that is, π(x) = y whenever
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d(x, y) = minz∈V(T ′){d(x, z)}. In the case of an edge e = (x, y) ∈ E, the half-trees Tx and
Ty are the subtrees spanned by π−1(x) and π−1(y), respectively.

Two nonbacktracking rays γ1, γ2 : PathN → T in T are equivalent, γ1 ∼ γ2, if there
exist N, d ∈ N such that γ1(n) = γ2(n + d) for all n ≥ N. The boundary, or set of ends,
of T is the set ∂T of equivalence classes of nonbacktracking rays in T.

2.2.2. Automorphism groups of graphs. Let Γ = (V , E) be a graph. We equip the
group Aut(Γ) of automorphisms of Γ with the permutation topology for its action on
V ∪ E.

Notation. Let H ≤ Aut(Γ). Given a subgraph Γ′ ⊆ Γ, the pointwise stabilizer of Γ′

in H is denoted by HΓ′ . Similarly, the setwise stabilizer of Γ′ in H is denoted by H{Γ′}.
In the case where Γ′ is a single vertex x, the permutation group that Hx induces on
E(x) is denoted by H(1)

x ≤ Sym(E(x)). Given a property ‘X’ of permutation groups, the
group H is locally ‘X’ if for every x ∈ V the permutation group H(1)

x has ‘X’; with
the exception that H is locally k-transitive (k ∈ N≥3) if Hx acts transitively on the set
of nonbacktracking paths of length k issuing from x. It is locally ∞-transitive if it is
locally k-transitive for all k ∈ N.

Let d ∈ N≥3 and Td = (V , E) the d-regular tree. Then Aut(Td) acts on ∂Td by
g · [γ] := [g ◦ γ]. Given [γ] ∈ ∂Td, the stabilizer of [γ] in H is H[γ] = {h∈H | h ◦ γ ∼ γ}.

We let H+ = 〈{Hx |x ∈ V}〉 denote the subgroup of H generated by vertex-stabilizers
and H+= 〈{He |e ∈ E}〉 the subgroup generated by edge-stabilizers. For a subtree T ⊆
Td and k ∈ N, let Tk denote the subtree of Td spanned by {x ∈ V | d(x, T) ≤ k}. We set
H+k = 〈{Hek−1 |e ∈ E}〉. Then H+1 = H+ and

H+k � H+ � H+ � H.

Classification of automorphisms. Automorphisms of Td can be divided into three
distinct types. Refer to [10, Section 6.2.2] for details.

For g∈Aut(Td), set l(g) :=minx∈V d(x, gx) and V(g) := {x ∈ V |d(x, gx) = l(g)}. If
l(g) = 0 then g fixes a vertex. An automorphism of this kind is elliptic. Suppose now
that l(g) > 0. If V(g) is infinite then g is hyperbolic. Geometrically, it is a translation
of length l(g) along the line in Td defined by V(g). If V(g) is finite then l(g) = 1 and g
maps some edge e ∈ E to e and is termed an inversion.

Independence and simplicity. The base case of the simplicity criterion presented
below is due to Tits [29] and applies to sufficiently rich subgroups of Aut(Td). The
generalized version is due to Banks et al. [1]; see also [10].

Let C denote a path in Td (finite, half-infinite or infinite). For every x ∈ V(C) and
k ∈ N0, the pointwise stabilizer HCk of Ck induces an action H(x)

Ck ≤ Aut(π−1(x)) on
π−1(x), the subtree spanned by those vertices of T whose closest vertex in C is x. We
therefore obtain an injective homomorphism

ϕ(k)
C : HCk →

∏
x∈V(C)

H(x)
Ck .
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A subgroup H ≤ Aut(Td) satisfies property (Pk) (k ∈ N) if ϕ(k−1)
C is an isomorphism

for every path C in Td. If H ≤ Aut(Td) is closed, it suffices to check the above
properties in the case where C is a single edge. For example, given a closed subgroup
H ≤ Aut(Td), property (Pk) is satisfied by its (Pk)-closure:

H(Pk) = {g ∈ Aut(Td) | for all x ∈ V(Td) there exists h ∈ H : g|B(x,k) = h|B(x,k)}.

THEOREM 2.1 [1, Theorem 7.3]. Let H ≤ Aut(Td). Suppose H neither fixes an end nor
stabilizes a proper subtree of Td setwise, and that H satisfies property (Pk). Then the
group H+k is either trivial or simple.

2.3. Burger–Mozes theory. In [2], Burger and Mozes develop a structure theory
of certain locally quasiprimitive automorphism groups of graphs which resembles the
theory of semisimple Lie groups. Their fundamental definitions are meaningful in the
setting of t.d.l.c. groups. Let H be a t.d.l.c. group. Define

H(∞) :=
⋂
{N � H | N is closed and cocompact in H},

alternatively the intersection of all open finite-index subgroups of H, and

QZ(H) := {h ∈ H | ZH(h) ≤ H is open},

the quasicentre of H. Both H(∞) and QZ(H) are topologically characteristic subgroups
of H, that is, they are preserved by continuous automorphisms of H. Whereas H(∞) ≤ H
is closed, the quasicentre need not be so.

Whereas for a general t.d.l.c. group H nothing much can be said about the size of
H(∞) and QZ(H), Burger and Mozes show that good control can be obtained in the case
of certain locally quasiprimitive automorphism groups of graphs. The following result
summarizes their structure theory. It is a combination of Proposition 1.2.1, Corollary
1.5.1, Theorem 1.7.1 and Corollary 1.7.2 in [2].

THEOREM 2.2. Let Γ be a locally finite, connected graph. Further, let H ≤ Aut(Γ) be
closed, nondiscrete and locally quasiprimitive. Then

(i) H(∞) is minimal closed normal cocompact in H;
(ii) QZ(H) is maximal discrete normal, and noncocompact in H; and
(iii) H(∞)/QZ(H(∞))=H(∞)/(QZ(H) ∩ H(∞)) admits minimal, nontrivial closed nor-

mal subgroups finite in number, H-conjugate and topologically simple.

If Γ is a tree and moreover H is locally primitive then

(iv) H(∞)/QZ(H(∞)) is a direct product of topologically simple groups.

2.3.1. Burger–Mozes universal groups. The first introduction of Burger–Mozes uni-
versal groups in [2, Section 3.2] was expanded in the introductory article [10], which
we follow closely. Most results are generalized in Section 4.

Let Ω be a set of cardinality d ∈ N≥3 and let Td = (V , E) denote the d-regular
tree. A labelling l of Td is a map l : E → Ω such that for every x ∈ V the map
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lx : E(x)→ Ω, e �→ l(e) is a bijection, and l(e)= l(e) for all e ∈ E. The local action
σ(g, x) ∈ Sym(Ω) of an automorphism g ∈ Aut(Td) at a vertex x ∈ V is defined via

σ : Aut(Td) × X → Sym(Ω), (g, x) �→ σ(g, x) := lgx ◦ g ◦ l−1
x .

DEFINITION 2.3. Let F ≤ Sym(Ω) and l a labelling of Td. Define

U(l)(F) := {g ∈ Aut(Td) | for all x ∈ V : σ(g, x) ∈ F}.
The map σ satisfies a cocycle identity: for all g, h ∈ Aut(Td) and x ∈ V we have

σ(gh, x) = σ(g, hx)σ(h, x). As a consequence, U(l)(F) is a subgroup of Aut(Td).
Passing to a different labelling amounts to passing to a conjugate of U(l)(F) inside

Aut(Td). We therefore omit reference to an explicit labelling from here onwards.
The following proposition collects several basic properties of Burger–Mozes

groups. We refer the reader to [10, Section 6.4] for proofs.

PROPOSITION 2.4. Let F ≤ Sym(Ω). The group U(F) is

(i) closed in Aut(Td),
(ii) vertex-transitive,
(iii) compactly generated,
(iv) locally permutation isomorphic to F,
(v) edge-transitive if and only if F is transitive, and
(vi) discrete if and only if F is semiregular.

Part (iii) of Proposition 2.4 relies on the following result which we include for future
reference. Given x ∈ V and ω ∈ Ω, let ι(x)

ω ∈ U({id}) denote the unique label-respecting
inversion of the edge eω ∈ E with o(eω) = x and l(eω) = ω.

LEMMA 2.5. Let x ∈ V. Then U({id}) = 〈{ι(x)
ω | ω ∈ Ω}〉 � ∗

ω∈Ω
〈ι(x)
ω 〉 � ∗

ω∈Ω
Z/2Z.

PROOF. Every element of U({id}) is determined by its image on x. Hence, it suffices to
show that 〈{ι(x)

ω | ω ∈ Ω}〉 is vertex-transitive and has the asserted structure. Indeed, let
y ∈ V\{x}, and let ω1, . . . ,ωn ∈ Ω be the labels of the shortest path from x to y. Then
ι(x)
ω1 ◦ · · · ◦ ι

(x)
ωn maps x to y as every ι(x)

ω (ω ∈ Ω) is label-respecting. Setting Xω := Tt(eω),
we have ιω(Xω′) ⊆ Xω for all distinct ω,ω′ ∈ Ω. Hence, the assertion follows from the
ping-pong lemma. �

The name universal group is due to the following maximality statement. Its proof
(see [2, Proposition 3.2.2]) should be compared with the proof of Theorem 4.34.

PROPOSITION 2.6. 5 Let H ≤ Aut(Td) be locally transitive and vertex-transitive.
Then there is a labelling l of Td such that H ≤ U(l)(F) where F ≤ Sym(Ω) is action
isomorphic to the local action of H.

3. Structure theory of locally semiprimitive groups

We generalize the Burger–Mozes theory of locally quasiprimitive automorphism
groups of graphs to the semiprimitive case. While this adjustment of Sections 1.1–1.5
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in [2] is straightforward and was initiated in [30, Section II.7] and [3, Section 6.2], we
provide a full account for the reader’s convenience.

3.1. General facts. Let Γ = (V , E) be a connected graph. We first present a few
general facts about several classes of subgroups of Aut(Γ) for future reference.

LEMMA 3.1. Let H ≤ Aut(Γ) be locally transitive. Then H+ is geometric edge transi-
tive and of index at most 2 in H.

PROOF. Since H is locally transitive, so is H+ , given that H+ x = Hx for all x ∈ V .
Hence, it is geometric edge transitive. In particular, it has at most two vertex orbits,
which implies the second assertion. �

LEMMA 3.2. Let H≤Aut(Γ) and let Γ′ = (V ′, E′) be a connected subgraph of Γ.
Suppose R ⊆ H is such that for every x′ ∈ V ′ and e ∈ E(x′) there is r ∈ R such that
re ∈ E′. Then Λ := 〈R〉 satisfies

⋃
λ∈Λ λΓ

′ = Γ.

PROOF. By assumption, B(Γ′, 1) ⊆ ⋃λ∈Λ λΓ′. Now suppose B(Γ′, n) ⊆ ⋃λ∈Λ λΓ′ for
some n ∈ N. Let x′ ∈ V(B(Γ′, n)). Pick λ ∈ Λ such that λ(x′)∈V ′. Since λ induces a
bijection between E(x′) and E(λ(x′)) we conclude that B(Γ′, n + 1) ⊆ ⋃λ∈Λ λΓ′. �

Assume from now on that Γ is a locally finite, connected graph.

LEMMA 3.3. Let H ≤ Aut(Γ). If H\Γ is finite then there is a finitely generated subgroup
Λ ≤ H such that Λ\Γ is finite.

PROOF. Let Γ′ = (V ′, E′) ⊆ Γ be a connected subgraph that projects onto H\Γ. For
every x′ ∈ V ′ and e ∈ E(x′), pick λx′,e ∈ H such that λx′,e(e) ∈ E′. Then the group
Λ := 〈{λx′,e | x′ ∈ X, e ∈ E(x′)}〉 satisfies the conclusion by Lemma 3.2. �

LEMMA 3.4. Let Λ ≤ Aut(Γ). If Λ\Γ is finite then ZAut(Γ)(Λ) is discrete.

PROOF. Let F ⊆ E be finite such that
⋃
λ∈Λ λF = E and U := ΛF ∩ ZAut(Γ)(Λ), which

is open in ZAut(Γ)(Λ). Given that U and Λ commute, U acts trivially on E =
⋃
λ∈Λ λF.

Hence, U = {id} and ZAut(Γ)(Λ) is discrete. �

LEMMA 3.5. Let Λ1,Λ2 ≤ Aut(Γ). If Λ1\Γ is finite and [Λ1,Λ2] ≤ Aut(Γ) is discrete
then Λ2 ≤ Aut(Γ) is discrete.

PROOF. Using Lemma 3.3 pick R ⊆ Λ1 such that 〈R〉\Γ is finite. As [Λ1,Λ2]≤Aut(Γ)
is discrete, there is an open subgroup U ≤ Λ2 such that [r, U] = {e} for all r ∈ R. That
is, U ≤ ZAut(Γ)(〈R〉). Hence, U is discrete by Lemma 3.4, and so is Λ2. �

LEMMA 3.6. Let H ≤ Aut(Γ) be nondiscrete. Then QZ(H)\Γ is infinite.

PROOF. If QZ(H)\Γ is finite, there is a finitely generated subgroup Λ ≤ QZ(H) such
that Λ\Γ is finite as well by Lemma 3.3. Hence, there is an open subgroup U ≤ H with
U ≤ ZAut(Γ)(Λ). Hence, U and therefore H are discrete by Lemma 3.4. �

LEMMA 3.7. Let Λ≤Aut(Γ) be discrete. If Λ\Γ is finite then NAut(Γ)(Λ) is discrete.

PROOF. Apply Lemma 3.5 to Λ1 := Λ and Λ2 := NAut(Γ)(Λ). �
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3.2. Normal subgroups. Let Γ = (V , E) denote a locally finite, connected graph.
For closed subgroups Λ � H of Aut(Γ) we define

Nnf(H,Λ) = {N � H | Λ ≤ N � H, N is closed and does not act freely on E},

the set of closed normal subgroups of H that contain Λ and do not act freely on E. The
setNnf(H,Λ) is partially ordered by inclusion. We letMnf(H,Λ) ⊆ Nnf(H,Λ) denote
the set of minimal elements in Nnf(H,Λ).

LEMMA 3.8. Let Γ= (V , E) be a locally finite, connected graph and Λ � H≤Aut(Γ). If
H\Γ is finite and H does not act freely on E thenMnf(H,Λ) � ∅.

PROOF. We argue using Zorn’s lemma. First note that Nnf(H,Λ) is nonempty as it
contains H. Let C ⊆ Nnf(H,Λ) be a chain. Pick a finite set F ⊆ E of representatives of
H\E. For every N ∈ C, the set FN := {e ∈ F | N |e1 ≤ Aut(e1) is nontrivial} is nonempty.
Since F is finite and C is a chain it follows that

⋂
N∈C FN is nonempty, that is, there

exists e ∈ F such that N |e1 is nontrivial for every N ∈ C. As before, we conclude that
M :=

⋂
N∈C N |e1 is nontrivial. For α ∈ M\{id}, Nα := {g ∈ Ne | g|e1 = α} is a nonempty

compact subset of He, and since C is a chain every finite subset of {Nα | N ∈ C} has
nonempty intersection. Hence,

⋂
N∈C Nα is nonempty and therefore NC :=

⋂
N∈C N is

a closed normal subgroup of H containing Λ that does not act freely on E. Overall,
NC ∈ Mnf(H,Λ). �

The following lemma is contained in the author’s PhD thesis [30, Section II.7] and,
independently, in Caprace and Le Boudec [3, Section 6.2].

LEMMA 3.9. Let Γ = (V , E) be a locally finite, connected graph. Further, let H ≤
Aut(Γ) be locally semiprimitive and N � H. Define

V1 := {x ∈ V | Nx � S(x, 1) is transitive and not semiregular},
V2 := {x ∈ V | Nx � S(x, 1) is semiregular}.

Then one of the following assertions holds.

(i) V = V2 and N acts freely on E.
(ii) V = V1 and N is geometric edge transitive.
(iii) V = V1 � V2 is an H-invariant partition of V and B(x, 1) is a fundamental

domain for the action of N on Γ for any x ∈ V2.

PROOF. Since H is locally semiprimitive and N is normal in H, we have V = V1 � V2.
If N does not act freely on E then there exist an edge e ∈ E with Ne � {id} and an
Ne-fixed vertex x ∈ V for which Nx � S(x, 1) is not semiregular, hence transitive. That
is, V1 � ∅. Now, either V2(N) = ∅ in which case N is locally transitive and we are
in case (ii), or V2(N) � ∅. Being locally transitive, H acts transitively on the set of
geometric edges and therefore has at most two vertex orbits. Given that both V1 and V2
are nonempty and H-invariant, they constitute exactly the said orbits. Since any pair
of adjacent vertices (x, y) is a fundamental domain for the H-action on V, we conclude
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that if y ∈ V2 then x ∈ V1. Thus every leaf of B(y, 1) is in V1 and we are in case (iii) by
Lemma 3.2. �

3.3. The subquotient H(∞)/QZ(H(∞). In this section, we achieve control over H(∞)

and QZ(H) as well as the normal subgroups of H in the semiprimitive case. We then
describe the structure of the subquotient H(∞)/QZ(H(∞)). First, recall the following
lemma from topological group theory.

LEMMA 3.10. Let G be a topological group. If H � G is discrete then H ⊆ QZ(G).

PROOF. For h ∈ H, the map ϕh : G→ H, g �→ ghg−1 is well defined because H � G,
and continuous. Hence, there is an open set U ⊆ G containing 1 ∈ G and such that
ϕh(U) ⊆ {h}, that is, U ⊆ ZG(h). �

PROPOSITION 3.11. Let Γ = (V , E) be a locally finite, connected graph. Further, let
H ≤ Aut(Γ) be closed, nondiscrete and locally semiprimitive. Then the following
assertions hold.

(i) H/H(∞) is compact.
(ii) QZ(H) acts freely on E, and is discrete noncocompact in H.
(iii) For any closed normal subgroup N � H, either N is nondiscrete cocompact and

N � H(∞), or N is discrete and N � QZ(H).
(iv) QZ(H(∞)) = QZ(H) ∩ H(∞) acts freely on E without inversions.
(v) For any open normal subgroup N � H(∞) we have N = H(∞).
(vi) H(∞) is topologically perfect, that is, H(∞) = [H(∞), H(∞)].

PROOF. For (i), let N � H be closed and cocompact. Since H is nondiscrete, so is N
in view of Lemma 3.7. Hence, N ∈ Nnf(H, {id}). Conversely, if N ∈ Nnf(H, {id}) then
N is cocompact in H by Lemma 3.9. We conclude that H(∞) =

⋂Nnf(H, {id}). This
intersection is in fact given by a single minimal element ofNnf(H, {id}). Using Lemma
3.8, pick M ∈ Mnf(H, {id}), and let N ∈ Nnf(H, {id}). Suppose N � M. Because M is
minimal, N ∩M acts freely on E. In particular, N ∩M is discrete. Since both N and
M are normal in H, we also have N ∩M ⊇ [N, M] and hence N and M are discrete by
Lemma 3.5. Then so is H ⊆ NAut(g)(H) by Lemma 3.7. Overall, H(∞)=M∈Mnf(H, {id})
and the assertion now follows from Lemma 3.9.

As to (ii), the group QZ(H) is noncocompact by Lemma 3.6 and therefore acts freely
on E by Lemma 3.9. In particular, it is discrete.

For (iii), let N � H be a closed normal subgroup. If N acts freely on E, then N is
discrete and hence contained in QZ(H) by Lemma 3.10. If N does not act freely on E
then N is cocompact in H by Lemma 3.9 and therefore contains H(∞).

Concerning (iv), the inclusion QZ(H) ∩ H(∞) ⊆ QZ(H(∞)) is automatic. Further,
QZ(H(∞)) is normal in H because it is topologically characteristic in H(∞) � H.
Therefore, if QZ(H(∞)) � QZ(H), then QZ(H(∞)) is nondiscrete by part (iii) and does
not act freely on E. Then QZ(H(∞))\Γ is finite by Lemma 3.9, contradicting Lemma
3.6 applied to H(∞) which is nondiscrete because QZ(H(∞)) ≤ H(∞) is. Consequently,
QZ(H(∞)) ≤ QZ(H), which proves the assertion.
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For part (v), note that Mnf(H(∞), {id}) is nonempty by Lemma 3.8 as H(∞) is
cocompact in Aut(Γ) by part (i) and nondiscrete by part (iii). Further, since QZ(H(∞))
acts freely on E, every N ∈ Nnf(H(∞), {id}) is nondiscrete by part (iii) as well. Given an
open subgroup U � H(∞) and N ∈ Mnf(H∞, {id}), the group U ∩ N is normal in H(∞)

and nondiscrete. In particular, U ∩ N does not act freely on E and hence U ∩ N = N.
Thus U contains the subgroup of H(∞) generated by the elements ofMnf(H(∞), {id}),
which is closed, normal and nondiscrete. Hence, U = H(∞).

As to (vi), the group [H(∞), H(∞)] is nondiscrete by part (i) and Lemma 3.5. Hence,
so is [H(∞), H(∞)] � H(∞). Now apply part (iii). �

PROPOSITION 3.12. Let Γ = (V , E) be a locally finite, connected graph. Further, let
H ≤ Aut(Γ) be closed, nondiscrete and locally semiprimitive. Finally, let Λ � H such
that Λ ≤ QZ(H(∞)). Then the following assertions hold.

(i) (a) The group H acts transitively onMnf(H(∞),Λ).
(b) The setMnf(H(∞),Λ) is finite and nonempty.

(ii) Let M ∈ Mnf(H(∞),Λ).

(a) The group M/Λ is topologically perfect.
(b) The group QZ(M) acts freely on E and QZ(M) = QZ(H(∞)) ∩M.
(c) The group M/QZ(M) is topologically simple.

(iii) For every N ∈ Nnf(H(∞),Λ) there is M ∈ Mnf(H(∞),Λ) with N ⊇ M.

PROOF. Since every discrete normal subgroup of H(∞) is contained in QZ(H(∞)) by
Lemma 3.10 (iii), and the latter acts freely on E by Proposition 3.11(iii), every element
of Nnf(H(∞),Λ) is nondiscrete. We proceed with a number of claims.

(1) For every N ∈ Nnf(H(∞),Λ) we have [H(∞), N] � QZ(H(∞)).
This follows from the above combined with Proposition 3.11(i) and Lemma 3.5.

In the following, given S ⊆ Mnf(H(∞),Λ), we let MS := 〈M | M ∈ S〉 ≤ H(∞) denote
the subgroup of H(∞) generated by

⋃
M∈S M.

(2) The group H acts transitively onMnf(H(∞),Λ).
Let S be an orbit for the action of H on Mnf(H(∞),Λ), and suppose there is an
element M ∈ Mnf(H(∞),Λ)\S. For every N ∈ S, the subgroup N ∩M is normal
in H(∞) and acts freely on E by minimality of M, hence is discrete. The same
therefore holds for [N, M] ⊆ N ∩M. Thus [N, M] ⊆ QZ(H(∞)). As QZ(H(∞)) is
discrete by Proposition 3.11 and therefore closed in H(∞) we conclude [MS, M] ⊆
QZ(H(∞)). On the other hand, MS is normal in H since S is an H-orbit. It is
also closed in H, and nondiscrete by the above. Thus MS = H(∞) by Proposition
3.11(iii), and [H(∞), M] ⊆ QZ(H(∞)), which contradicts part (1).

(3) For every M ∈ Mnf(H(∞),Λ) we have [M, M] · Λ = M.
Note that [M, M] · Λ is a group because Λ is normal in M. Suppose there
is an element M0 ∈ Mnf(H(∞),Λ) with [M0, M0] · Λ � M0. Then [M0, M0] · Λ
acts freely on E by minimality of M0 and is discrete. Since [M0, M0] is also
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normal in H(∞), we obtain [M0, M0] ⊆ QZ(H(∞)). Part (2) now implies that
[M, M] ⊆ QZ(H(∞)) for all M ∈ Mnf(H(∞),Λ). Given that [M, M′] ⊆ QZ(H(∞))
for all distinct M, M′ in Mnf(H(∞),Λ) as well, we conclude that [H(∞), H(∞)] ⊆
QZ(H(∞)), which contradicts part (1).

(4) For every N ∈ Nnf(H(∞),Λ) there is M ∈ Mnf(H(∞),Λ) with N ⊇ M.
Let S := {M∈Mnf(H(∞),Λ) |N � M}. Then [MS, N]⊆QZ(H(∞)) as above. On the
other hand, for T :=Mnf(H(∞),Λ), the group MT ⊆ H(∞) is closed, nondiscrete
and normal in H, thus MT = H(∞). Using (1), we conclude that S � T , which
proves the assertion.

(5) Let S, S′ be disjoint subsets ofMnf(H(∞),Λ). Then MS ∩MS′ ⊆ QZ(H(∞)).
If not, we have MS ∩MS′ ∈Mnf(H(∞),Λ) and there is, by part (4), an element
M ∈ Mnf(H(∞),Λ) with M ⊆ MS ∩MS′ . However, this implies that [M, M] ⊆
[MS, MS′] ⊆ QZ(H(∞)), which contradicts part (3).

(6) The setMnf(H(∞),Λ) is finite and nonempty.
The set Mnf(H(∞),Λ) is nonempty by Lemma 3.8. Let G =

⋃
MS, where the

union is taken over all finite subsets S of the set Mnf(H(∞),Λ). Then G is
nondiscrete and normal in H. Hence, G = H(∞) by Proposition 3.11(iii). Since
H is second-countable and locally compact, it is metrizable. Hence, H(∞) is a
separable metric space and the same holds for G. Let L ⊆ G be a countable dense
subgroup, and fix an exhaustion F1 ⊆ F2 ⊆ · · · ⊆ F of F by finite sets. Let (Sn)n∈N
be an increasing sequence of finite subsets ofMnf(H(∞),Λ) such that Fn ⊆ MSn .
In particular,

L ⊆ M⋃n∈N Sn and thus M⋃n∈N Sn = H(∞),

which by (5) and (1) implies Mnf(H(∞),Λ) =
⋃

n∈N Sn. Thus Mnf(H(∞),Λ) is
countable. Next, fix M ∈ Mnf(H(∞),Λ). Then NH(M) is closed and of countable
index in H, and thus has nonempty interior as H is a Baire space. Hence, NH(M) is
open in H. Given that NH(M) contains H(∞), we conclude that NH(M) is of finite
index in H using Proposition 3.11(i). Since H acts transitively onMnf(H(∞),Λ)
by (2) we conclude thatMnf(H(∞),Λ) is finite by the orbit–stabilizer theorem.

The above claims yield parts (i)(a), (i)(b), (ii)(a) and (iii) of Proposition 3.12. We
now turn to parts (ii)(b) and (ii)(c).

(ii)(b) Using part (6), letMnf(H(∞),Λ) = {M1, . . . , Mr} and define

Ω := QZ(M1) · · · · · QZ(Mr).

Note that since QZ(Mi) is characteristic in Mi, which is normal in H(∞), the
quasicentres in the above definition normalize each other, so Ω is a group.
It is then normal in H. If Ω does not act freely on E then Ω\Γ is finite by
Lemma 3.9 and there exist λ1, . . . , λk ∈ Ω by Lemma 3.3 such that for Ω′ :=
〈λ1, . . . , λk〉 the quotient Ω′\Γ is finite. For every i ∈ {1, . . . , k}, write λi = aibi

where ai ∈ QZ(M1) and bi ∈ QZ(M2) · · · · · QZ(Mr). Let U1 ≤ M1 be an open
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subgroup such that [ai, U1] = {e} for all i ∈ {1, . . . , k}. Since [M2 · · ·Mr, M1] ⊆
QZ(H(∞)), there is an open subgroup U2 ≤ M1 such that [bi, U2] = {e} for all
i ∈ {1, . . . , k}. Hence, U := U1 ∩ U2 ≤ M1 is contained in ZAut(Γ)(Ω′), which
by Lemma 3.4 implies that U and hence M1 is discrete, a contradiction. Thus
Ω acts freely on E, is discrete and therefore Ω ⊆ QZ(H(∞)). That is, QZ(Mi) ⊆
QZ(H(∞)) ∩Mi. The opposite inclusion follows from the definitions.

(ii)(c) Let M ∈ Mnf(H(∞),Λ) and let N �M be a closed subgroup containing QZ(M).
For every M′ ∈ Mnf(H(∞),Λ) with M � M′ we have

[M′, M] ⊆ M′ ⊆ M ⊆ QZ(H(∞)).

This implies [M′, N] ⊆ QZ(H(∞)) ∩M = QZ(M) ⊆ N; that is, M′ normal-
izes N. Since N �M, this implies N � H(∞); and hence, by minimality
of M, we have either that N = M or else that N acts freely on E and
N ⊆ QZ(H(∞)) ∩M = QZ(M). �

COROLLARY 3.13. Let Γ = (V , E) be a locally finite, connected graph. Further, let H ≤
Aut(Γ) be closed, nondiscrete and locally semiprimitive. Minimal, nontrivial closed
normal subgroups of H(∞)/QZ(H(∞)) exist. They are all H-conjugate, finite in number
and topologically simple.

PROOF. Apply Proposition 3.12 to Λ = QZ(H(∞)). �

We summarize the previous results in the following theorem, which is a verbatim
copy of Burger and Mozes’ Theorem 2.2, except that the local action need only be
semiprimitive, not quasiprimitive.

THEOREM 3.14. Let Γ be a locally finite, connected graph. Further, let H≤Aut(Γ)
be closed, nondiscrete and locally semiprimitive. Then the following assertions
hold.

(i) H(∞) is minimal closed normal cocompact in H.
(ii) QZ(H) is maximal discrete normal, and noncocompact in H.
(iii) H(∞)/QZ(H(∞))=H(∞)/(QZ(H) ∩ H(∞)) admits minimal, nontrivial closed nor-

mal subgroups finite in number, H-conjugate and topologically simple.

If Γ is a tree, and, in addition, H is locally primitive then

(iv) H(∞)/QZ(H(∞)) is a direct product of topologically simple groups.

PROOF. Parts (i) and (ii) stem from parts (i), (ii) and (iii) of Proposition 3.11 in
combination with Section 2.3. For part (iii), use part (iv) of Proposition 3.11 and
Corollary 3.13. Finally, part (iv) is Corollary 1.7.2 in [2]. It follows from Theorem 1.7.1
in [2] as the commutator of any two distinct elements inMnf(H(∞),Λ) is contained in
QZ(H(∞)). �
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4. Universal groups

In this section, we develop a generalization of Burger–Mozes universal groups that
arises through prescribing the local action on balls of a given radius k ∈ N around
vertices. The Burger–Mozes construction corresponds to the case k = 1.

Whereas many properties of the original construction carry over to the new
set-up, others require adjustments. Notably, there are compatibility and discreteness
conditions on the local action F under which the associated universal group is locally
action isomorphic to F and discrete, respectively.

We then exhibit examples and (non)rigidity phenomena of our construction. Finally,
a universality statement holds under an additional assumption.

4.1. Definition and basic properties.

4.1.1. Definition. Let Ω be a set of cardinality d ∈ N≥3 and let Td = (V , E) denote the
d-regular tree. A labelling l of Td is a map l : E → Ω such that for every x ∈ V the map
lx : E(x)→ Ω, e �→ l(e) is a bijection, and l(e) = l(e) for all e ∈ E.

For every k ∈ N, fix a tree Bd,k that is isomorphic to a ball of radius k around a vertex
in Td. Let b denote its centre and carry over the labelling of Td to Bd,k via the chosen
isomorphism. Then for every x ∈ V there is a unique, label-respecting isomorphism lkx :
B(x, k)→ Bd,k. We define the k-local action σk(g, x)∈Aut(Bd,k) of an automorphism
g∈Aut(Td) at a vertex x ∈ V via

σk : Aut(Td) × V → Aut(Bd,k), (g, x) �→ σk(g, x) := lkgx ◦ g ◦ (lkx)−1.

DEFINITION 4.1. Let F ≤ Aut(Bd,k) and l be a labelling of Td. Define

U(l)
k (F) := {g ∈ Aut(Td) | for all x ∈ V : σk(g, x) ∈ F}.

The following lemma states that the maps σk satisfy a cocycle identity which
implies that U(l)

k (F) is a subgroup of Aut(Td) for every F ≤ Aut(Bd,k).

LEMMA 4.2. Let x ∈ V and g, h ∈ Aut(Td). Then σk(gh, x) = σk(g, hx)σk(h, x).

PROOF. We compute

σk(gh, x) = lk(gh)x ◦ gh ◦ (lkx)−1 = lk(gh)x ◦ g ◦ h ◦ (lkx)−1

= lk(gh)x ◦ g ◦ (lkhx)−1 ◦ lkhx ◦ h ◦ (lkx)−1 = σk(g, hx)σk(h, x). �

4.1.2. Basic properties. Note that the group U(l)
1 (F) of Definition 4.1 coincides with

the Burger–Mozes universal group U(l)(F) introduced in [2, Section 3.2] under the
natural isomorphism Aut(Bd,1) � Sym(Ω). Several basic properties of the latter group
carry over to the generalized set-up. First of all, passing between different labellings of
Td amounts to conjugating in Aut(Td). Subsequently, we therefore omit the reference
to an explicit labelling.

LEMMA 4.3. For every quadruple (l, l′, x, x′) of labellings l, l′ of Td and vertices
x, x′ ∈ V, there is a unique automorphism g ∈ Aut(Td) with gx = x′ and l′ = l ◦ g.
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PROOF. Set gx := x′. Now assume inductively that g is uniquely determined on
B(x, n), n ∈ N0, and let v ∈ S(x, n). Then g is also uniquely determined on E(v) by
the requirement l′ = l ◦ g, namely g|E(v) := l|−1

E(gv) ◦ l′|E(v). �

PROPOSITION 4.4. Let F ≤ Aut(Bd,k). Further, let l and l′ be labellings of Td. Then
the groups U(l)

k (F) and U(l′)
k (F) are conjugate in Aut(Td).

PROOF. Choose x ∈ V . Let τ ∈ Aut(Td) denote the automorphism of Td associated to
(l, l′, x, x) by Lemma 4.3. Then U(l)

k (F) = τU(l′)
k (F)τ−1. �

The following basic properties of Uk(F) are as in Proposition 2.4.

PROPOSITION 4.5. Let F ≤ Aut(Bd,k). The group Uk(F) is

(i) closed in Aut(Td),
(ii) vertex-transitive, and
(iii) compactly generated.

PROOF. For (i), note that if g � Uk(F) then σk(g, x) � F for some x ∈ V . In this
case, the open neighbourhood {h ∈ Aut(Td) | h|B(x,k) = g|B(x,k)} of g in Aut(Td) is also
contained in the complement of Uk(F).

For (ii), let x, x′ ∈ V and let g ∈ Aut(Td) be the automorphism of Td associated to
(l, l, x, x′) by Lemma 4.3. Then g ∈ Uk(F) as σk(g, v) = id ∈ F for all v ∈ V .

To prove (iii), fix x ∈ V . We show that Uk(F) is generated by the join of the compact
set Uk(F)x and the finite generating set of U1({id}) = Uk({id}) ≤ Uk(F) guaranteed by
Lemma 2.5. Indeed, for g ∈ Uk(F) pick g′ in the finitely generated, vertex-transitive
subgroup U1({id}) of Uk(F) such that g′gx = x. We then have g′g ∈ Uk(F)x and the
assertion follows. �

For completeness, we explicitly state the following proposition.

PROPOSITION 4.6. Let F ≤ Aut(Bd,k). Then Uk(F) is a compactly generated, totally
disconnected, locally compact, second countable group.

PROOF. The group Uk(F) is totally disconnected, locally compact, second countable
as a closed subgroup of Aut(Td), and compactly generated by Proposition 4.5. �

Finally, we record that the groups Uk(F) are (Pk)-closed.

PROPOSITION 4.7. Let F ≤ Aut(Bd,k). Then Uk(F) satisfies property (Pk).

PROOF. Let e = (x, y) ∈ E. Clearly, Uk(F)ek ⊇ Uk(F)ek ,Ty
· Uk(F)ek ,Tx . Conversely, con-

sider g ∈ Uk(F)ek and define gy ∈ Aut(Td) and gx ∈ Aut(Td) by

σk(gy, v) =

⎧⎪⎪⎨⎪⎪⎩σk(g, v) v ∈ V(Tx)

id v ∈ V(Ty)
and σk(gx, v) =

⎧⎪⎪⎨⎪⎪⎩id v ∈ V(Tx)

σk(g, v) v ∈ V(Ty),

respectively. Then gy ∈ Uk(F)ek ,Ty
, gx ∈ Uk(F)ek ,Tx and g = gy ◦ gx. �
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4.2. Compatibility and discreteness. We now generalize parts (iv) and (vi)
of Burger and Mozes’ Proposition 2.4. There are compatibility and discreteness
conditions (C) and (D) on subgroups F ≤ Aut(Bd,k) that hold if and only if
the associated universal group is locally action isomorphic to F and discrete,
respectively.

We introduce the following notation for vertices in the labelled tree (Td, l). Given
x ∈ V and ξ = (ω1, . . . ,ωn) ∈ Ωn(n ∈ N0), set xξ := γx,ξ(n) where

γx,ξ : Path(ξ)
n :=

0 1 2
. . .

n

ω1 ω2 → Td

is the unique label-respecting morphism sending 0 to x ∈ V . If ξ is the empty word,
set xξ := x. Whenever admissible, we also adopt this notation in the case of Bd,k
and its labelling. In particular, S(x, n) is in natural bijection with the set Ω(n) :=
{(ω1, . . . ,ωn) ∈ Ωn | for all k ∈ {1, . . . , n − 1} : ωk+1 � ωk}.

4.2.1. Compatibility. First, we ask whether Uk(F) locally acts like F, that is, whether
the actions Uk(F)x � B(x, k) and F� Bd,k are isomorphic for every x ∈ V . Whereas
this always holds for k = 1 by Proposition 2.4(iv), it need not be true for k ≥ 2, the
issue being (non)compatibility among elements of F. See Example 4.9. The condition
developed in this section allows for computations. A more practical version from a
theoretical viewpoint follows in Section 4.4.

Now, let x ∈ V and suppose that α ∈ Uk(F)x realizes a ∈ F at x, that is,

α|B(x,k) = (lkx)−1 ◦ a ◦ lkx.

Then given the condition that σk(α, xω) is in F for all ω ∈ Ω, we obtain the following
necessary compatibility condition on F for Uk(F) to act like F at x ∈ V:

for all a ∈ F, for all ω ∈ Ω : there exists aω ∈ F :

(lkx)−1 ◦ a ◦ lkx |Sω = (lkαxω)−1 ◦ aω ◦ lkxω |Sω

where Sω := B(x, k) ∩ B(xω, k) ⊆ Td. Set Tω := lkx(Sω) ⊆ Bd,k. Then the above condition
can be rewritten as

for all a ∈ F, for all ω ∈ Ω : there exists aω ∈ F :

aω|Tω = lkαxω ◦ (lkx)−1 ◦ a ◦ lkx ◦ (lkxω)−1|Tω .

Now note the following observations. First, αxω depends only on a. Second, the subtree
Tω of Bd,k does not depend on x. Third, ιω := lkx |

Tω
Sω
◦ (lkxω)−1|SωTω

is the unique nontrivial,
involutive and label-respecting automorphism of Tω; it is given by

ιω := lkx |
Tω
Sω
◦ (lkxω)−1|SωTω

: Tω → Sω → Tω, bξ �→ xωξ �→ bωξ
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for admissible words ξ. Hence, the above condition may be rewritten as

for all a ∈ F, for all ω ∈ Ω : there exists aω ∈ F : aω|Tω = ιaω ◦ a ◦ ιω. (C)

In this situation we say that aω is compatible with a in direction ω.

PROPOSITION 4.8. Let F ≤ Aut(Bd,k). Then Uk(F) is locally action isomorphic to F if
and only if F satisfies (C).

PROOF. By the above, condition (C) is necessary. To show that it is also sufficient, let
x ∈ V and a ∈ F. We aim to define an automorphism α ∈ Uk(F)x which realizes a at x.
This forces us to define

α|B(x,k) := (lkx)−1 ◦ a ◦ lkx.

Now, assume inductively that α is defined consistently on B(x, n) in the sense that
σk(α, y) ∈ F for all y ∈ B(x, n) with B(y, k) ⊆ B(x, n). In order to extend α to B(x, n + 1),
let y ∈ S(x, n − k + 1) and let ω ∈ Ω be the unique label such that yω ∈ S(x, n − k). Set
c := σk(α, yω). Applying condition (C) to the pair (c,ω) yields an element cω ∈ F such
that

(lkαyω)−1 ◦ c ◦ lkyω |Sω = (lkαy)−1 ◦ cω ◦ lky |Sω ,

where Sω := B(y, k) ∩ B(yω, k) and we have realized

ιω as lkyω |
Tω
Sω
◦ (lky)−1|SωTω

and ιcω as lkαy|
Tcω
αSω
◦ (lkαyω)−1|αSω

Tcω
.

Now extend α consistently to B(v, n + 1) by setting α|B(x,k) := (lkαx)−1 ◦ cω ◦ lkx. �

EXAMPLE 4.9. Let Ω := {1, 2, 3} and a ∈ Aut(B3,2) be the element that swaps the
leaves b12 and b13 of B3,2. Then F := 〈a〉 = {id, a} does not contain an element
compatible with a in direction 1 ∈ Ω and hence does not satisfy condition (C).

We show that it suffices to check condition (C) on the elements of a generating set.
Let F ≤ Aut(Bd,k) and a, b ∈ F. Set c := ab. Then

cω|Tω = ιcω ◦ a ◦ b ◦ ιω = (ιcω ◦ a ◦ ιbω) ◦ (ιbω ◦ b ◦ ιω)

= (ιa(bω) ◦ a ◦ ιbω) ◦ (ιbω ◦ b ◦ ιω). (M)

Let CF(a,ω) denote the compatibility set of elements in F that are compatible with a ∈
F in directionω ∈ Ω. Then (M) shows that CF(ab,ω) ⊇ CF(a, bω)CF(b,ω). It therefore
suffices to check condition (C) on a generating set of F.

Given S ⊆ Ω, we also define CF(a, S) :=
⋂
ω∈S CF(a,ω), the set of elements in F that

are compatible with a ∈ F in all directions from S. We omit F in this notation when it
is clear from the context.

As a consequence, we obtain the following description of the local action of Uk(F)
when F does not satisfy condition (C).

PROPOSITION 4.10. Let F≤Aut(Bd,k). Then F has a unique maximal subgroup C(F)
that satisfies (C). We have C(C(F))=C(F) and Uk(F)=Uk(C(F)).
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PROOF. By the above, C(F) := 〈H ≤ F | H satisfies (C)〉≤F satisfies condition (C). It
is the unique maximal such subgroup of F by definition, and C(C(F)) = C(F).

Furthermore, Uk(C(F)) ≤ Uk(F). Conversely, suppose g ∈ Uk(F)\Uk(C(F)). Then
there is x ∈ V such that σk(g, x) ∈ F\C(F) and the group

C(F) � 〈C(F), {σk(g, x) | x ∈ V}〉 ≤ F

satisfies condition (C), too, as can be seen by setting σk(g, x)ω := σk(g, xω). This
contradicts the maximality of C(F). �

REMARK 4.11. Let F ≤ Aut(Bd,k) satisfy (C). The proof of Proposition 4.8 shows
that elements of Uk(F) are readily constructed. Given x, y ∈ V(Td) and a ∈ F, define
g : B(x, k)→ B(y, k) by setting g(x) = y and σk(g, x) = a. Then, given elements aω ∈
F(ω ∈ Ω) such that aω ∈ CF(a,ω) for all ω ∈ Ω, there is a unique extension of g to
B(x, k + 1) so that σk(g, xω) = aω for all ω ∈ Ω. Proceed iteratively.

4.2.2. Discreteness. The group F ≤ Aut(Bd,k) also determines whether or not Uk(F)
is discrete. In fact, the following proposition generalizes Proposition 2.4(vi).

PROPOSITION 4.12. Let F ≤ Aut(Bd,k). Then Uk(F) is discrete if F satisfies

for all ω ∈ Ω : FTω = {id}. (D)

Conversely, if Uk(F) is discrete and F satisfies (C), then F satisfies (D).

Alternatively, Uk(F) is discrete if and only if C(F) satisfies (D). Example 4.9 shows
that condition (C) is necessary for the second part of Proposition 4.12.

Finally, note that F satisfies (D) if and only if CF(id,ω) = {id} for all ω ∈ Ω.

PROOF OF PROPOSITION 4.12. Fix x ∈ V . A subgroup H ≤ Aut(Td) is nondiscrete if
and only if for every n ∈ N there is h ∈ H\{id} such that h|B(x,n) = id.

Suppose that Uk(F) is nondiscrete. Then there are n ∈ N≥k and α ∈ Uk(F)
such that α|B(x,n) = id and α|B(x,n+1) � id. Hence, there is y ∈ S(x, n − k + 1) with
a := σk(α, y) � id. In particular, a ∈ FTω\{id} where ω is the label of the unique
edge e ∈ E with o(e) = y and d(x, y) = d(x, t(e)) + 1.

Conversely, suppose that F satisfies (C) and FTω � {id} for some ω ∈ Ω. Then
for every n ∈ N≥k, we define an automorphism α ∈ Uk(F) with α|B(x,n) = id and
α|B(x,n+1) � id. If α|B(x,n) = id, then σk(α, y) ∈ F for all y ∈ B(x, n − k). Choose e ∈ E
with y := o(e) ∈ S(x, n − k + 1) and t(e) ∈ S(x, n − k) such that l(e) = ω. We extend α to
B(y, k) by setting α|B(y,k) := lky ◦ s ◦ (lky)−1 where s ∈ FTω\{id}. Finally, we extend α to Td

using (C). �

We define the following condition (CD) on F ≤ Aut(Bd,k) as the conjunction of (C)
and (D):

for all a ∈ F, for all ω ∈ Ω : there exists aω ∈ F : aω|Tω = ιaω ◦ a ◦ ιω. (CD)

The following description is immediate from the above. When F satisfies (CD), an
element of Uk(F)x is determined by its action on B(x, k). Hence, Uk(F)x � F for every
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x ∈ V and Uk(F)(x,y) � F(b,bω) for every (x, y) ∈ E with l(x, y) = ω. Furthermore, F
admits a unique involutive compatibility cocycle, that is, a map z : F ×Ω→ F,
(a,ω) �→ aω which for all a, b ∈ F and ω ∈ Ω satisfies

(i) (compatibility) z(a,ω) ∈ CF(a,ω),
(ii) (cocycle) z(ab,ω) = z(a, bω)z(b,ω), and
(iii) (involutive) z(z(a,ω),ω) = a.

Note that z restricts to an automorphism zω of F(b,bω)(ω ∈ Ω) of order at most 2.

4.3. Group structure. For F̃ ≤ Aut(Bd,k), let F := πF̃ ≤ Sym(Ω) denote the pro-
jection of F̃ onto Aut(Bd,1) � Sym(Ω). As an illustration, we record that the group
structure of Uk(F̃) is particularly clear when F is regular.

PROPOSITION 4.13. Let F̃ ≤ Aut(Bd,k) satisfy (C). Suppose F := πF̃ is regular. Then
Uk(F̃) = U1(F) � F ∗ Z/2Z.

PROOF. Fix x ∈ V . Since F is transitive, the group Uk(F̃) is generated by Uk(F̃)x and an
involution ι inverting an edge with origin x. Given α ∈ Uk(F̃)x, regularity of F implies
that σ1(α, y) = σ1(α, x) ∈ F for all y ∈ V . Now, the subgroups H1 := Uk(F̃)x � F and
H2 := 〈ι〉 of Uk(F̃) generate a free product within Uk(F) by the ping-pong lemma.
Put X1 := V(Tx) and X2 := V(Txω). Any nontrivial element of H1 maps X2 into X1 as
Fω = {id}, and ι ∈ H2 maps X1 into X2. �

More generally, Bass–Serre theory [25] identifies the universal groups Uk(F) as
amalgamated free products, taking into account that Uk(F) acts with inversions.

PROPOSITION 4.14. Let F ≤ Aut(Bd,k) satisfy (C) (and (D)). If πF is transitive then

Uk(F) � Uk(F)x ∗
Uk(F)(x,y)

Uk(F){x,y}

(
� F ∗

F(b,bω)

(F(b,bω) � Z/2Z)
)

for any edge (x, y) ∈ E, where ω = l(x, y) and Z/2Z acts on F(b,bω) as zω.

COROLLARY 4.15. Let F, F′ ≤Aut(Bd,k) satisfy (CD). If there are ω,ω′ ∈ Ω and an
isomorphism ϕ :F→F′ such that ϕ(F(b,bω)) = F′(b,bω′ )

, then Uk(F) � Uk(F′).

Note that Corollary 4.15 applies to conjugate subgroups of Aut(Bd,k) that satisfy
(CD). The following example shows that the assumption that both F and F′ in
Corollary 4.15 satisfy (CD) is indeed necessary.

EXAMPLE 4.16. Let Ω := {1, 2, 3} and t ∈ Aut(B3,2) be the element that swaps the
leaves x12 and x13 of B3,2. Using the notation of Section 4.4.1 below, consider the
group Γ(A3)≤Aut(B3,2) which satisfies (C). In particular, U2(Γ(A3))�A3 ∗ Z/2Z by
Proposition 4.13. On the other hand, set F′ := tΓ(A3)t−1. Then πF′ = A3, while for
a nontrivial element α of F′ we have σ1(α, bω)∈S3\A3 for some ω ∈ Ω. Therefore,
U2(F′) = U1({id}) is isomorphic to Z/2Z ∗Z/2Z ∗Z/2Z by Lemma 2.5. In particular,
U2(Γ(A3)) and U2(tΓ(A3)t−1) are not isomorphic.
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Conversely, the following proposition based on [23, Appendix A], which states that
in certain cases the tree can be recovered from the topological group structure of a
subgroup of Aut(Td), applies to appropriate universal groups.

PROPOSITION 4.17. Let H, H′ ≤ Aut(Td) be closed and locally transitive with distinct
point-stabilizers. Then H and H′ are isomorphic topological groups if and only if they
are conjugate in Aut(Td).

PROOF. By [8], every compact subgroup of H is either contained in a vertex stabilizer
Hx(x ∈ V) or, in case H � Aut(Td)+, in a geometric edge stabilizer H{e,e}(e ∈ E). Since
H is locally transitive, the above are pairwise distinct.

The vertex stabilizers are precisely those maximal compact subgroups K ≤ H for
which there is no maximal compact subgroup K′ with [K : K ∩ K′] = 2. Indeed, for e ∈
E and x ∈ {o(e), t(e)}we have [H{e,e} : H{e,e} ∩ Hx] = 2, whereas [Hx : Hx ∩ Hy] ≥ 3 and
[Hx : Hx ∩ H{e,e}] ≥ 3 for all distinct x, y ∈ V and e ∈ E by the orbit–stabilizer theorem
because d ≥ 3 and H is locally transitive.

Adjacency can be expressed in terms of indices as well, Let x, y ∈ V be distinct.
Then (x, y) ∈ E if and only if [Hx : Hx ∩ Hy] ≤ [Hx : Hx ∩ Hz] for all z ∈ V . Indeed,
if (x, y) ∈ E, then [Hx : Hx ∩ Hy] = d by the orbit–stabilizer theorem, given that H
is locally transitive. If z ∈ V is not adjacent to x then [Hx : Hx ∩ Hz] > d because
point-stabilizers of every local action of H are distinct.

Now, let Φ : H → H′ be an isomorphism of topological groups. Then Φ induces a
bijection between the maximal compact subgroups of H and H′, and preserves indices.
Hence, there is an automorphism ϕ ∈ Aut(Td) such that Φ(Hx) = H′ϕ(x) for all x ∈ V .
Furthermore, since vertex stabilizers in H′ are pairwise distinct and

H′
ϕhϕ−1(x) = Φ(Hhϕ−1(x)) = Φ(hHϕ−1(x)h

−1) = Φ(h)H′xΦ(h−1) = H′Φ(h)x

for all x ∈ V , we have ϕhϕ−1 = Φ(h) for all h ∈ H. �

The following corollary uses the notation Φk(F′) from Section 4.4.2.

COROLLARY 4.18. Let F≤Aut(Bd,k) and F′ ≤Aut(Bd,k′) satisfy (C). Assume k≥k′ and
πF, πF′ ≤Sym(Ω) are transitive with distinct point-stabilizers. If Uk(F) and Uk′(F′)
are isomorphic topological groups then F,Φk(F′)≤Aut(Bd,k) are conjugate.

PROOF. By Proposition 4.17, the groups Uk(F) and Uk(F′) are conjugate in Aut(Td);
hence so are Uk(F)x and Uk′(F′)x for every x ∈ V , and the assertion follows. �

EXAMPLE 4.19. Section 4.4.1 introduces the isomorphic, nonconjugate subgroups
Π(S3, sgn, {1}) and Π(S3, sgn, {0, 1}) of Aut(B3,2), both of which project onto S3
and satisfy (C) but not (D). An explicit isomorphism satisfies the assumption of
Corollary 4.15. However, by Corollary 4.18 the universal groups U2(Π(S3, sgn, {1}))
and U2(Π(S3, sgn, {0, 1})) are nonisomorphic. Therefore, Corollary 4.15 does not
generalize to the nondiscrete case.

QUESTION 4.20. Let F, F′ ≤ Aut(Bd,k) satisfy (C) and be conjugate. Are the associ-
ated universal groups Uk(F) and Uk(F′) necessarily isomorphic?
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In the following, we determine the Burger–Mozes subquotient H(∞)/QZ(H(∞)) of
Theorem 3.14 for nondiscrete, locally semiprimitive universal groups.

PROPOSITION 4.21. Let F ≤ Aut(Bd,k) satisfy (C). If, in addition, F satisfies (D) then
QZ(Uk(F)) = Uk(F). Otherwise, QZ(Uk(F)) = {id}.

PROOF. If F satisfies (D) then Uk(F) is discrete and hence QZ(Uk(F)) = Uk(F).
Conversely, if F satisfies (C) but not (D) then the stabilizer of any half-tree T ⊆ Td in
Uk(F) is nontrivial: we have T ∈ {Tx, Ty} for some edge e := (x, y) ∈ E. Since Uk(F)
is nondiscrete by Proposition 4.12 and has property (Pk) by Proposition 4.7, the
group Uk(F)ek = Uk(F)ek ,Ty

· Uk(F)ek ,Tx is nontrivial. In particular, either Uk(F)Tx or
Uk(F)Ty is nontrivial. In view of the existence of label-respecting inversions, both are
nontrivial and hence so is Uk(F)T . Therefore, Uk(F) has Property H of Möller–Vonk
[18, Definition 2.3] and [18, Proposition 2.6] implies that Uk(F) has trivial
quasicentre. �

PROPOSITION 4.22. Let F ≤ Aut(Bd,k) satisfy (C) but not (D). Suppose that πF is
semiprimitive. Then Uk(F)(∞)/QZ(Uk(F)(∞)) = Uk(F)(∞) = Uk(F)+k .

PROOF. The subgroup Uk(F)+k ≤ Uk(F) is open, hence closed, and normal in Uk(F)
by definition. Since Uk(F) is nondiscrete by Proposition 4.12, so is Uk(F)+k . Using
Proposition 3.11(iii), we conclude that Uk(F)+k ≥ Uk(F)(∞). Since Uk(F) satisfies
property (Pk) by Proposition 4.7, the group Uk(F)+k is simple due to Theorem
2.1. Thus Uk(F)+k = Uk(F)(∞). Given that QZ(Uk(F)(∞)) = QZ(Uk(F)) ∩ Uk(F)(∞) by
Proposition 3.11(iv), the assertion follows from Proposition 4.21. �

In the context of Proposition 4.22, the group Uk(F)+k is simple, compactly gen-
erated, nondiscrete, totally disconnected, locally compact, second countable. Compact
generation follows from [15, Corollary 2.11], given that Uk(F)+k is cocompact in Uk(F)
by Proposition 3.11(i).

4.4. Examples. We now construct various classes of examples of subgroups of
Aut(Bd,k) satisfying (C) or (CD), and prove a rigidity result for certain local actions.

First, we give a suitable realization of Aut(Bd,k) and conditions (C) and (D). Namely,
we view an automorphism α of Bd,k as the set {σk−1(α, v) | v ∈ B(b, 1)} as follows.
Let Aut(Bd,1) � Sym(Ω) be the natural isomorphism. For k ≥ 2, we iteratively identify
Aut(Bd,k) with its image under the map

Aut(Bd,k)→ Aut(Bd,k−1) �
∏
ω∈Ω

Aut(Bd,k−1), α �→ (σk−1(α, b), (σk−1(α, bω))ω)

where Aut(Bd,k−1) acts on
∏
ω∈ΩAut(Bd,k−1) by permuting the factors according to its

action on S(b, 1) � Ω. That is, multiplication in Aut(Bd,k) is given by

(α, (αω)ω∈Ω) ◦ ( β, ( βω)ω∈Ω) = (αβ, (αβωβω)ω∈Ω).
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Consider the homomorphism πk−1 : Aut(Bd,k)→ Aut(Bd,k−1), α �→ σk−1(α, b), the
projections prω : Aut(Bd,k)→ Aut(Bd,k−1), α �→ σk−1(α, bω) (ω ∈ Ω), and

pω = (πk−1, prω) : Aut(Bd,k)→ Aut(Bd,k−1) × Aut(Bd,k−1),

whose image we interpret as a relation on Aut(Bd,k−1). Conditions (C) and (D) for a
subgroup F ≤ Aut(Bd,k) now read as follows:

for all ω ∈ Ω : pω(F) is symmetric; (C)

for all ω ∈ Ω : pω|−1
F (id, id) = {id}. (D)

4.4.1. The case k = 2. We first consider the case k = 2 which is all-encompassing in
certain situations; see Theorem 4.32. By the above, Aut(Bd,2) is realized as follows:
Aut(Bd,2) = {(a, (aω)ω∈Ω) | a ∈ Sym(Ω), for all ω ∈ Ω : aω ∈ Sym(Ω) and aωω = aω}.

Consider the map γ : Sym(Ω)→ Aut(Bd,2), a �→ (a, (a, . . . , a)) ∈ Aut(Bd,2), using
the realization of Aut(Bd,2) from above. For every F ≤ Sym(Ω), the image

Γ(F) := im(γ|F) = {(a, (a, . . . , a)) | a ∈ F} � F

is a subgroup of Aut(Bd,2) which is isomorphic to F and satisfies both (C) and (D).
The involutive compatibility cocycle is given by Γ(F) ×Ω→ Γ(F), (γ(a),ω) �→ γ(a).
Note that Γ(F)�F implements the diagonal action F� Ω2 on S(b, 2) � Ω(2) ⊂ Ω2.

We obtain U2(Γ(F))= {α∈ Aut(Td) | there exists a ∈ F : for all x∈V : σ1(α, x)=a}
=: D(F), following the notation of [1]. Moreover, there is the following description of
all subgroups F̃ ≤ Aut(Bd,2) with πF̃ = F that satisfy (C) and contain Γ(F).

PROPOSITION 4.23. Let F ≤ Sym(Ω). Given K ≤∏ω∈Ω Fω � ker π ≤ Aut(Bd,2), there
is F̃ ≤ Aut(Bd,2) satisfying (C) and fitting into the split exact sequence

1 �� K �� ι �� F̃
π � F
γ

� �� 1

if and only if K is preserved by the action F �
∏
ω∈Ω Fω, a · (aω)ω := (aaa−1ωa−1)ω.

PROOF. If there is a split exact sequence as above then K � F̃ is invariant under
conjugation by Γ(F) ≤ F̃, hence the assertion.

Conversely, if K is invariant under the given action, then

F̃ := {(a, (aaω)ω) | a ∈ F, (aω)ω ∈ K}

fits into the sequence. First, note that F̃ contains both K and Γ(F). It is also a subgroup
of Aut(Bd,2): for (a, (aaω)ω), (b, (bbω)ω) ∈ F̃ we have

(a, (aaω)ω) ◦ (b, (bbω)ω) = (ab, (aabωbbω)ω) = (ab, (ab ◦ b−1abωb ◦ bω)ω) ∈ F̃

by assumption. In particular, F̃ = 〈Γ(F), K〉. It suffices to check condition (C) on these
generators of F̃. As before, γ(a) ∈ C(γ(a),ω) for all a ∈ F and ω ∈ Ω. Now let k ∈ K.
Then γ(prω k)k−1 ∈ C(k,ω) for all ω ∈ Ω. �
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EXAMPLE 4.24. We show that for certain dihedral groups there are only four groups
of the type given in Proposition 4.23. Set F := Dp ≤ Sym(p) for some prime p ≥ 3.
Then Fω� (F2,+). Hence, U :=

∏
ω∈Ω Fω is a p-dimensional vector space over F2 and

the F-action on it permutes coordinates. When 2 ∈ (Z /pZ)∗ is primitive, there are
only four F-invariant subspaces of U: the trivial subspace; the diagonal subspace
〈(1, . . . , 1)〉; the whole space; and K := kerσ � F(p−1)

2 where σ : U → F2 is given by
(v1, . . . , vp) �→ ∑p

i=1 vi. Note that K is F-invariant because the homomorphism σ is.
Conjecturally, there are infinitely many primes for which 2 ∈ (Z /pZ)∗ is primitive.
The list starts with 3, 5, 11, 13, . . .; see [26, A001122].

Suppose that W ≤ U is F-invariant. It suffices to show that W contains K as
soon as W ∩ kerσ contains a nontrivial element w. To see this, we show that the
orbit of w under the cyclic group 〈�〉 = Cp ≤ Dp generates a (p − 1)-dimensional
subspace of K which hence equals K. Indeed, the rank of the circulant matrix
C := (w, �w, �2w, . . . , �(p−1)w) equals p − deg(gcd(xp − 1, f (x))) where f (x) ∈ F2[x] is
the polynomial f (x) = wpxp−1 + · · · + w2x + w1; see, for example, [5, Corollary 1].
The polynomial xp − 1 ∈ F2[x] factors into the irreducibles (xp−1 + xp−2 + · · · + x + 1)
(x − 1) by the assumption on p. Since f has an even number of nonzero coefficients,
we conclude that rank(C) = p − 1.

The following subgroups of Aut(Bd,2) are of the type given in Proposition 4.23.
Let F ≤ Sym(Ω) be transitive. Fix ω0 ∈ Ω, let C ≤ Z(Fω0 ) and let N � Fω0 be normal.
Furthermore, fix elements fω ∈ F (ω ∈ Ω) satisfying fω(ω0) = ω. We define

Δ(F, C) := {(a, (a ◦ fωa0 f −1
ω )ω) | a ∈ F, a0 ∈ C} � F × C,

Φ(F, N) := {(a, (a ◦ fωa(ω)
0 f −1

ω )ω) | a ∈ F, for all ω ∈ Ω : a(ω)
0 ∈ N} � F � Nd.

In the case of Δ(F, C) we have K = {( fωa0 f −1
ω )ω | a0 ∈ C}, whereas in the case of

Φ(F, N) we have K = {( fωa(ω)
0 f −1

ω )ω | for all ω ∈ Ω : a(ω)
0 ∈ N}. In both cases, invari-

ance under the action of F is readily verified, as is condition (D) for Δ(F, C).
The group Δ(F, Fω0 ) can be defined for nonabelian Fω0 as well, namely,

Δ(F) := {(a, ( faω f −1
ω ◦ fωa0 f −1

ω )ω) | a ∈ F, a0 ∈ Fω0} � F × Fω0 .

However, it need not contain Γ(F). Note that Φ(F, N) does not depend on the choice
of the elements ( fω)ω∈Ω as N is normal in Fω0 , whereas Δ(F, C) and Δ(F) may.
However, any group of the form {(a, (z(a,ω)αω(a0))ω) | a ∈ F, a0 ∈ Fω0}, where z is a
compatibility cocycle of F and αω : Fω0 → Fω(ω ∈ Ω) are isomorphisms, that satisfies
(C) and in which {(a, (z(a,ω))ω) | a ∈ F} and {(id, (αω(a0))ω) | a0 ∈ Fω0} commute, will
be referred to as Δ(F) in view of Corollary 4.15.

The group Φ(F, Fω0 ) can be defined without assuming transitivity of F, namely,

Φ(F) := {(a, (aω)ω) | a ∈ F, for all ω ∈ Ω : aω ∈ CF(a,ω)} � F �
∏
ω∈Ω

Fω.

We conclude that U2(Φ(F)) = U1(F) for every F ≤ Sym(Ω).

https://doi.org/10.1017/S1446788722000143 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000143


[26] Groups acting on trees 265

When F ≤ Sym(Ω) preserves a partition P : Ω =
⊔

i∈I Ωi of Ω, we define

Φ(F,P) := {(a, (aω)ω) | a ∈ F, aω ∈ CF(a,ω) constant w.r.t. P} � F �
∏
i∈I

FΩi .

The group Φ(F,P) satisfies (C) as well and features prominently in Section 5.1.
The following kind of 2-local action generalizes the sign construction in [23]. Let

F ≤ Sym(Ω) and letρ : F � A be a homomorphism to an abelian group A. Define

Π(F, ρ, {1}) :=
{
(a, (aω)ω) ∈ Φ(F)

∣∣∣∣∣ ∏
ω∈Ω
ρ(aω) = 1

}
,

Π(F, ρ, {0, 1}) :=
{
(a, (aω)ω) ∈ Φ(F)

∣∣∣∣∣ ρ(a)
∏
ω∈Ω
ρ(aω) = 1

}
.

This construction is generalized to k ≥ 2 in Section 4.4.2 where the third entry of Π is
a set of radii over which the defining product is taken.

PROPOSITION 4.25. Let F ≤ Sym(Ω) and let ρ : F � A be a homomorphism to an
abelian group A. Let F̃ ∈ {Π(F, ρ, {1}),Π(F, ρ, {0, 1})}. If ρ(Fω) = A for all ω ∈ Ω then
πF̃ = F and F̃ satisfies (C).

PROOF. As CF(a,ω)=aFω, and ρ(Fω)=A for all ω ∈ Ω, an element (a, (aω)ω)∈Φ(F)
can be turned into an element of F̃ by changing aω for a single, arbitrary ω∈Ω. We
conclude that πF̃ = F and that F̃ satisfies (C). �

4.4.2. General case. We extend some constructions of Section 4.4.1 to arbitrary k.
Given F ≤ Aut(Bd,k) satisfying (C), define the subgroup

Φk(F) := {(α, (αω)ω) | α ∈ F, for all ω ∈ Ω : αω ∈ CF(α,ω)} ≤ Aut(Bd,k+1).

Then Φk(F) inherits condition (C) from F and we obtain Uk+1(Φk(F)) = Uk(F).
Concerning the construction Γ we have the following proposition.

PROPOSITION 4.26. Let F≤Aut(Bd,k) satisfy (C). Then there exists a group Γk(F) ≤
Aut(Bd,k+1) satisfying (CD) such that πk|Γk(F) is an isomorphism onto F if and only if F
admits an involutive compatibility cocycle z.

PROOF. If F admits an involutive compatibility cocycle z, define

Γk(F) := {(α, (z(α,ω))ω) | α ∈ F} ≤ Aut(Bd,k+1).

Then γz : F → Γk(F), α �→ (α, (z(α,ω))ω) is an isomorphism and the involutive
compatibility cocycle of Γk(F) is given by z̃ : (γz(α),ω) �→ γz(z(α,ω)). Conversely, if
a group Γk(F) with the asserted properties exists, set z : (α,ω) �→ prω π

−1
k α. �

Let F ≤ Aut(Bd,k) satisfy (C) and let l > k. We set Γl(F) := Γl−1 ◦ · · · ◦ Γk(F) for an
implicit sequence of involutive compatibility cocycles. Similarly, we define Φl(F) :=
Φl−1 ◦ · · · ◦ Φk(F). Now, let F̃ ≤ Aut(Bd,k). Assume F := πF̃ ≤ Sym(Ω) preserves a
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partition P : Ω =
⊔

i∈I Ωi of Ω. Define the group

Φk(F̃,P) := {(α, (αω)ω) | α ∈ F̃, αω ∈ CF̃(α,ω) is constant w.r.t. P}.

If CF̃(α,Ωi) is nonempty for all α ∈ F̃ and i ∈ I then Φk(F̃,P) satisfies (C), and if
CF̃(id,Ωi) is nontrivial for all i ∈ I then Φk(F̃,P) does not satisfy (D).

The following statement generalizes Proposition 4.23.

PROPOSITION 4.27. Let F ≤ Aut(Bd,k) satisfy (C). Suppose F admits an involutive
compatibility cocycle z. Given K ≤ Φk(F) ∩ ker(πk), there is F̃ ≤ Aut(Bd,k+1) satisfying
(C) and fitting into the split exact sequence

1 �� K �� ι �� F̃
π � F
γz

� �� 1

if and only if Γk(F) normalizes K, and for all k ∈ K and ω ∈ Ω there is kω ∈ K such
that prω kω = z(prω k,ω)−1.

PROOF. If there is a split exact sequence as above then K � F̃ is invariant under
conjugation by Γk(F). Moreover, all elements of F̃ have the form (α, (z(α,ω)αω)ω)
for some α∈F and (αω)ω ∈ K. This implies the second assertion on K.

Conversely, if K satisfies the assumptions, then

F̃ := {(α, (z(α,ω)αω)ω) | α ∈ F, (αω)ω ∈ K}

fits into the sequence. First, note that F̃ contains both K and Γk(F). It is also a subgroup
of Aut(Bd,k+1): for (α, (z(α,ω)αω)ω), (β, (z(β,ω)βω)ω) ∈ F̃ we have

(α, (z(α,ω)αω)ω) ◦ (β, (z(β,ω)βω)ω) = (αβ, (z(α, βω)αβωz(β,ω)βω)ω)

= (αβ, (z(α, βω)z(β,ω) ◦ z(β,ω)−1αβωz(β,ω) ◦ βω)ω)

= (αβ, (z(αβ,ω)α′ωβω)ω) ∈ F̃

for some (α′ω)ω ∈ K because Γk(F) normalizes K. In particular, F̃ = 〈Γk(F), K〉. We
check condition (C) on these generators. As before, γz(z(α,ω)) ∈ C(γz(α),ω) for all
α ∈ F and ω ∈ Ω because z is involutive. Now, let k ∈ K. We then have γz(prω k)kω ∈
C(k,ω) for all ω ∈ Ω by the assumption on kω. �

In the split situation of Proposition 4.27 we also denote F̃ by Σk(F, K). For instance,
the group Π(S3, sgn, {1}) of Proposition 4.25 satisfies (C), admits an involutive
compatibility cocycle but does not satisfy (D); see Section 5.3.

Now, let F ≤ Sym(Ω) and ρ : F � A a homomorphism to an abelian group A.
Further, let k ∈ N and X ⊆ {0, . . . , k − 1}. Define

Πk(F, ρ, X) :=
{
α ∈ Φk(F)

∣∣∣∣∣ ∏
r∈X

∏
x∈S(b,r)

ρ(σ1(α, x)) = 1
}
.

PROPOSITION 4.28. Let F≤Sym(Ω) and let ρ :F �A be a homomorphism to an
abelian group A. Further, let k ∈ N and X ⊆ {0, . . . , k − 1} be nonempty and nonzero
with k−1∈X. If ρ(Fω)=A for all ω∈Ω then π(Πk(F, ρ, X))=F and Πk(F, ρ, X) has (C).
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PROOF. As CF(a,ω) = aFω, and ρ(Fω) = A for all ω ∈ Ω, an element α ∈ Φk(F) can
be turned into an element of Πk(F, ρ, X) by changing σ1(α, x) for a single, arbitrary x ∈
S(b, k − 1). When X is nonzero we conclude that π(Πk(F, ρ, X))=F and thatΠk(F, ρ, X)
satisfies (C). �

4.4.3. A rigid case. For certain F ≤ Sym(Ω) the groups Γ(F), Δ(F) and Φ(F) already
yield all possible Uk(F̃) with πF̃ = F. The main argument is based on Sections 3.4 and
3.5 of [2]. We first record the following lemma whose proof is due to M. Giudici by
personal communication.
LEMMA 4.29. Let F ≤ Sym(Ω) be 2-transitive and Fω (ω ∈ Ω) simple nonabelian.
Then every extension F̃ of Fω (ω ∈ Ω) by F is equivalent to Fω × F.

PROOF. Regarding Fω as a normal subgroup of F̃, consider the conjugation map
ϕ : F̃ → Aut(Fω). We show that K := kerϕ = ZF̃(Fω) � F̃ complements Fω in
F̃. Since Z(Fω) = {id}, we have Fω ∩ K = {id}. Hence, FωK � F̃. Next, consider
F̃/(FωK) � Out(Fω). By the solution of Schreier’s conjecture, Out(Fω) is solvable.
Since F̃/Fω � F is not solvable we conclude K � {id}. Now, by a theorem of Burnside,
every 2-transitive permutation group F is either almost simple or of affine type; see
[6, Theorem 4.1B and Section 4.8].

In the first case, F is actually simple: Let N � F. Then Fω ∩ N � Fω. Hence,
either Fω ∩ N = {id} or Fω ∩ N = Fω. Since F is 2-transitive and therefore primitive,
every normal subgroup acts transitively. Hence, in the first case, N is regular, which
contradicts F being almost simple. Thus the second case holds and N = NFω = F.
Now F̃/FωK is a proper quotient of F and therefore trivial. We conclude that
F̃ = FωK � Fω × K and K � F̃/Fω � F.

In the second case, F = Fω � Cd
p for some d ∈ N and prime p. Given that K is

nontrivial and K � FωK/Fω �∼ F, it contains the unique minimal normal subgroup
Cd

p
�∼ K �∼ F. Since F/Cd

p � Fω is nonabelian simple whereas the proper quotient
F̃/FωK of F is solvable, K � Cd

p. But F/Cd
p � Fω is simple, so FωK = F̃. �

The following propositions are of independent interest and used in Theorem 4.32
below. We introduce the following notation. Let F̃≤Aut(Bd,k) and K ≤ F̃bξ for some
ξ = (ω1, . . . ,ωk−1) ∈ Ω(k−1). We set πξK := σ1(K, bξ) ≤ Sym(Ω)ωk−1 .
PROPOSITION 4.30. Let F̃ ≤ Aut(Bd,k) satisfy (C). Suppose F := πF̃ is transitive.
Further, let ω∈Ω and ξ= (ω1, . . . ,ωk−1)∈Ω(k−1) with ω1�ω. Then πξ(F̃bξ∩ ker π) and
πξF̃Tω are subnormal in Fωk−1 of depth at most k − 1 and k, respectively.

PROOF. We argue by induction on k≥2. For k=2, the assertion that πξ(F̃bξ ∩ ker π)
is normal in Fω1 is a consequence of condition (C). Now, suppose F̃ ≤ Aut(Bd,k+1)
satisfies the assumptions, and let ω ∈ Ω and ξ = (ω1, . . . ,ωk) ∈ Ω(k) be such that
ω1�ω. Since F̃ satisfies (C), we have prω1

(F̃bξ ∩ ker π) � (πkF̃)bξ′ ∩ ker π, where ξ′ :=
(ω2, . . . ,ωk−1) and the right-hand-side π implicitly has domain πkF̃. Hence,

πξ(F̃bξ ∩ ker π) = πξ′(prω1
(F̃bξ ∩ ker π)) � πξ′((πkF̃)bξ′ ∩ ker π) � Fωk−1

by the induction hypothesis. The second assertion follows as F̃Tω � F̃bξ ∩ ker π. �
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PROPOSITION 4.31. Let F̃ ≤ Aut(Bd,k) satisfy (C) but not (D). Suppose F := πF̃ is
transitive, and every nontrivial subnormal subgroup of Fω (ω ∈ Ω) of depth at most
k − 1 is transitive on Ω\{ω}. Then Uk(F̃) is locally k-transitive.

PROOF. We argue by induction on k. For k = 1, the assertion follows from transitivity
of F. Now, let F̃ ≤ Aut(Bd,k+1) satisfy (C) but not (D). Then the same holds for
F(k) := πkF̃ ≤ Aut(Bd,k). Given ξ̃, ξ̃′ ∈ Ω(k), write ξ̃ = (ξ,ω) and ξ̃′ = (ξ′,ω′) where
ξ, ξ′ ∈ Ω(k−1) and ω,ω′ ∈ Ω. By the induction hypothesis, the group F(k) acts transi-
tively on S(b, k). Hence, using (C), there is g ∈ F̃ such that gbξ = bξ′ . As F̃ does not
satisfy (D) the said transitivity further implies that πξ′(F̃bξ′ ∩ ker π)) is nontrivial. By
Proposition 4.30, it is also subnormal of depth at most k − 1 in Fω′ and thus transitive.
Hence, there is g′ ∈ F̃bξ′ with g′gb ξ̃ = b ξ̃′ . �

The following theorem is closely related to [2, Proposition 3.3.1].

THEOREM 4.32. Let F≤Sym(Ω) be 2-transitive and Fω (ω∈Ω) simple nonabelian.
Further, let F̃ ≤ Aut(Bd,k) with πF̃ = F satisfy (C). Then Uk(F̃) equals

U2(Γ1(F)), U2(Δ(F)) or U2(Φ(F)) = U1(F).

PROOF. Since U1(F) = U2(Φ(F)), we may assume k ≥ 2. Given that F̃ ≤ Aut(Bd,k)
satisfies (C), so does the restriction F(2) := π2F̃ ≤ Φ(F) ≤ Aut(Bd,2). Consider the
projection π : F(2) � F. We have ker π ≤∏ω∈Ω Fω and prω ker π � Fω for all ω ∈ Ω
by Proposition 4.30. Since Fω is simple, ker π � F(2) and F is transitive, this implies
that either prω ker π = {id} for all ω ∈ Ω or prω ker π = Fω for all ω ∈ Ω.

In the first case, π : F(2) → F is an isomorphism. Hence, F(2) satisfies (CD) and
Uk(F̃)=U2(Γ1(F)) for an involutive compatibility cocycle of F by Proposition 4.26.

In the second case, fix ω0 ∈ Ω. We have ker π ≤∏ω∈Ω Fω � Fd
ω0

by transitivity
of F. Since Fω0 is simple nonabelian, [23, Lemma 2.3] implies that the
group ker π is a product of subdiagonals preserved by the primitive action
of F on the index set of Fd

ω0
. Hence, either there is just one block and

ker π = {(id, (αω(a0))ω)} for some isomorphisms αω : Fω0 → Fω, or all blocks are
singletons and ker π =

∏
ω∈Ω Fω � Fd

ω0
. In the first case, there is a compatibility

cocycle z of F such that F � {(a, (z(a,ω))ω) | a ∈ F} ≤ F(2) commutes with ker π ≤ F(2)

by Lemma 4.29. Thus F(2) = {a, (z(a,ω)αω(a0))ω | a ∈ F, a0 ∈ Fω0}. In particular, F(2)

satisfies (CD). Hence, Uk(F̃) = U2(Δ(F)).
When ker π � Fd

ω0
, we have Uk(F̃) = U1(F) by [2, Proposition 3.3.1]. �

If F does not have simple point-stabilizers or preserves a nontrivial partition, more
universal groups are given by U2(Φ(F, N)) and U2(Φ(F,P)); see Section 4.4.1. When
F is 2-transitive and has abelian point-stabilizers, F�AGL(1, q) for some prime power
q by [14]. Hence, point-stabilizers in F are isomorphic to F∗q and simple if and only if
q − 1 is a Mersenne prime. For any value of q, the projection ρ : AGL(1, q)→ F∗q sat-
isfies the assumptions of Proposition 4.28 and so the groups Uk(Πk(AGL(1, q), ρ, X))
provide further examples. The following question remains.
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QUESTION 4.33. Let F≤Sym(Ω) be primitive and Fω(ω ∈ Ω) simple nonabelian. Is
there F̃≤Aut(Bd,k) with (C) and πF̃=F other than Γk(F), Δ(F) and Φk(F)?

4.5. Universality. The constructed groups Uk(F) are universal in the sense of the
following maximality statement, which should be compared to Proposition 2.6.

THEOREM 4.34. Let H ≤ Aut(Td) be locally transitive and contain an involutive
inversion. Then there is a labelling l of Td such that

U(l)
1 (F(1)) ≥ U(l)

2 (F(2)) ≥ · · · ≥ U(l)
k (F(k)) ≥ · · · ≥ H ≥ U(l)

1 ({id})

where F(k) ≤ Aut(Bd,k) is action isomorphic to the k-local action of H.

PROOF. First, we construct a labelling l of Td such that H ≥ U(l)
1 ({id}). Fix x ∈ V and

choose a bijection lx : E(x)→ Ω. By the assumptions, there is an involutive inversion
ιω ∈ H of the edge (x, xω) ∈ E for every ω ∈ Ω. Using these inversions, we define the
announced labelling inductively. Set l|E(x) := lx and assume that l is defined on E(x, n).
For e ∈ E(x, n + 1)\E(x, n) put l(e) := l(ιω(e)) if xω is part of the unique reduced path
from x to o(e). Since the ιω (ω ∈ Ω) have order 2, we obtain σ1(ιω, y) = id for all
ω ∈ Ω and y ∈ V . Therefore, 〈{ιω | ω ∈ Ω}〉 = U(l)

1 ({id}) ≤ H, following the proof of
Lemma 2.5.

Now, let h ∈ H and y ∈ V . Further, let (x, x1, . . . , xn, y) and (x, x′1, . . . , x′m, h(y)) be the
unique reduced paths from x to y and h(y), respectively. Since U(l)

1 ({id}) ≤ H, the group
H contains the unique label-respecting inversion ιe of every edge e ∈ E. We therefore
have

s := ι−1
(x′1,x) · · · ι

−1
(x′m,x′m−1)ι

−1
(h(y),x′m) ◦ h ◦ ι(y,xn) · · · ι(x2,x1)ι(x1,x) ∈ H.

Also, s stabilizes x. The cocycle identity implies for every k ∈ N that

σk(h, y) = σk(ι(h(y),x′m) · · · ι(x′1,x) ◦ s ◦ ι−1
(x1,x) · · · ι

−1
(y,xn), y) = σk(s, x) ∈ F(k),

where F(k) ≤ Aut(Bd,k) is defined by lkx ◦ Hx|B(x,k) ◦ (lkx)−1. �

REMARK 4.35. Retain the notation of Theorem 4.34. By Proposition 2.6, there is a
labelling l of Td such that U(l)

1 (F(1)) ≥ H regardless of the minimal order of an inversion
in H. This labelling may be distinct from that of Theorem 4.34 which fails without
assuming the existence of an involutive inversion. For example, a vertex-stabilizer of
the group G1

2 of Example 5.39 below is action isomorphic to Γ(S3) but G1
2 �≤ U(l)

2 (Γ(S3))
for any labelling l because (G1

2){b,bω} � Z /4Z, whereas

U(l)
2 (Γ(S3)){b,bω} � Γ(S3)(b,bω) � Z/2Z � Z/2Z×Z/2Z

by Proposition 4.14.

We complement Theorem 4.34 with the following criterion for certain subgroups
of Aut(Td) to contain an involutive inversion.

PROPOSITION 4.36. Let H ≤ Aut(Td) be locally transitive with odd-order point-
stabilizers. If H contains a finite-order inversion then it contains an involutive one.
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PROOF. Let ι ∈ H be a finite-order inversion of an edge e ∈ E and ord(ι) = 2k · m
for some odd m ∈ N and some k ∈ N. It suffices to show that k = 1, in which case
ιm is an involutive inversion. Suppose k ≥ 1. Then ι2

k−1·m is nontrivial and fixes the
edge e. Because point-stabilizers in the local action of H have odd order, it follows that
(ι2

k−1·m)2 is nontrivial as well, but (ι2
k−1·m)2 = ιord(ι) = id. �

For example, Proposition 4.36 applies when H is discrete and vertex-transitive:
Combined with local transitivity this implies the existence of a finite-order inversion.

We remark that primitive permutation groups with odd-order point-stabilizers were
classified in [17]. For instance, they include PSL(2, q)� P1(Fq) for any prime power
q that satisfies q ≡ 3 mod 4.

4.6. A bipartite version. In this section we introduce a bipartite version of
the universal groups developed above which plays a critical role in the proof of
Theorem 5.2(iv)(b). As before, let Td = (V , E) denote the d-regular tree. Fix a regular
bipartition V = V1 � V2 of Td.

4.6.1. Definition and basic properties. The groups to be defined are subgroups
of +Aut(Td) ≤ Aut(Td), the maximal subgroup of Aut(Td) preserving the bipartition
V = V1 � V2. Alternatively, it can be described as the subgroup generated by all
point-stabilizers, or all edge-stabilizers.

DEFINITION 4.37. Let F ≤ Aut(Bd,2k) and l be a labelling of Td. Define

BU(l)
2k(F) := {α ∈ Aut(Td)+ | for all v ∈ V1 : σ2k(α, v) ∈ F}.

Note that BU(l)
2k(F) is a subgroup of Aut(Td)+ thanks to Lemma 4.2 and the

assumption that it is a subset of Aut(Td)+ . Further, Proposition 4.4 carries over to
the groups BU(l)

2k(F). We therefore omit the reference to an explicit labelling in the
following. Also, we recover the following basic properties.

PROPOSITION 4.38. Let F ≤ Aut(Bd,2k). The group BU2k(F) is

(i) closed in Aut(Td)
(ii) transitive on both V1 and V2, and
(iii) compactly generated.

Parts (i) and (ii) are proven as their analogues in Proposition 4.5, whereas part
(iii) relies on part (ii) and the subsequent analogue of Lemma 2.5, for which
we introduce the following notation: Given x ∈ V and ξ ∈ Ω(2k), let t(x)

ξ ∈ BU2({id})
denote the unique label-respecting translation with t(x)

ξ (x) = xξ. Given an element
ξ = (ω1, . . . ,ω2k) ∈ Ω(2k), we set ξ := (ω2k, . . . ,ω1) ∈ Ω(2k). Then (t(x)

ξ )−1 = t(x)

ξ
, and if

Ω
(2k)
+ ⊆ Ω(2k) is such that for every ξ ∈ Ω(2k) exactly one of {ξ, ξ} belongs to Ω(2k)

+ , then
Ω

(2k)
+ = Ω

(2k)
+ �Ω

(2k)
+ where Ω

(2k)
+ := {ξ | ξ ∈ Ω(2k)

+ }.

LEMMA 4.39. Let x ∈ V1. Then BU2({id}) = 〈{t(x)
ξ | ξ ∈ Ω(2)}〉 � F

Ω
(2)
+

, the free group
on the set Ω(2)

+ .
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PROOF. Every element of BU2k({id}) is uniquely determined by its image on x. To see
that BU2({id}) = 〈{t(x)

ξ | ξ ∈ Ω(2)}〉 it thus suffices to show that {t(x)
ξ |ξ∈Ω(2)} is transitive

on V1. Indeed, let y ∈ V1. Then y = xξ for some ξ ∈ Ω(2k) where 2k = d(x, y). Write
ξ = (ξ1, . . . , ξk) ∈ (Ω(2))k. Then t(x)

ξ1
◦ · · · ◦ t(x)

ξk
= t(x)
ξ as every t(x)

ξi
(i ∈ {1, . . . , k}) is label

respecting. Hence, t(x)
ξ1
◦ · · · ◦ t(x)

ξk
(x) = y and

〈{t(x)
ξ |ξ ∈ Ω

(2)}〉 → F
Ω

(2)
+

,

⎧⎪⎪⎨⎪⎪⎩t
(x)
ξ �→ ξ ξ ∈ Ω(2)

+

t(x)
ξ �→ ξ

−1
ξ � Ω(2)

+

yields a well-defined isomorphism. �

4.6.2. Compatibility and discreteness. In order to describe the compatibility and the
discreteness condition in the bipartite setting, we first introduce a suitable realization
of Aut(Bd,2k) (k ∈ N), similar to that at the beginning of Section 4.4. Let Aut(Bd,1) �
Sym(Ω) and Aut(Bd,2) be as before. For k ≥ 2, we inductively identify Aut(Bd,2k) with
its image under

Aut(Bd,2k)→ Aut(Bd,2(k−1)) �
∏
ξ∈Ω(2)

Aut(Bd,2(k−1))

α �→ (σ2(k−1)(α, b), (σ2(k−1)(α, bξ))ξ)

where Aut(Bd,2(k−1)) acts on Ω(2) by permuting the factors according to its action on
S(b, 2) � Ω(2). In addition, consider the map prξ : Aut(Bd,2k)→ Aut(Bd,2(k−1)), α �→
σ2(k−1)(α, bξ) for every ξ ∈ Ω(2), as well as

pξ = (π2(k−1), prξ) : Aut(Bd,2k)→ Aut(Bd,2(k−1)) × Aut(Bd,2(k−1)).

For k ≥ 2, conditions (C) and (D) for F ≤ Aut(Bd,2k) now read as follows:

for all α ∈ F, for all ξ ∈ Ω(2) : there exists αξ ∈ F :
π2(k−1)(αξ) = prξ(α), prξ(αξ) = π2(k−1)(α); (C)

for all ξ ∈ Ω(2) : pξ |−1
F (id, id) = {id}. (D)

For k = 1 we have, using the maps prω (ω ∈ Ω) as in Section 4.4,

for all α ∈ F, for all ξ = (ω1,ω2) ∈ Ω(2) : there exists αξ ∈ F : prω2
(αξ) = prω1

(α),
(C)

for all ω ∈ Ω : prω |−1
F (id) = {id}. (D)

Analogues of Proposition 4.12 are proven using the discreteness conditions (D) above.
We do not introduce new notation for any of the above as the context always implies
which condition is to be considered. The definition of the compatibility sets CF(α, S)
for F ≤ Aut(Bd,2k) and S ⊆ Ω(2) carries over from Section 4.2 in a straightforward
fashion.
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4.6.3. Examples. Let F ≤ Sym(Ω). Then the group Γ(F) ≤ Aut(Bd,2) introduced in
Section 4.4.1 satisfies conditions (C) and (D) for the case k = 1 above, and we have
BU2(Γ(F)) = U2(Γ(F)) ∩ Aut(Td)+ .

Similarly, the group Φ(F) ≤ Aut(Bd,2) satisfies condition (C) for the case k = 1 as
Γ(F) ≤ Φ(F), and we have BU2(Φ(F)) = U1(F) ∩ Aut(Td)+ .

The following example gives an analogue of the groups Φ(F, N). Notice, however,
that in this case the second argument is a subgroup of F rather than Fω0 and need not
be normal, as the 1-local action at vertices in V1 and V2 need not be the same.

EXAMPLE 4.40. Let F′ ≤ F ≤ Sym(Ω). Then

BΦ(F, F′) := {(a, (aω)ω∈Ω) | a ∈ F, for all ω ∈ Ω : aω ∈ CF(a,ω) ∩ F′} ≤ Aut(Bd,2)

satisfies condition (C) for the case k = 1 above, given that Γ(F′) ≤ BΦ(F, F′). If
F′\Ω = F\Ω, the 1-local action of BΦ(F, F′) at vertices in V1 is indeed F, whereas
it is F′+ at vertices in V2. This construction is similar toUL(M, N) in [27].

The next example constitutes the base case in Section 5.1.5 below.

EXAMPLE 4.41. Let F ≤ Sym(Ω). Suppose F preserves a nontrivial partition P : Ω =⊔
i∈I Ωi of Ω. Then

Ω
(2)
0 := {(ω1,ω2) | there exists i ∈ I : ω1,ω2 ∈ Ωi} ⊆ Ω(2)

is preserved by the action of Φ(F) on S(b, 2) � Ω(2). Let α= (a, (aω)ω)∈Φ(F) and
(ω1,ω2) ∈ Ω(2)

0 . Then α(ω1,ω2) = (aω1, aω1ω2) = (aω1ω1, aω1ω1) ∈ Ω(2)
0 . Also, note

that if ξ = (ω1,ω2) ∈ Ω(2)
0 then also ξ = (ω2,ω1) ∈ Ω(2)

0 .
The subgroup of Φ(F) consisting of those elements which are self-compatible in all

directions from Ω(2)
0 is precisely given by

F(2) := {(a, (aω)ω) | a ∈ F, aω ∈ CF(a,ω) constant w.r.t. P}

in view of condition (C) for the case k = 1 above.

Suppose now that F ≤ Aut(Bd,2k) satisfies (C). Analogous to the group Φk(F) of
Section 4.4.2, we define

BΦ2k(F) := {(α, (αξ)ξ∈Ω(2) ) |α∈F, for all ξ∈Ω(2) : αξ ∈CF(α, ξ)} ≤ Aut(Bd,2(k+1)).

Then BΦ2k(F) ≤ Aut(Bd,2(k+1)) satisfies (C) and BU2(k+1)(BΦ2k(F)) = BU2k(F). Given
l > k, we also set BΦ2l(F) := BΦ2(l−1) ◦ · · · ◦ BΦ2k(F); cf. Section 4.4.2.

5. Applications

In this section we give three applications of the framework of universal groups.
First, we characterize the automorphism types that the quasicentre of a nondiscrete
subgroup of Aut(Td) may feature in terms of the group’s local action, and see that
the Burger–Mozes theory does not extend to the transitive case. Second, we give
an algebraic characterization of the (Pk)-closures of locally transitive subgroups of
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Aut(Td) containing an involutive inversion, and thereby partially answer two questions
by Banks, Elder and Willis. Third, we offer a new view on the Weiss conjecture.

5.1. Groups acting on trees with nontrivial quasicentre. By Proposition 3.11(ii),
a nondiscrete, locally semiprimitive subgroup of Aut(Td) does not contain any
nontrivial quasicentral edge-fixating elements. We extend this fact to the following
local-to-global-type characterization of quasicentral elements.

THEOREM 5.1. Let H ≤ Aut(Td) be nondiscrete. If H is locally:

(i) Transitive, then QZ(H) contains no inversion.
(ii) Semiprimitive, then QZ(H) contains no nontrivial edge-fixating element.
(iii) Quasiprimitive, then QZ(H) contains no nontrivial elliptic element.
(iv) k-transitive, (k ∈ N) then QZ(H) contains no hyperbolic element of length k.

THEOREM 5.2. There is a d ∈ N≥3 and a closed, nondiscrete, compactly generated
subgroup of Aut(Td) which is locally:

(i) Intransitive and contains a quasicentral inversion.
(ii) Transitive and contains a nontrivial quasicentral edge-fixating element.
(iii) Semiprimitive and contains a nontrivial quasicentral elliptic element.
(iv) (a) Intransitive and contains a quasicentral hyperbolic element of length 1.

(b) Quasiprimitive and contains a quasicentral hyperbolic element of length 2.

PROOF OF THEOREM 5.1. Fix a labelling of Td and let H ≤ Aut(Td) be nondiscrete.
For (i), suppose ι ∈ QZ(H) inverts (x, xω) ∈ E. Since H is locally transitive and

QZ(H) � H, there is an inversion ιω ∈ QZ(H) of (x, xω) ∈ E for all ω ∈ Ω. By
definition, the centralizer of ιω in H is open for all ω ∈ Ω. Hence, using the
nondiscreteness of H, there is n ∈ N such that HB(x,n) commutes with ιω for all ω ∈ Ω
and HB(x,n+1) � {id}. However, HB(x,n) = ιωHB(x,n)ι

−1
ω = HB(xω,n) for all ω ∈ Ω; that is,

HB(x,n+1) ⊆ HB(x,n) in contradiction to the above.
Part (ii) is Proposition 3.11(ii) and part (iii) is [2, Proposition 1.2.1(ii)]. Here, the

closedness assumption is unnecessary.
For part (iv), suppose τ ∈ QZ(H) is a translation of length k that maps x ∈ V

to xξ ∈ V for some ξ ∈ Ω(k). Since H is locally k-transitive and QZ(H) � H, there
is a translation τξ ∈ QZ(H) that maps x to xξ for all ξ ∈ Ω(k). By definition, the
centralizer of τξ in H is open for all ξ ∈ Ω(k). Hence, using the nondiscreteness of H,
there is n ∈ N such that HB(x,n) commutes with τξ for all ξ ∈ Ω(k) and HB(x,n+1) � {id}.
However, HB(x,n) = τξHB(x,n)τ

−1
ξ = HB(xξ ,n) for all ξ ∈ Ω(k); that is, HB(x,n+k) ⊆ HB(x,n) in

contradiction to the above. �

We complement part (ii) of Theorem 5.1 with the following result which is inspired
by [2, Proposition 3.1.2] and [24, Conjecture 2.63],

PROPOSITION 5.3. Let H ≤ Aut(Td) be nondiscrete and locally semiprimitive. If all
orbits of H � ∂Td are uncountable then QZ(H) is trivial.
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PROOF. By Theorem 5.1, the group QZ(H) contains no inversions. Let S ⊆ ∂Td be
the set of fixed points of hyperbolic elements in QZ(H). Since QZ(H) � H, the set S
is H-invariant. Also, QZ(H) is discrete by Theorem 5.1 and hence countable as H is
second-countable. Thus S is countable and hence empty. We conclude that QZ(H) � H
does not contain elliptic elements in view of [10, Lemma 6.4]. �

The following strengthening of Theorem 5.2(ii) proved in Section 5.1.2 below shows
that the Burger–Mozes theory does not generalize to the locally transitive case.

THEOREM 5.4. There exist d ∈ N≥3 and a closed, nondiscrete, compactly generated,
locally transitive subgroup of Aut(Td) with open, hence nondiscrete, quasicentre.

We prove Theorem 5.2 by construction in the rest of this subsection. Whereas
parts (i)–(iv)(a) all use groups of the form

⋂
k∈NUk(F(k)) for appropriate local actions

F(k) ≤ Aut(Bd,k), part (iv)(b) uses a group of the form
⋂

k∈N BU(F(2k)). The various
parts appear similar at first glance but vary in detail.

PROOF OF THEOREM 5.2(i). For certain intransitive F ≤ Sym(Ω) we construct a
closed, nondiscrete, compactly generated, vertex-transitive group H(F) ≤ Aut(Td)
which locally acts like F and contains a quasicentral involutive inversion.

Let F ≤ Sym(Ω). Assume that the partition F\Ω = ⊔i∈I Ωi of Ω into F-orbits has at
least three elements and that FΩi � {id} for all i ∈ I.

Fix an orbit Ω0 of size at least 2 and ω0 ∈ Ω0. Define groups F(k) ≤ Aut(Bd,k) for
k ∈ N inductively by F(1) := F and

F(k+1) := {(α, (αω)ω) |α∈F(k),αω∈CF(k) (α,ω) constant w.r.t. F\Ω, αω0 =α}. �

PROPOSITION 5.5. The groups F(k) ≤ Aut(Bd,k) (k ∈ N) defined above satisfy the
following assertions.

(i) Every α ∈ F(k) is self-compatible in directions from Ω0.
(ii) The compatibility set CF(k) (α,Ωi) is nonempty for all α ∈ F(k) and i ∈ I. In

particular, the group F(k) satisfies (C).
(iii) The compatibility set CF(k) (id,Ωi) is nontrivial for all Ωi � Ω0. In particular, the

group F(k) does not satisfy (D).

PROOF. We prove all three properties simultaneously by induction. For k = 1, asser-
tions (i) and (ii) are trivial. Assertion (iii) translates to FΩi being nontrivial for all
Ωi � Ω0, which is an assumption. Now, assume that all properties hold for F(k). Then
the definition of F(k+1) is meaningful because of (i) and it is a subgroup of Aut(Bd,k+1)
because F preserves each Ωi (i ∈ I). Assertion (i) is now evident. Assertion (ii) carries
over from F(k) to F(k+1). So does (iii) since |F\Ω| ≥ 3. �

DEFINITION 5.6. Retain the above notation. Define H(F) :=
⋂

k∈NUk(F(k)).

Now, H(F) is compactly generated, vertex-transitive and contains an involutive
inversion because U1({id}) ≤ H(F). Also, H(F) is closed as an intersection of closed
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sets. The 1-local action of H is given by F = F(1) because Γk(F) ≤ F(k) for all k ∈ N,
and therefore D(F) ≤ H(F).

LEMMA 5.7. The group H(F) is nondiscrete.

PROOF. Let x ∈ V and n ∈ N. We construct a nontrivial element h ∈ H(F) which
fixes B(x, n). Set αn := id ∈ F(n). By parts (i) and (iii) of Proposition 5.5 as well as
the definition of F(n+1), there is a nontrivial element αn+1 ∈ F(n+1) with πnαn+1 = αn.
Applying parts (i) and (ii) of Proposition 5.5 repeatedly, we obtain nontrivial elements
αk ∈F(k) for all k ≥ n + 1 with πkαk+1 = αk. Set αk := id∈F(k) for all k≤n and define
h∈Aut(Td)x by fixing x and setting σk(h, x) :=αk ∈ F(k). Since F(l)≤Φl(F(k)) for all
k≤ l, we conclude that h ∈ ⋂k∈NUk(F(k)) = H(F). �

PROPOSITION 5.8. The quasicentre of H(F) contains an involutive inversion.

PROOF. Let x∈V . We show that the group QZ(H(F)) contains the label-respecting
inversion ιω of (x, xω)∈E for all ω∈Ω0. To see this, let h∈H(F)B(x,1) and ω∈Ω0.
Then hιω(x)=xω= ιωh(x) and σk(hιω, x) = σk(h, ιωx)σk(ιω, x) = σk(h, xω) = σk(ιω, hx)
σk(h, x) = σk(ιωh, x) for all k ∈ N since h ∈ Uk+1(F(k+1)). That is, ιω commutes with
H(F)B(b,1). �

PROOF OF THEOREM 5.2(ii). For certain transitive F ≤ Sym(Ω) we construct a
closed, nondiscrete, compactly generated, vertex-transitive group H(F) ≤ Aut(Td) that
locally acts like F and has open quasicentre.

Let F ≤ Sym(Ω) be transitive. Assume that F preserves a nontrivial partition P :
Ω =
⊔

i∈I Ωi of Ω and that FΩi � {id} for all i ∈ I. Further, suppose that F+ is abelian
and preserves P setwise. �

EXAMPLE 5.9. Let F′ ≤ Sym(Ω′) be regular abelian and P ≤ Sym(Λ) regular. Then
F := F′ � P ≤ Sym(Ω′ × Λ) satisfies the above properties as F+ =

∏
λ∈Λ F′.

Define groups F(k) ≤ Aut(Bd,k) for k ∈ N inductively by F(1) := F and

F(k+1) := {(α, (αω)ω) | α ∈ F(k), αω ∈ CF(k) (α,ω) constant w.r.t. P}.

PROPOSITION 5.10. The groups F(k) ≤ Aut(Bd,k) (k ∈ N) defined above satisfy the
following assertions.

(i) The compatibility set CF(k) (α,Ωi) is nonempty for all α ∈ F(k) and i ∈ I. In
particular, the group F(k) satisfies (C).

(ii) The compatibility set CF(k) (id,Ωi) is nontrivial for all i ∈ I. In particular, the
group F(k) does not satisfy (D).

(iii) The group F(k) ∩ Φk(F+) is abelian.

PROOF. We prove all three properties simultaneously by induction. For k = 1, asser-
tion (i) is trivial whereas (iii) is an assumption. Assertion (ii) translates to FΩi being
nontrivial for all i ∈ I, which is an assumption. Now, assume all properties hold for
F(k). Then the definition of F(k+1) is meaningful because of (i) and it is a subgroup of
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Aut(Bd,k) because F preserves P. Assertion (ii) carries over from F(k) to F(k+1). Finally,
(iii) follows inductively because F+ preserves P setwise. �

DEFINITION 5.11. Retain the above notation. Define H(F) :=
⋂

k∈NUk(F(k)).

Now, H(F) is compactly generated, vertex-transitive and contains an involutive
inversion because U1({id}) ≤ H(F). Also, H(F) is closed as an intersection of closed
sets. The 1-local action of H is given by F = F(1) because Γk(F) ≤ F(k) for all k ∈ N
and therefore D(F) ≤ H(F).

LEMMA 5.12. The group H(F) is nondiscrete.

PROOF. Let x ∈ V and n ∈ N. We construct a nontrivial element h ∈ H(F) that fixes
B(x, n). Consider αn := id ∈ F(n). By part (ii) of Proposition 5.10 as well as the
definition of F(n+1), there is a nontrivial element αn+1 ∈ F(n+1) with πnαn+1 = αn.
Applying part (i) of Proposition 5.10 repeatedly, we obtain nontrivial elements
αk ∈ F(k) for all k ≥ n + 1 with πkαk+1 = αk. Set αk := id ∈ F(k) for all k ≤ n and define
h ∈ Aut(Td)x by fixing x and setting σk(h, x) := αk ∈ F(k). Since F(l)≤Φl(F(k)) for all
k≤ l, we conclude that h ∈ ⋂k∈NUk(F(k)) = H(F). �

PROPOSITION 5.13. The group H(F) has open quasicentre.

PROOF. The group H(F)B(x,1) is a subgroup of the group H(F+)x which is abelian by
part (iii) of Proposition 5.10. Hence, H(F)B(x,1) ≤ QZ(H(F)). �

REMARK 5.14. Without assuming local transitivity one can achieve abelian
point-stabilizers, following the construction of the previous section. This cannot
happen for nondiscrete locally transitive groups H ≤ Aut(Td) that are vertex-transitive
as the following argument shows. By Proposition 2.6, the group H is contained in
U(F) where F ≤ Sym(Ω) is the local action of H. If Hx is abelian, then so is F. Since
any transitive abelian permutation group is regular we conclude that U(F) and hence
H are discrete. In this sense, the construction of this section is efficient.

PROOF OF THEOREM 5.2(iii). For certain semiprimitive F ≤ Sym(Ω) we construct a
closed, nondiscrete, compactly generated, vertex-transitive group H(F)≤Aut(Td) that
locally acts like F and contains a nontrivial quasicentral elliptic element.

Let F≤Sym(Ω) be semiprimitive. Suppose F preserves a nontrivial partition P :
Ω =
⊔

i∈I Ωi of Ω and that FΩi � {id} for all i ∈ I. Further, suppose that F contains a
nontrivial central element τ which preserves P setwise. �

EXAMPLE 5.15. Consider SL(2, 3)� F2
3 \{0} = {±e1,±e2,±(e1 + e2),±(e1 − e2)}

where e1, e2 are the standard basis vectors. We have Z(SL(2, 3)) = {± Id}. The blocks
of size 2 are as listed above, given that SL(2, 3)e1 ≤2 ±SL(2, 3)e1 .

Define groups F(k) ≤ Aut(Bd,k) for k ∈ N inductively by F(1) := F and

F(k+1) := {(α, (αω)ω) | α ∈ F(k), αω ∈ CF(k) (α,ω) constant w.r.t. P}.
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PROPOSITION 5.16. The groups F(k) ≤ Aut(Bd,k) (k ∈ N) defined above satisfy the
following assertions.

(i) The compatibility set CF(k) (α,Ωi) is nonempty for all α ∈ F(k) and i ∈ I. In
particular, the group F(k) satisfies (C).

(ii) The compatibility set CF(k) (id,Ωi) is nontrivial for all i ∈ I. In particular, the
group F(k) does not satisfy (D).

(iii) The element γk(τ) ∈ Aut(Bd,k) is central in F(k).

PROOF. We prove all three properties simultaneously by induction. For k = 1, asser-
tion (i) is trivial whereas (iii) is an assumption. Assertion (ii) translates to FΩi being
nontrivial for all i ∈ I, which is an assumption. Now, assume all properties hold for
F(k). Then the definition of F(k+1) is meaningful because of (i) and it is a subgroup
of Aut(Bd,k+1) because F preserves P. Assertion (ii) carries over from F(k) to F(k+1).
Finally, (iii) follows inductively because τ and hence τ−1 preserves P setwise: for
α̃ = (α, (αω)ω) ∈ F(k+1) we have

γk+1(τ)α̃γk+1(τ)−1 = (γk(τ)αγk(τ)−1, (γk(τ)ατ−1(ω)γ
k(τ)−1)ω). �

DEFINITION 5.17. Retain the above notation. Define H(F) :=
⋂

k∈NUk(F(k)).

Now, H(F) is compactly generated, vertex-transitive and contains an involutive
inversion because U1({id}) ≤ H(F). Also, H(F) is closed as an intersection of closed
sets. The 1-local action of H is given by F = F(1) because Γk(F) ≤ F(k) for all k ∈ N
and therefore D(F) ≤ H(F).

LEMMA 5.18. The group H(F) is nondiscrete.

PROOF. Let x ∈ V and n ∈ N. We construct a nontrivial element h ∈ H(F) that fixes
B(x, n). Consider αn := id ∈ F(n). By part (ii) of Proposition 5.16 and the definition
of F(n+1), there is a nontrivial αn+1 ∈ F(n+1) with πnαn+1 = αn. Applying part (i) of
Proposition 5.16 repeatedly, we obtain nontrivial elements αk ∈ F(k) for all k ≥ n + 1
with πkαk+1 = αk. Set αk := id ∈ F(k) for all k ≤ n and define h ∈ Aut(Td)x by fixing x
and setting σk(h, x) := αk ∈ F(k). Since F(l) ≤ Φl(F(k)) for all k ≤ l, we conclude that
h ∈ ⋂k∈NUk(F(k)) = H(F). �

PROPOSITION 5.19. The quasicentre of H(F) contains a nontrivial elliptic element.

PROOF. By Proposition 5.16, the element d(τ) that fixes x and whose 1-local action is
τ everywhere commutes with H(F)x. Hence, d(τ) ∈ QZ(H(F)). �

REMARK 5.20. The argument of this section does not work in the quasiprimitive
case because a quasiprimitive group F ≤ Sym(Ω) with nontrivial centre is abelian
and regular. If Z(F) � F is nontrivial then it is transitive, and it suffices to show
that F+ is trivial. Suppose a ∈ Fω moves ω′ ∈ Ω. Pick z ∈ Z(F) with z(ω) = ω′. Then
za(ω) = ω′ � az(ω), contradicting the assumption that z ∈ Z(F).
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PROOF OF THEOREM 5.2(iv)(a). For certain intransitive F ≤ Sym(Ω) we construct a
closed, nondiscrete, compactly generated, vertex-transitive group H(F) ≤ Aut(Td) that
locally acts like F and contains a quasicentral hyperbolic element of length 1.

Let F ≤ Sym(Ω). Assume that the partition F\Ω = ⊔i∈I Ωi of Ω has at least three
elements and that Z(F) � {id}. Choose a nontrivial element τ ∈ Z(F) and ω0 ∈ Ω0 ∈
F\Ω with τ(ω0) � ω0. Further, suppose that FΩi � {id} for all Ωi � Ω0.

Define groups F(k) ≤ Aut(Bd,k) for k ∈ N inductively by F(1) := F and

F(k+1) := {(α, (αω)ω) |α∈F(k), αω∈CF(k) (α,ω) constant w.r.t. F\Ω, αω0 =α}. �

PROPOSITION 5.21. The groups F(k) ≤ Aut(Bd,k) (k ∈ N) defined above satisfy the
following assertions.

(i) Every α ∈ F(k) is self-compatible in directions from Ω0.
(ii) The compatibility set CF(k) (α,Ωi) is nonempty for all α ∈ F(k) and i ∈ I. In

particular, the group F(k) satisfies (C).
(iii) The compatibility set CF(k) (id,Ωi) is nontrivial for all i ∈ I\{0}. In particular, the

group F(k) does not satisfy (D).
(iv) The element γk(τ) ∈ Aut(Bd,k) is central in F(k).

PROOF. We prove all four properties simultaneously by induction. For k = 1, asser-
tions (i) and (ii) are trivial. Assertion (iii) translates to FΩi being nontrivial for all
i ∈ I\{0}, which is an assumption, as is (iv). Now, assume that all properties hold for
F(k). Then the definition of F(k+1) is meaningful because of (i) and it is a subgroup of
Aut(Bd,k) because F preserves F\Ω. Assertion (i) is now evident. Assertions (ii) and
(iii) carry over from F(k) to F(k+1). Finally, (iv) follows inductively because τ and hence
τ−1 preserves F\Ω setwise: for α̃ = (α, (αω)ω) ∈ F(k+1) we have

γk+1(τ)α̃γk+1(τ)−1 = (γk(τ)αγk(τ)−1, (γk(τ)ατ−1(ω)γ
k(τ)−1)ω). �

DEFINITION 5.22. Retain the above notation. Define H(F) :=
⋂

k∈NUk(F(k)).

Now, H(F) is compactly generated, vertex-transitive and contains an involutive
inversion because U1({id}) ≤ H(F). Also, H(F) is closed as the intersection of all its
(Pk)-closures. The 1-local action of H is given by F = F(1) as Γk(F) ≤ F(k) for all k ∈ N
and therefore D(F) ≤ H.

LEMMA 5.23. The group H(F) is nondiscrete.

PROOF. Let x ∈ V and n ∈ N. We construct a nontrivial element h ∈ H(F) which fixes
B(x, n). Consider αn := id ∈ F(n). By parts (i) and (iii) of Proposition 5.21 as well as
the definition of F(n+1), there is a nontrivial element αn+1 ∈ F(n+1) with πnαn+1 = αn.
Applying parts (i) and (ii) of Proposition 5.21 repeatedly, we obtain nontrivial elements
αk ∈ F(k) for all k ≥ n + 1 with πkαk+1 = αk. Set αk := id ∈ F(k) for all k ≤ n, and define
h ∈ Aut(Td)x by fixing x and setting σk(h, x) := αk ∈ F(k). Since F(l) ≤ Φl(F(k)) for all
k ≤ l we conclude that h ∈ ⋂k∈NUk(F(k)) = H(F). �

PROPOSITION 5.24. The quasicentre of H(F) contains a translation of length 1.
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PROOF. Fix x ∈ V and let τ be as above. Consider the line L through x with labels

. . . , τ−2ω0, τ−1ω0,ω0, τω0, τ2ω0, . . . .

Define t ∈ D(F) by t(x) = xω0 and σ1(t, y) = τ for all y ∈ V . Then t is a translation of
length 1 along L. Furthermore, t commutes with H(F)B(x,1). Indeed, let g ∈ H(F)B(x,1).
Then (gt)(x) = t(x) = (tg)(x) and

σk(gt, x) = σk(g, tx)σk(t, x) = σk(t, x)σk(g, x) = σk(t, gx)σk(g, x) = σk(tg, x)

for all k ∈ N because σk(t, x) = γk(τ) ∈ Z(F(k)) and g ∈ Uk+1(F(k+1))B(x,1). �

PROOF OF THEOREM 5.2(iv)(b). For certain quasiprimitive F ≤ Sym(Ω) we construct
a closed, nondiscrete, compactly generated group H(F) ≤ Aut(Td) that locally acts like
F and contains a quasicentral hyperbolic element of length 2.

Let F≤Sym(Ω) be quasiprimitive. Suppose F preserves a nontrivial partition P :
Ω =
⊔

i∈I Ωi. Further, suppose that FΩi � {id} and that Fωi � Ωi\{ωi} is transitive for
all i ∈ I and ωi ∈ Ωi. �

EXAMPLE 5.25. Consider the action A5 � A5/C5. It has blocks of size [D5 : C5] = 2
and nontrivial block stabilizers as C5 ∩ τC5τ

−1 = C5 for all τ ∈ D5 given that C5 � D5.

Retain the notation of Example 4.41. Define groups F(2k) ≤ Aut(Bd,2k) for k ∈ N
inductively by F(2) = {(a, (aω)ω) | a ∈ F, aω ∈ CF(a,ω) constant w.r.t. P} and

F(2(k+1)) := {(α, (αξ)ξ) | α ∈ F(2k),αξ ∈ CF(2k) (α, ξ), for all ξ ∈ Ω(2)
0 : αξ = α}.

PROPOSITION 5.26. The groups F(2k) ≤ Aut(Bd,2k) (k ∈ N) defined above satisfy the
following assertions.

(i) Every α ∈ F(2k) is self-compatible in all directions from Ω(2)
0 .

(ii) The compatibility set CF(2k) (α, ξ) is nonempty for all α∈F(2k) and ξ∈Ω(2). In
particular, the group F(2k) satisfies (C).

(iii) The compatibility set CF(2k) (id, ξ) is nontrivial for all ξ ∈ Ω(2). In particular, the
group F(2k) does not satisfy (D).

PROOF. We prove all three properties simultaneously by induction. For k = 1, asser-
tion (i) holds by construction of F(2), as do (ii) and (iii). Now assume that all properties
hold for F(2k). Then the definition of F(2(k+1)) is meaningful because of (i) and it is
a subgroup because F(2) preserves Ω(2)

0 . Also, F(2(k+1)) satisfies (i) because Ω(2)
0 is

inversion-closed. Assertions (ii) and (iii) carry over from F(2k). �

DEFINITION 5.27. Retain the above notation. Define H(F) :=
⋂

k∈N BU2k(F(2k)).

Now, H(F) is closed as an intersection of closed sets and compactly generated by
H(F)x for some x ∈ V1 and a finite generating set of BU2({id})+; see Lemma 4.39. For
vertices in V1, the 1-local action is F because Γ2k(F) ≤ F(2k). For vertices in V2 the
1-local action is F+ = F as Γ2(F) ≤ F(2).

LEMMA 5.28. The group H(F) is nondiscrete.
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PROOF. Let x ∈ V1 and n ∈ N. We construct a nontrivial element h ∈ H(F) that fixes
B(x, 2n). Consider α2n := id ∈ F(2n): By parts (i) and (iii) of Proposition 5.5 and the
definition of F(2(n+1)), there is a nontrivial element α2(n+1) ∈ F(2(n+1)) with π2nα2(n+1) =

α2n. Applying parts (i) and (ii) of Proposition 5.26 repeatedly, we obtain nontrivial
elements α2k ∈ F(2k) for all k ≥ n + 1 with π2kα

2(k+1) = α2k. Set α2k := id ∈ F(2k) for all
k ≤ n and define h ∈ Aut(Td)x by fixing x and setting σ2k(h, x) := α2k ∈ F(2k). Since
F(2l)≤BΦ2l(F(2k)) for all k≤ l, we conclude that h ∈ ⋂k∈N BU2k(F(2k)) = H(F). �

PROPOSITION 5.29. The quasicentre of H(F) contains a translation of length 2.

PROOF. Fix x∈V1 and ξ= (ω1,ω2)∈Ω(2)
0 . Consider the line L through b with labels

. . . ,ω1,ω2,ω1,ω2, . . .

Define t ∈ D(F) by t(x) = xξ and σ1(t, y) = id for all y ∈ V . Then t is a translation of
length 2 along L. Furthermore, t commutes with H(F)B(x,2). Indeed, let g ∈ H(F)B(x,2).
Then gt(x) = t(x) = tg(x) and, for all k ∈ N,

σ2k(gt, x) = σ2k(g, tx)σ2k(t, x) = σ2k(g, xξ)
= σ2k(g, x) = σ2k(t, gx)σ2k(g, x) = σ2k(tg, x)

as σl(t, y) = id for all l ∈ N and y ∈ V(Td), and g ∈ BU2(k+1)(F(2(k+1)))B(b,2). �

REMARK 5.30. We argue that the construction of this section does not carry over to
any primitive F ≤ Sym(Ω) and Γ(F) ≤ F(2) ≤ Φ(F).

First, note that Φ(F)\Ω(2) = Γ(F)\Ω(2). For α := (a, (aω)ω∈Ω) ∈ Φ(F) and
(ω1,ω2)∈Ω(2) we have α(ω1,ω2) = (aω1, aω1ω2) ∈ {(aω1, aFω1ω2)} ⊆ Γ(F)(ω1,ω2).
We now observe the following obstruction to nondiscreteness. Given any orbit
Ω

(2)
0 ∈ Φ(F)\Ω(2) = F(2)\Ω(2), the subgroup of Φ(F) consisting of elements that are

self-compatible in all directions from Ω(2)
0 is precisely Γ(F).

Indeed, every element of Γ(F) is self-compatible in all directions from Ω(2)⊇Ω2
0.

Conversely, let (a, (aω)ω) ∈ Φ(F) be self-compatible in all directions from Ω(2)
0 . Con-

sider the equivalence relation on Ω defined by ω1 ∼ ω2 if and only if aω1 = aω2 . Since
aω1 = aω2 whenever ξ := (ω1,ω2) ∈ Ω(2)

0 , this relation is F-invariant. Since Γ(F) ≤
Φ(F) we have γ(a)(ω1,ω2) = (aω1, aω2) ∈ Ω(2)

0 for all a ∈ F whenever (ω1,ω2) ∈ Ω(2)
0 .

Since F is primitive, it is the universal relation, so (a, (aω)ω)∈Γ(F).

5.2. Banks–Elder–Willis (Pk)-closures. Theorem 4.34 yields a description of the
(Pk)-closures of locally transitive subgroups of Aut(Td) that contain an involutive
inversion, and therefore a characterization of the locally transitive universal groups.
Recall that the (Pk)-closure of a subgroup H ≤ Aut(Td) is

H(Pk) = {g ∈ Aut(Td) | for all x ∈ V there exists h ∈ H : g|B(x,k) = h|B(x,k)}.

Combined with Corollary 4.18 the following partially answers the question for an
algebraic description of a group’s (Pk)-closure in the last paragraph of [1].
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THEOREM 5.31. Let H ≤ Aut(Td) be locally transitive and contain an involutive
inversion. Then H(Pk) = U(l)

k (F(k)) for some labelling l of Td and F(k) ≤ Aut(Bd,k).

PROOF. Let l and F(k) ≤ Aut(Bd,k) be as in Theorem 4.34. Then H(Pk)=U(l)
k (F(k)).

Let g ∈ Uk(F(k)) and x ∈ V . Since U(l)
1 ({id}) ≤ H there is h′ ∈ U(l)

1 ({id}) ≤ H with
h′(x) = g(x), and since H is k-locally action isomorphic to F(k) there is h′′ ∈Hx such
that σk(h′′, x) = σk(g, x). Then h := h′h′′ ∈ H satisfies g|B(x,k) = h|B(x,k).

Conversely, let g ∈ H(Pk). Then all k-local actions of g stem from elements of H.
Given that H ≤ Uk(F(k)) by Theorem 4.34, we conclude that g ∈ Uk(F(k)). �

COROLLARY 5.32. Let H ≤ Aut(Td) be closed, locally transitive and contain an
involutive inversion. Then H = U(l)

k (F(k)) for some labelling l of Td and an action
F(k) ≤ Aut(Bd,k) if and only if H satisfies property (Pk).

PROOF. If H = U(l)
k (F(k)) then H satisfies property (Pk) by Proposition 4.7. Conversely,

if H satisfies Property (Pk) then H = H=H(Pk) by [1, Theorem 5.4] and the assertion
follows from Theorem 5.31. �

Banks, Elder and Willis use certain subgroups of Aut(Td) with pairwise distinct
(Pk)-closures to construct infinitely many, pairwise nonconjugate, nondiscrete simple
subgroups of Aut(Td) via Theorem 2.1 and [1, Theorem 8.2]. For example, the
group PGL(2,Qp)≤Aut(Tp+1) qualifies by the argument in [1, Section 4.1]. Whereas
PGL(2,Qp) has trivial quasicentre given that it is simple, certain groups with nontrivial
quasicentre always have infinitely many distinct (Pk)-closures.

PROPOSITION 5.33. Let H ≤ Aut(Td) be closed, nondiscrete, locally transitive and
contain an involutive inversion. If also H has nontrivial quasicentre then H has
infinitely many distinct (Pk)-closures.

PROOF. We have H(Pk) = Uk(F(k)) by Theorem 5.31. Therefore, H =
⋂

k∈NUk(F(k))
by [1, Proposition 3.4(iii)]. If H had only finitely many distinct (Pk)-closures, the
sequence (H(Pk))k∈N of subgroups of Aut(Td) would be eventually constant and equal
to, say, H(n) = Un(F(n)) ≥ H. However, since H is nondiscrete, so is Un(F(n)) which
thus has trivial quasicentre by Proposition 4.21. �

Banks, Elder and Willis ask whether the infinitely many, pairwise nonconjugate,
nondiscrete simple subgroups of Aut(Td) they construct are also pairwise nonisomor-
phic as topological groups. By Proposition 4.17, this is the case if the said simple
groups are locally transitive with distinct point-stabilizers, which can be determined
from the original group’s k-local actions thanks to Theorem 5.31.

THEOREM 5.34. Let H ≤ Aut(Td) be nondiscrete, locally permutation isomorphic to
F ≤ Sym(Ω) and contain an involutive inversion. Suppose that F is transitive and that
every nontrivial subnormal subgroup of Fω (ω∈Ω) is transitive on Ω\{ω}. If H(Pk) �
H(Pl) for some k, l ∈ N then (H(Pk))+k and (H(Pl))+l are nonisomorphic.

PROOF. In view of [1, Theorem 8.2], the groups (H(Pk))+k and (H(Pl))+l are nonconju-
gate. We show that they satisfy the assumptions of Proposition 4.17 which then implies
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the assertion. It suffices to consider H(Pk). By Theorem 5.31, we have H(Pk) = Uk(F(k))
for some F(k) ≤ Aut(Bd,k). By virtue of Proposition 4.10, we may assume that F(k)

satisfies (C). Since H is nondiscrete, so is H(Pk) = Uk(F(k)). Therefore, F(k) does
not satisfy (D); see Proposition 4.12. Hence, in view of the local action of H and
Proposition 4.31, the group πξF

(k)
Tω

is nontrivial and thus transitive by Proposition 4.30
for all ξ = (ω1, . . . ,ωk−1) ∈ Ω(k−1) and ω ∈ Ω\{ω1}. Now, let x ∈ V(Td). For every ω ∈
Ω pick ξ = (ω1, . . . ,ωk−2,ω) ∈ Ω(k−1). Let y ∈ V(Td) be such that x = yξ. Since πξF

(k)
Tω′

is transitive for every ω′ ∈ Ω\{ω1} we conclude that (H(Pk))+k is locally 2-transitive
at x. So Proposition 4.17 applies. �

EXAMPLE 5.35. Theorem 5.34 applies to PGL(2,Qp)≤Aut(Tp+1) for any prime p
by Lemma 5.36 below. In fact, the local action is given by PGL(2, Fp)�P1(Fp),
point-stabilizers of which act like AGL(1, p)=F∗p �Fp � Fp. Retaining the notation
of [1, Section 4.1], an involutive inversion in PGL(2,Qp) is given by

σ :=
[
0 1
p 0

]
with σ2 =

[
p 0
0 p

]
=

[
1 0
0 1

]
.

Indeed, σ swaps the vertices v and Lp.

LEMMA 5.36. Let F ≤ Sym(Ω) be 2-transitive. If |Ω| − 1 is prime then every nontrivial
subnormal subgroup of Fω (ω ∈ Ω) acts transitively on Ω\{ω}.

PROOF. Since Fω acts transitively on Ω\{ω}, which has prime order, Fω is primitive.
So every nontrivial normal subgroup of Fω acts transitively on Ω\{ω}. Iterate. �

EXAMPLE 5.37. The proof of Theorem 5.34 shows that the assumptions on F can be
replaced with asking that (H(Pk))+k be locally transitive with distinct point-stabilizers,
which may be feasible to check in a given example.

For instance, let F≤Sym(Ω) be transitive with distinct point-stabilizers. Assume
that F preserves a nontrivial partition P : Ω =

⊔
i∈I Ωi of Ω and that it is generated by

its block stabilizers, that is, F = 〈{FΩi | i ∈ I}〉.
Let p : Ω→ I be such that ω ∈ Ωpω for all ω ∈ Ω. Inductively define groups

F(k) ≤ Aut(Bd,k) by F(1) := F and F(k+1) :=Φk(F(k),P), and check that

(i) CF(k) (α,Ωi) is nonempty for all α ∈ F(k) and i ∈ I,
(ii) CF(k) (id,Ωi) is nontrivial for all i ∈ I,
(iii) F(k+1) � Φ(F(k)), and
(iv) πξF

(k)
Tω
=FΩpωk−1

for all ω∈Ω and ξ= (ω1, . . . ,ωk−1)∈Ω(k−1) with ω1�Ωpω.

In particular, F(k) satisfies (C) but not (D) for all k ∈ N. Set H :=
⋂

k∈NUk(F(k)).
By the above, H is nondiscrete and contains both D(F) and U1({id}). Hence, Theorem
5.31 applies and we have H(Pk) = Uk(F(k)). From item (iii), we conclude that the H(Pk)

(k ∈ N) are pairwise distinct. Given that (H(Pk))+k locally acts like F due to item (iv),
the (H(Pk))+k (k ∈ N) are hence pairwise nonisomorphic.
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5.3. A view on the Weiss conjecture. The Weiss conjecture states that there are
only finitely many conjugacy classes of discrete, vertex-transitive, locally primitive
subgroups of Aut(Td) for a given d ∈ N≥3. We now study the universal group
construction in the discrete case and offer a new view on this conjecture. Under
the additional assumption that each group contains an involutive inversion, it suf-
fices to show that for every primitive F ≤ Sym(Ω) there are only finitely many
F̃ ≤ Aut(Bd,k) (k ∈ N) with πF̃ = F and that satisfy (CD) in a minimal fashion; see
Definition 5.42 and the discussion thereafter.

The following consequence of Theorem 5.31 identifies certain groups relevant to
the Weiss conjecture as universal groups for local actions satisfying condition (CD).

COROLLARY 5.38. Let H ≤ Aut(Td) be discrete, locally transitive and contain an
involutive inversion. Then H = U(l)

k (F(k)) for some k ∈ N, a labelling l of Td and
F(k) ≤ Aut(Bd,k) satisfying (CD) that is isomorphic to the k-local action of H.

PROOF. Discreteness of H implies property (Pk) for every k ∈ N such that stabilizers
in H of balls of radius k in Td are trivial. Then apply Theorem 5.31. �

Therefore, the study of the class of groups given in Corollary 5.38 reduces to
the study of subgroups F ≤ Aut(Bd,k) (k ∈ N) that satisfy (CD) and for which πF
is transitive. By Corollary 4.15, any two conjugate such groups yield isomorphic
universal groups. In this sense, it suffices to examine conjugacy classes of subgroups
of Aut(Bd,k). This can be done computationally using the description of conditions (C)
and (D) developed in Section 4.2, using, for example, [9].

EXAMPLE 5.39. Consider the case d=3. By [7, 31, 32], there are, up to conjugacy,
seven discrete, vertex-transitive and locally transitive subgroups of Aut(T3). We denote
them by G1, G2, G1

2, G3, G4, G1
4 and G5. The subscript n determines the isomorphism

class of the vertex stabilizer, whose order is 3 · 2n−1. A group contains an involutive
inversion if and only if it has no superscript. The minimal order of an inversion in G1

2
and G1

4 is 4. See also [4]. By Corollary 5.38, the groups Gn (n∈{1, . . . , 5}) are of the
form Uk(F). We recover their local actions in Table 1. The list is complete for k = 2,
and for k = 3 in the case of (CD).

The column labelled ‘i.c.c.’ records whether F admits an involutive compatibility
cocycle. This can be determined in [9] and is automatic in the case of (CD). The group
Π(S3, sgn, {1}) of Proposition 4.25 admits an involutive compatibility cocycle z which
we describe as follows. Suppose Ω := {1, 2, 3}. Let ti∈Sym(Ω) be the transposition that
fixes i, and let τi∈Π(S3, sgn, {1}) be the element whose 1-local action is ti everywhere
except at bi. Then Π(S3, sgn, {1}) = 〈τ1, τ2, τ3〉. Further, let κi ∈ Π(S3, sgn, {1}) ∩ ker π
be the nontrivial element with σ1(κi, bi) = e. We then have z(τi, i) = κi−1 and z(τi, j) =
τiκj for all distinct i, j ∈ Ω, with cyclic notation.

The kernel K2 is the diagonal subgroup of Z/2Z3·(3−1) � ker π2 ≤ Aut(B3,3). Using
the above, we conclude that G1 = U1(A3), G2 = U2(Γ(S3)), G3 = U2(Δ(S3)), G4 =

U3(Γ2(Π(S3, sgn, {1}))) and G5 = U3(Σ2(Π(S3, sgn, {1}), K2)).
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TABLE. 1. Conjugacy class representatives of subgroups F of Aut(B3,2) and Aut(B3,3) that satisfy (C) and
project onto a transitive subgroup of S3.

Description of F k πF |F| (C) (D) i.c.c.

Φ(A3) 2 A3 3 yes yes yes
Γ(S3) 2 S3 6 yes yes yes
Δ(S3) 2 S3 12 yes yes yes

Π(S3, sgn, {0, 1}) 2 S3 24 yes no no
Π(S3, sgn, {1}) 2 S3 24 yes no yes
Φ(S3) 2 S3 48 yes no no

Description of F k π2F |F| (C) (D) i.c.c.
Γ2(Π(S3, sgn, {1})) 3 Π(S3, sgn, {1}) 24 yes yes yes
Σ2(Π(S3, sgn, {1}), K2) 3 Π(S3, sgn, {1}) 48 yes yes yes

QUESTION 5.40. Can the groups G1
2 and G1

4 be described as universal groups with
prescribed local actions on edge neighbourhoods that prevent involutive inversions?

The long-standing Weiss conjecture [33] states that there are only finitely many
conjugacy classes of discrete, vertex-transitive, locally primitive subgroups of Aut(Td)
for a given d ∈ N≥3. Potočnic et al. [21] show that a permutation group F ≤ Sym(Ω),
for which there are only finitely many conjugacy classes of discrete, vertex-transitive
subgroups of Aut(Td) that locally act like F, is necessarily semiprimitive, and
conjecture the converse. Promising partial results were obtained in the same article
as well as by Giudici and Morgan in [11].

Corollary 5.38 suggests restricting to discrete, locally semiprimitive subgroups of
Aut(Td) containing an involutive inversion.

CONJECTURE 5.41. Let F ≤ Sym(Ω) be semiprimitive. Then there are only finitely
many conjugacy classes of discrete subgroups of Aut(Td) that locally act like F and
contain an involutive inversion.

For a transitive permutation group F ≤ Sym(Ω), let HF denote the collection of
subgroups of Aut(Td) that are discrete, locally act like F and contain an involutive
inversion. Then the following definition is meaningful by Corollary 5.38.

DEFINITION 5.42. Let F ≤ Sym(Ω) be transitive. Define

dimCD(F) :=max
H∈HF

min{k∈N | there exists F(k)∈Aut(Bd,k) with (CD) : H=Uk(F(k))}

if the maximum exists and dimCD(F) = ∞ otherwise.

Given Definition 5.42, Conjecture 5.41 is equivalent to asserting that dimCD(F)
is finite whenever F ≤ Sym(Ω) is semiprimitive. The remainder of this subsection is
devoted to determining dimCD for certain classes of transitive permutation groups.
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PROPOSITION 5.43. Let F ≤ Sym(Ω) be transitive. Then dimCD(F) = 1 if and only if
F is regular.

PROOF. If F is regular, then dimCD(F) = 1 by Proposition 4.13. Conversely, if
dimCD(F) = 1 then U2(Δ(F)) = U1(F) = U2(Γ(F)). Hence, Γ(F) � Δ(F), which
implies that Fω is trivial for all ω ∈ Ω. That is, F is regular. �

The next proposition provides a large class of primitive groups of dimension 2. It
relies on the following relations between various characteristic subgroups of a finite
group. Recall that the socle of a finite group is the subgroup generated by its minimal
normal subgroups, which form a direct product.

LEMMA 5.44. Let G be a finite group. Then the following assertions are equivalent.

(i) The socle soc(G) has no abelian factor.
(ii) The solvable radical O∞(G) is trivial.
(iii) The nilpotent radical Fit(G) is trivial.

PROOF. If soc(G) has no abelian factor then O∞(G) is trivial: a nontrivial solvable
normal subgroup of G would contain a minimal solvable normal subgroup of G which
is necessarily abelian. Next, (ii) implies (iii) as every nilpotent group is solvable.
Finally, if soc(G) has an abelian factor then G contains a (minimal) normal abelian,
hence nilpotent subgroup. Thus (iii) implies (i). �

PROPOSITION 5.45. Let F ≤ Sym(Ω) be primitive, nonregular and assume that Fω
has trivial nilpotent radical for all ω ∈ Ω. Then dimCD(F) = 2.

PROOF. Suppose that F(2) ≤ Aut(Bd,2) satisfies (C) and that the sequence

1 �� ker π �� F(2) π �� F �� 1

is exact. Fix ω0 ∈ Ω. Then ker π ≤∏ω∈Ω Fω � Fd
ω0

. Since F(2) satisfies (C), we have
prω(ker π) � Fω0 for all ω ∈ Ω, and since F is transitive these projections all coincide
with the same N � Fω0 . Now consider F(2)

Tω
= ker prω |ker π � ker π for some ω ∈ Ω.

Either F(2)
Tω

is trivial, in which case F(2) has (CD), or F(2)
Tω

is nontrivial. In the
latter case, suppose Nω,ω′ := prω′ F

(2)
Tω

is nontrivial for some ω′ ∈ Ω. Then Nω,ω′ is
subnormal in Fω0 as Nω,ω′ � N � Fω0 and therefore has trivial nilpotent radical. The
Thompson–Wielandt theorem [28, 34] (cf. [2, Theorem 2.1.1]) now implies that there
is no F(k) ≤ Aut(Bd,k), k ≥ 3, satisfying π2F(k) = F(2) and (CD). Thus dimCD(F) ≤ 2.
Equality holds by Proposition 5.43. �

Proposition 5.45 applies to Alt(d) and Sym(d), d ≥ 6, whose point-stabilizers have
nonabelian simple socle Alt(d − 1). It also applies to primitive groups of O’Nan–Scott
type (TW) and (HS), whose point-stabilizers have trivial solvable radical [6, Theorem
4.7B] and simple nonabelian socle [16], respectively.

EXAMPLE 5.46. By Example 5.39, we have dimCD(S3) ≥ 3. The article [7] shows that
in fact dimCD(S3) = 3.
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To contrast the primitive case, we show that imprimitive wreath products have
dimension at least 3, illustrating the use of involutive compatibility cocycles. Recall
that for F ≤ Sym(Ω) and P ≤ Sym(Λ) the wreath product F � P := F|Λ| � P admits
a natural imprimitive action on Ω × Λ with the partition

⊔
λ∈Λ Ω × {λ}, namely

((aλ)λ,σ) · (ω, λ′) := (aσ(λ′)ω,σλ′).

PROPOSITION 5.47. Let Ω and Λ be finite sets of size at least 2. Furthermore, let
F ≤ Sym(Ω) and P ≤ Sym(Λ) be transitive. Then dimCD(F � P) ≥ 3.

PROOF. We define a subgroup W(F, P) ≤ Aut(B|Ω×Λ|,2) that projects onto F � P, sat-
isfies (C), does not satisfy (D) but admits an involutive compatibility cocycle. This
suffices by Lemma 4.26. For λ ∈ Λ, let ιλ denote the λth embedding of F into
F � P = (

∏
λ∈Λ F) � P. Recall the map γ from Section 4.4.1 and consider

γλ : F → Aut(B|Ω×Λ|,2), a �→ (ιλ(a), ((ιλ(a))(ω,λ), (id)(ω,λ′�λ))),

γ(2)
λ : F → Aut(B|Ω×Λ|,2), a �→ (id, ((id)(ω,λ), (ιλ(a))(ω,λ′�λ))).

Furthermore, let ι denote the embedding of P into F � P. We define

W(F, P) := 〈γλ(a), γ(2)
λ (a), γ(ι(�)) | λ ∈ Λ, a ∈ F, � ∈ P〉.

By construction, W(F, P) does not satisfy (D). To see that W(F, P) admits an
involutive compatibility cocycle, we first determine its group structure. Consider
the subgroups V := 〈γλ(a) | λ ∈ Λ, a ∈ F〉 and V := 〈γ(2)

λ (a) | λ ∈ Λ, a ∈ F〉. Then
W(F, P) = 〈V , V , Γ(ι(P))〉. Observe that V � F|Λ| and V � F|Λ| commute, intersect
trivially, and that Γ(ι(P)) permutes the factors of each product. Hence,

W(F, P) � (V × V) � P � (F|Λ| × F|Λ|) � P.

An involutive compatibility cocycle z of W(F, P) may now be defined by setting

z(γλ(a), (ω, λ′)) :=

⎧⎪⎪⎨⎪⎪⎩γλ(a) λ = λ′

γ(2)
λ (a) λ � λ′

, z(γ(2)
λ (a), (ω, λ′)) :=

⎧⎪⎪⎨⎪⎪⎩γ
(2)
λ (a) λ = λ′

γλ(a) λ � λ′

for all λ ∈ Λ, a ∈ F, and z(γ(ι(�)), (ω, λ)) := γ(ι(�)) for all � ∈ P. In fact, the map
z extends to an involutive compatibility cocycle of V × V ≤ W(F, P) which in turn
extends to an involutive compatibility cocycle of W(F, P). �
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