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Abstract

In this paper we consider the problem of identifiability for the two-state Markovian arrival
process (MAP2). In particular, we show that the MAP2 is not identifiable, providing the
conditions under which two different sets of parameters induce identical stationary laws
for the observable process.

Keywords: Markovian arrival process; Markov-modulated Poisson process; phase-type
renewal process; identifiability problem

2010 Mathematics Subject Classification: Primary 60G55
Secondary 60J05

1. Introduction

The Markovian arrival process (MAP) was defined in [16] and [17] as a generalization of the
Poisson arrival process allowing for both dependence between arrivals and nonexponentially
distributed interarrival times. The MAP is defined by two Markov processes: the first counts the
number of arrivals and the second, an underlying Markov process, governs the state changes.
At the end of a transition in a MAP an arrival may or may not occur and, although the transition
holding times are exponentially distributed, the interarrival times do not, in general, follow an
exponential distribution. Special cases of the MAP are phase-type renewal processes (which
include both the Erlang and hyperexponential renewal processes) and nonrenewal processes
such as the Markov-modulated Poisson process (MMPP). Stationary MAPs are dense in the
family of all stationary point processes; see [1]. Another important property of MAPs is that
the superposition of independent MAPs is again a MAP.

The MAP is a challenging process from both theoretical and applied points of view. From
a theoretical perspective, the queueing system where the MAP governs the arrival process has
been widely studied in the literature (see, for example, [15] and [19]). On the other hand, the
MAP has been proposed in the literature as a suitable process for modeling teletraffic data;
see, for example, [10], [11], [12], [18], and [25]. In this case, the MAP is used to fit data
where only the interarrival times are observed and neither the underlying Markov chain nor the
individual exponential holding times are available, and, thus, the observed arrival process is a
hidden Markov process.
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When dealing with inference for hidden Markov processes, it is very common to encounter
identifiability problems which imply that the likelihood function does not possess a unique
maximum. Identifiability conditions for general hidden Markov processes are studied in [13],
[14], and [21]. Several works have considered the identifiability issue with regards to some
types of MAP. For example, identifiability of the MMPP and phase-type distributions was
undertaken in [23], with results derived from a uniformization technique in combination with
the findings of [13]. Unlike the MMPP, which can be identified (up to permutations of states),
it is known that the phase-type distributions are not identifiable since, for example, any two-
state phase-type distribution can be represented as a two-state Coxian distribution, which is
not identifiable. Also, Green [6] and Bean and Green [3] investigated when a MAP is a
Poisson process. He and Zhang [7], [8], [9] used the so-called spectral polynomial algorithm to
construct Coxian representations for phase-type distributions whose generators have only real
eigenvalues. Finally, a new parameterization which provides an identifiable Coxian model can
be found in [2]. In this paper we address the problem of identifiability of the general two-state
MAP, or MAP2. We prove the lack of identifiability of the MAP2 using an approach that allows
us to construct an equivalent MAP2 for any given MAP2.

The paper is organized as follows. In Section 2 we introduce the MAP and its main properties.
In Section 3 we study when two MAP2s have the same interarrival time distributions, a necessary
condition for nonidentifiability. We call this property weak equivalence. In Section 4 we
consider the joint distribution of a sequence of interarrival times generated from the MAP2 and
show that there are at least two different parameterizations of the MAP2 giving rise to the same
joint distribution, thus proving the nonidentifiability of the MAP2. Finally, in Section 5 we
provide conclusions and some possible extensions of this work.

2. The MAP and its main properties

Consider an irreducible, continuous, Markov process J (t) with state space S = {1, . . . , m}
and generator matrix D. Let N(t) represent the cumulative number of arrivals in (0, t]. A MAP,
represented by {J (t), N(t)}, behaves as follows: the initial state i0 ∈ S is generated according
to an initial probability vector θ = (θ1, . . . , θm) and at the end of an exponentially distributed
sojourn time in state i, with mean 1/λi , two possible state transitions can occur. Firstly, with
probability 0 ≤ pij1 ≤ 1, a single arrival occurs and the MAP enters a state j ∈ S, which may
be the same as (j = i) or different from (j �= i) the previous state. Secondly, with probability
0 ≤ pij0 ≤ 1, no arrival occurs and the MAP enters a different state, j �= i. Given that from
all states a transition must occur to a different state without an arrival or to any state with an
arrival, then, for 1 ≤ i ≤ m,

m∑
j=1, j �=i

pij0 +
m∑

j=1

pij1 = 1.

When m = 2, we have a two-state MAP, denoted by MAP2. Figure 1 illustrates the different
transitions that can occur in this process by means of a transition diagram.

Define the matrices P0 = (pij0)i,j∈S and P1 = (pij1)i,j∈S , where pii0 = 0. Then the MAP
is defined by the set {θ , λ, P0, P1}, where λ = (λ1, . . . , λm). Alternatively, the MAP can be
characterized by the rate matrices, D0 = (dij0)i,j∈S and D1 = (dij1)i,j∈S , where dii0 = −λi ,
dij0 = λipij0 for j �= i, and dij1 = λipij1 for 1 ≤ i, j ≤ m. This definition implies that
D ≡ D0 + D1 is the infinitesimal generator of the underlying Markov process. Intuitively, D0
can be thought of as governing transitions that do not generate arrivals and D1 can be thought
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Figure 1: Transition diagram for the MAP2. Here 0 and 1 illustrate moves without and with arrivals,
respectively.

of as governing transitions that do generate arrivals. The stationary probability vector of the
Markov process with generator D is π = (π1, . . . , πm), which satisfies

πD = 0, πe = 1,

where e is an m × 1 column vector of 1s. Thus, πj represents the stationary probability that
the process is in state j , for j = 1, . . . , m. The MMPP can be defined as a simplified MAP
where the matrix D1 (and thus, P1) is diagonal (see [15]). This implies that arrivals can only
occur in transitions to the same state.

Some important properties of the MAP are as follows. Firstly, it is known (see [4]) that
the MAP can be regarded as a Markov renewal process. Let Xn be the state of the MAP at
the time of the nth arrival, and let Tn be the time between the (n − 1)th and nth arrival. Then
{Xn−1, Tn}∞n=1 is a Markov renewal process with semi-Markovian kernel given by

∫ t

0
eD0tD1 dt = (I − eD0t )(−D0)

−1D1. (2.1)

Therefore, {Xn}∞n=1 is a Markov chain, where from (2.1) the transition matrix can be computed
as

P � = (I − P0)
−1P1. (2.2)

Also, it can be shown that the stationary distribution, φ, is given by

φ = (πD1e)
−1πD1. (2.3)

See Appendix A for the proof.
Secondly, let the random variable T1 denote the time to the first arrival in a MAP. Then, from

[4], the cumulative distribution function (CDF) of T1 is given by

FT1(t) = θ(I − eD0t )(−D0)
−1D1e for t ≥ 0.

If T represents the stationary interarrival time distribution, it can be shown that

FT (t) = φ(I − eD0t )(−D0)
−1D1e for t ≥ 0.
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Finally, the Laplace–Stieltjes transform of the first n interarrival times of a stationary MAP
is given by

f ∗
T ;D0,D1

(s1, . . . , sn) = φ(s1I − D0)
−1D1 · · · (snI − D0)

−1D1e,

or, equivalently,

f ∗
T ;D0,D1

(s1, . . . , sn) = φ

n∏
i=1

�(si)e, (2.4)

where
�(s) = (sI − D0)

−1D1. (2.5)

For a more detailed description and further properties of the MAP (and batch MAP (BMAP)),
see, for example, [4] or [15].

3. Weak equivalence

There have been a number of examples of fitting MMPPs to Internet data traces. In most
applications, the two-state case has been considered (see, for example, [5], [22], or [24]).
The MMPPs, despite being simplified MAPs (the matrix P1 is diagonal, and, thus, they are
characterized by two fewer parameters), are complex processes and usually two states, at most
three, are enough to capture the data behavior.

From now on we consider the two-state MAP, or MAP2, characterized by M ≡ {θ , D0, D1},
where

θ = (θ, 1 − θ), D0 =
(

x y

z u

)
, D1 =

(
w −x − y − w

v −z − u − v

)
, (3.1)

and
x = −λ1, y = λ1p120, w = λ1p111,

z = λ2p210, u = −λ2, v = λ2p211.

The stationary probability distribution is φ = (φ, 1 − φ), where

φ = wz − vx

wz − vx − zy − vy + xu + wu
. (3.2)

When modeling real data, usually only the times between arrivals are observed, and, thus, the
interest when making an inference for the MAP is focused on the embedded Markov renewal
process {Xn−1, Tn}∞n=1. As a preliminary step to studying the identifiability of the MAP2,
we study the conditions under which two MAP2s possess the same marginal interarrival time
distributions. For two such MAP2s, we will say that they are weakly equivalent.

Definition 3.1. Let M represent a MAP2 with parameters {θ , D0, D1} as in (3.1). Then we
say that another MAP2, M̃ ≡ {θ̃ , D̃0, D̃1} is weakly equivalent to M if and only if

Tn
d= T̃n for all n ≥ 1, (3.3)

where Tn and T̃n represent the times between the (n − 1)th and nth arrivals under both models,
and ‘

d=’ denotes equality in distribution.
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The term weak is employed because equivalence is expressed in a marginal sense. Since the
interarrival times in a MAP2 are not independent, condition (3.3) is necessary but insufficient for
nonidentifiability. A general condition looking at the joint density of the sequence of interarrival
times is analyzed in Section 4.

Given a known MAP2, M as in (3.1), define the constant

c = z + u − x − y. (3.4)

Note that if c = 0 then the rate until an arrival occurs from state 1 coincides with that of state 2.
This implies that the observable process (that is, where arrivals occur) behaves like a Poisson
process, with a single arrival rate. Thus, we will assume that c �= 0. In addition, define the
matrix � as that whose rows are composed of the stationary vector φ. Suppose that P � = �.
Then it is immediately clear that there are many weakly equivalent MAP2s, for example, any
M̃ = {θ̃ , D0, D1} is equivalent to M = {θ , D0, D1}. We can thus also assume that P � �= �.

Theorem 3.1 gives the conditions for M̃ to be weakly equivalent to M.

Theorem 3.1. Let M be a MAP2 as in (3.1) with stationary distribution φ, and let M̃ be
another MAP2 with stationary distribution φ̃. Let T and T̃ represent the interarrival times in
the stationary versions of M and M̃. Assume that

(A1) c �= 0 and c̃ �= 0;

(A2) P � �= � or P̃ � �= �̃.

Then, M̃ is weakly equivalent to M if and only if

(C1) T
d= T̃ ; and

(C2) (θ , θ̃) = (φ, φ̃).

As will be shown in the proof of Theorem 3.1 (see Appendix B), (C1) is equivalent to

αs + γ

s2 + βs + γ
= α̃s + γ̃

s2 + β̃s + γ̃
for all s, (3.5)

where the coefficients α, β, and γ are given by

α = θ(z + u − x − y) − (z + u), β = −x − u, γ = xu − yz;
similarly define α̃, β̃, and γ̃ .

Theorem 3.1 thus provides a straightforward way to check if two given MAP2s share the
same interarrival distribution.

Example 3.1. As an example, let us consider the MAP2 defined by

D0 =
(−20 6

0.15 −0.5

)
, D1 =

(
12.228 1.772
0.0426 0.3074

)
,

or, alternatively,

P0 =
(

0 0.3
0.3 0

)
, P1 =

(
0.6114 0.0886
0.0852 0.6148

)
,
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and exponential rates (λ1, λ2) = (20, 0.5). Suppose that the initial probability vector is equal
to the stationary distribution, θ = φ = (0.496, 0.504). The transition probability matrix, P �,
is computed from (2.2):

P � =
(

0.7 0.3
0.2952 0.7048

)
�= �.

Consider another MAP2 with parameters

D̃0 =
(−19.7 10.835

0.6146 −0.8

)
, D̃1 =

(
7.1452 1.7198
0.1443 0.0411

)
,

or, alternatively,

P̃0 =
(

0 0.5500
0.7682 0

)
, P̃1 =

(
0.3627 0.0873
0.1804 0.0514

)
,

and exponential rates (λ̃1, λ̃2) = (19.7, 0.8). Assume that θ̃ = φ̃ = (0.799, 0.201). The
transition probability matrix, P̃ �, is

P̃ � =
(

0.8 0.2
0.79 0.21

)
�= �.

It can be seen that c = 13.65 �= 0 and c̃ = −8.6796 �= 0, and that (3.5) holds. Therefore,
from Theorem 3.1, the processes are weakly equivalent, as shown in Figure 2, which depicts
the CDF of the time between two arrivals in the stationary version for both MAP2s.

More results similar to Theorem 3.1, when assumptions (A1) and (A2) are relaxed (and,
thus, the number of weakly equivalent MAP2s to a fixed MAP2 increases), and extensions to
the three-state case MAP can be found in [20].
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Figure 2: CDF of T , the time until the next arrival in the stationary version, in Example 1. As θ = φ,
then T

d= T1 (similarly, T̃
d= T̃1), and, thus, T

d= T1
d= T̃

d= T̃1.
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4. Nonidentifiability of the MAP2

In this section we prove that the MAP2 is a nonidentifiable process. Following Theorem 3.1,
all MAP2s will be assumed to be stationary, and M and M̃ will denote the sets {φ, D0, D1}
and {φ̃, D̃0, D̃1}, respectively, from now on. Our definition of nonidentifiability follows [23].

Definition 4.1. The MAP2 is a nonidentifiable process if, for any fixed MAP2, M, there exists
another MAP2, M̃, such that

(T1, . . . , Tn)
d= (T̃1, . . . , T̃n) for all n ≥ 1. (4.1)

Note that condition (4.1) is equivalent to the equality of the Laplace transforms,

f ∗
T ;D0,D1

(s1, . . . , sn) = f ∗
T̃ ;D̃0,D̃1

(s1, . . . , sn) (4.2)

for all n, s. We will show that, given a MAP2, M, as in (3.1), there always exists a differently
parameterized M̃ such that (4.2) holds for all n, s. Indeed, we will prove that if (4.2) holds for
n = 1, 2 then it will hold for all n.

Let us first consider the following result that gives the conditions under which (4.2) holds
for n = 1, 2.

Proposition 4.1. Let M and M̃ be two MAP2s. Let α, β, γ , δ1, δ2 be defined as
α = φ(z + u − x − y) − (z + u),

β = −x − u,

γ = xu − yz,

δ1 = φ((z + u − x − y)(w − v) + (x + y)(z + u) − (z + u)2) + (z + u − x − y)v

+ (z + u)2,

δ2 = φ(x + y − z − u)(uw − yv − xv + zw) + (x + y − z − u)(xv − zw) − (u + z)γ ;

similarly define α̃, β̃, γ̃ , δ̃1, and δ̃2. Then, if

α̃ = α, β̃ = β, γ̃ = γ, δ̃1 = δ1, δ̃2 = δ2, (4.3)

the equality of Laplace transforms, (4.2), holds for all s and n = 1, 2.

Proof. See Appendix C.

The following result gives the solutions to (4.3).

Proposition 4.2. Consider a MAP2 as in (3.1). For all ũ < 0 and all z̃ > 0, let x̃(ũ, z̃), ỹ(ũ, z̃),
ṽ(ũ, z̃), and w̃(ũ, z̃) be defined as

x̃(ũ, z̃) = −ũ + x + u, (4.4)

ỹ(ũ, z̃) = −1

z̃
(ũ2 − ũx − ũu + xu − zy), (4.5)

ṽ(ũ, z̃) = −z̃(vx + vy − wz − wu + wz̃ − zz̃ − zũ)

−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy

+ −z̃(−ũu + z̃2 + 2ũz̃ − uz̃ − vz̃ − ũv + wũ + ũ2)

−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy
, (4.6)
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w̃(ũ, z̃) = zũx + 2z̃xu − z̃zy − xu2 + zxz̃ + zuz̃ + ũu2 + uzy

−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy

+ −zxu − 2z̃ũx + z2y + uz̃v − wzy + zvy − z̃2u − 3ũz̃u − ũz̃v

−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy

+ vũx − z̃vy + 2ũxu + vũu − wũx − wuũ + 2ũ2z̃ + zũu + wux

−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy

+ z̃2ũ − vũ2 − ũ2x + z̃wz + ũz̃w − ũz̃z − vxu + wũ2 − zũ2 + ũ3

−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy

+ −zyũ + z̃u2 − z̃2x − 2ũ2u − z̃wx

−ũu − uz̃ + xu + ũ2 + 2ũz̃ + z̃2 − ũx − z̃x − zy
. (4.7)

Then, the set {ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃), w̃(ũ, z̃)} solves the system of equations given
by (4.3).

The proof of Proposition 4.2 is tedious but straightforward, involving solving the system
of equations (4.3) by conventional methods, and substituting φ and φ̃ from their definitions
(see (3.2)). Although Proposition 4.2 gives an infinite number of solutions to the system of
equations (4.3), a priori, the values of x̃, ỹ, ṽ, and w̃ may not define a MAP2. The following
theorem details how to select feasible values of ũ and z̃ in the sense that x̃ < 0, ỹ > 0, ṽ > 0,
w̃ > 0, −x̃ − ỹ − w̃ > 0, −z̃ − ũ − ṽ > 0, and φ̃ ∈ [0, 1], that is, it provides a way to choose
ũ and z̃ so that M̃ is equivalent to M.

Theorem 4.1. Consider a MAP2, M, as in (3.1), and define

ε1 = −x,

ε2 = u − x

2
,

ε3 = z(1 − φ)

φ
,

ε4 = (u − x) + √
(x − u)2 + 4zy

2
,

ε5 = − z

v
(z + u + v),

ε6 = − z

2v
[(u + v + z + w) −

√
(u + v + z + w)2 + 4v(−w − y − x)].

Let ε be chosen from
0 < ε < min{ε1, ε2, ε3, ε4, ε5, ε6} if x < u, (4.8)

0 < ε < min{ε1, ε3, ε4, ε5, ε6} if x = u, (4.9)

and set ũ ≡ u − ε and z̃ ≡ z + ε. Then there exist an infinite number of MAP2s, M̃, given by
F = {ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃), w̃(ũ, z̃)}, where x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃), and w̃(ũ, z̃) are
defined by (4.4)–(4.7), such that (4.3) holds.

Note that the case x > u has not been considered in Theorem 4.1, since a MAP2 defined by
{x, y, z, u, w, v} with x > u is equivalent to the MAP2 {x′, y′, z′, u′, w′, v′} = {u, z, y, x, −z−
u− v, −x − y −w} with x′ < u′, or, equivalently, the MAP2 can be parametrized by replacing
state 1 by state 2.
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Proof of Theorem 4.1. See Appendix D.

As a consequence of Theorem 4.1, the following two corollaries can be derived.

Corollary 4.1. Consider a MAP2, M, as in (3.1), and values ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃),
and w̃(ũ, z̃) as in Proposition 4.2 characterizing another MAP2, M̃. Let �(s) be defined as in
(2.5) (define �̃(s) similarly). Then,

φ�(s1)e = φ̃�̃(s1)e, (4.10)

φ�(s1)�(s2)e = φ̃�̃(s1)�̃(s2)e, (4.11)

(0, 1)�(s1)e = (0, 1)�̃(s1)e, (4.12)

(0, 1)�(s1)�(s2)e = (0, 1)�̃(s1)�̃(s2)e, (4.13)

for all s1, s2.

From (2.4), expressions (4.10)–(4.11) are an alternative way to state that (4.2) holds for
n = 1 and n = 2. By substituting the values of F found in Theorem 4.1 in the expression for
�̃(s) (see (2.5)), routine but tedious calculations yield (4.12)–(4.13).

Corollary 4.2. Consider a MAP2, M, as in (3.1), and values ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃),
and w̃(ũ, z̃) as in Proposition 4.2 characterizing another MAP2, M̃. Let �(s) be defined as in
(2.5) (define �̃(s) similarly). If �(s) is given by

�(s) =
(

a(s) b(s)

c(s) d(s)

)

then the solution to (4.10)–(4.13) is

�̃(s) =
(

ã(s) b̃(s)

c̃(s) d̃(s)

)
, (4.14)

where

ã(s) = φ(a(s) − c(s)) + φ̃c(s)

φ
, (4.15)

b̃(s) = φφ̃(d(s) + 2c(s) − a(s)) + φ2(a(s) − d(s) + b(s) − c(s)) − φ̃2c(s)

φφ̃
, (4.16)

c̃(s) = φ̃c(s)

φ
, (4.17)

d̃(s) = φ(c(s) + d(s)) − φ̃c(s)

φ
. (4.18)

Equations (4.10)–(4.13) form a system with four equations, where the unknowns are the
elements of (4.14). A trivial verification shows that (4.15)–(4.18) solves the system. The
previous corollary motivates the following definition.

Definition 4.2. Let G and G̃ be 2 × 2 matrices, where

G =
(

a b

c d

)
and G̃ =

(
ã b̃

c̃ d̃

)
.
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It will be said that G̃ is related to G, given the values φ and φ̃, if and only if

ã = φ(a − c) + φ̃c

φ
, (4.19)

b̃ = φφ̃(d + 2c − a) + φ2(a − d + b − c) − φ̃2c

φφ̃
, (4.20)

c̃ = φ̃c

φ
, (4.21)

d̃ = φ(c + d) − φ̃c

φ
. (4.22)

This relation will be denoted by G
φ,φ̃∼ G̃.

The following result is a direct consequence of the definition of G̃, (4.19)–(4.22).

Proposition 4.3. If G
φ,φ̃∼ G̃ then

φGe = φ̃G̃e,

where φ = (φ, 1 − φ) and φ̃ = (φ̃, 1 − φ̃).

The proof follows straightforwardly from the definition of G̃, (4.19)–(4.22).
The next result, whose proof can be found in Appendix E, is crucial for proving the

nonidentifiability of the MAP2.

Proposition 4.4. If G
φ,φ̃∼ G̃ and H

φ,φ̃∼ H̃ , then

GH
φ,φ̃∼ G̃H̃ .

Finally, we can prove the general theorem.

Theorem 4.2. The MAP2 is not an identifiable process.

Proof. The proof is based on the fact that, given a MAP2, M, as in (3.1), any other MAP2,
M̃, chosen from the set F (see Theorem 4.1) satisfies equality (4.2) for all n.

If M̃ is selected from F then, from Corollary 4.1,

�(s1)
φ,φ̃∼ �̃(s1) and �(s1)�(s2)

φ,φ̃∼ �̃(s1)�̃(s2) for all s1, s2.

We conclude from Proposition 4.4 that

�(s1)�(s2)�(s3)
φ,φ̃∼ �̃(s1)�̃(s2)�̃(s3) for all s1, s2, s3,

and, finally,
n∏

i=1

�(si)
φ,φ̃∼

n∏
i=1

�̃(si),

which, by Proposition 4.3, is equivalent to (4.2) for all n ≥ 1.

To illustrate Theorem 4.2, we provide an example showing two MAP2s that verify (4.2) for
all n ≥ 1.
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Example 4.1. Consider the MAP2 defined by

D0 =
(−10 2.5

0.6 −3

)
, D1 =

(
4 3.5

1.35 1.05

)
,

or, alternatively,

P0 =
(

0 0.25
0.2 0

)
, P1 =

(
0.4 0.35
0.45 0.35

)
,

with exponential rates (λ1, λ2) = (10, 3) and stationary probability distribution

φ = (0.5474, 0.4526).

It can be seen that ε, defined in (4.8), has to be chosen from

0 < ε < min{10, 3.5, 0.4961, 7.2081, 0.4667, 0.5120}.
Let ε = 0.3. Then, according to the equations given in Theorem 4.1,

D̃0 =
(−9.7 3.9

0.9 −3.3

)
, D̃1 =

(
4.675 1.1250
2.025 0.375

)
,

or

P̃0 =
(

0 0.4020
0.2727 0

)
, P̃1 =

(
0.4820 0.1160
0.6137 0.1136

)
,

with exponential rates (λ̃1, λ̃2) = (9.7, 3.3) and stationary distribution φ̃ = (0.8217, 0.1783).
Because of the proof of Theorem 4.2, (4.2) holds for all s and n, that is, both MAP2s will
possess the same joint interarrival time distribution.

Example 4.2. We consider in this example a MAP2 such that x = u, defined by

D0 =
(−3 0.9

0.6 −3

)
, D1 =

(
0.9 1.2
1.5 0.9

)
,

or, alternatively,

P0 =
(

0 0.3
0.2 0

)
, P1 =

(
0.3 0.4
0.5 0.3

)
,

with exponential rates (λ1, λ2) = (3, 3) and stationary probability distribution

φ = (0.5333, 0.4667).

In this case ε, defined in (4.9), has to be chosen from

0 < ε < min{3, 0.5250, 0.7348, 0.36, 0.5367}.
Set, for example, ε = 0.15. Then, according to the equations given in Theorem 4.1,

D̃0 =
(−2.85 0.69

0.75 −3.15

)
, D̃1 =

(
1.275 0.885
1.875 0.5250

)
,

or

P̃0 =
(

0 0.2421
0.2381 0

)
, P̃1 =

(
0.4474 0.3105
0.5952 0.1667

)
,

with exponential rates (λ̃1, λ̃2) = (3.15, 2.85) and stationary distribution

φ̃ = (0.6667, 0.3333),

is equivalent to {D0, D1}.
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Some remarks need to be made here. First, let us point out that, as has been described in
the proof of Theorem 4.2, given a fixed MAP2, M, any other MAP2, M̃, chosen from the set
F will verify (4.2) for all s and n, and, thus, both MAP2s will have the same joint interarrival
time distribution.

Our second remark is connected with the MMPP. Its definition implies that w ≡ −x − y

and v ≡ 0. As Rydén [23] showed, the MMPP is an identifiable process up to permutations of
the states, or, equivalently, for the two-states case, if the set {x, y, z, u, w = −x − y, v = 0}
defines an MMPP2 then the only MMPP2 with the same likelihood will be given by

{x̃ = u, ỹ = z, z̃ = y, ũ = x, w̃ = −z − u, ṽ = 0}. (4.23)

It can be verified that, when ṽ = v = 0, w̃ = −x̃ − ỹ, and w = −x − y, Proposition 4.2
provides just two solutions, the original MMPP2 and its permuted version, given by (4.23).
Thus, our results are equivalent to Rydén’s.

From the nonidentifiability of the MAP2 and the identifiability of the MMPP2, one could
wonder if, given a MAP2, there exists an equivalent MMPP2. This has been tested from the
equations given in Proposition 4.2, and the answer is that this is not true, in general. The
following example illustrates this fact.

Example 4.3. Let us consider the same MAP2 defined in Example 1:

D0 =
(−10 2.5

0.6 −3

)
, D1 =

(
4 3.5

1.35 1.05

)
.

Then, according to the solutions given in Proposition 4.2 (having previously fixed w = −x −y

and v = 0), the only equivalent MMPP2 is given by

D̃0 =
(−7.4231 2.2712

5.6788 −5.5769

)
, D̃1 =

(
5.1519 0

0 −0.1019

)
,

which, since d221 < 0, does not define a real MMPP2. Thus, in this case, there does not exist
an MMPP2 equivalent to the given MAP2. However, there do exist MAP2s that can be reduced
to MMPP2s. For example,

D0 =
(−20 8

3.5 −5

)
, D1 =

(
11.5 0.5
0.5 1

)

define a MAP2 that is equivalent to the MMPP2 defined by

D̃0 =
(−19.4211 7.8973

4.6027 −5.5789

)
, D̃1 =

(
11.5238 0

0 0.9762

)
.

Finally, we discuss the case of phase-type (PH) renewal processes, a special type of MAP. It is
known (see, for example, [15]) that a PH renewal process with representation (η, T ) is a MAP,
where D0 = T and D1 = −T eη. If we focus on two-state MAPs, defined by (3.1), this implies
that

η = − w

x + y
= − v

u + z
, (4.24)

where η = (η, 1 − η), and, thus, for a PH renewal process,

v = w(z + u)

x + y
. (4.25)
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Example 4.4. As an example, consider the PH process given by

T =
(−10 2.5

0.6 −3

)
, η = (0.4, 0.6). (4.26)

Then, the process defined by (4.26) can be also expressed as a MAP2 as

D0 =
(−10 2.5

0.6 −3

)
, D1 =

(
3 4.5

0.96 1.44

)
,

where it can be easily seen that (4.25) holds. Conversely, given the MAP2

D0 =
( −5 1.4

0.25 −0.5

)
, D1 =

(
2.52 1.08
0.175 0.075

)
, (4.27)

it can be checked that (4.25) holds, and, therefore, (4.27) admits a PH representation (η, T ),
where T = D0 and η is computed from (4.24) as η = (0.7, 0.3).

In this setting, given a fixed two-state PH renewal process, it is of interest to know the
set of equivalent MAP2s, which implies deriving expressions (4.4)–(4.7), assuming that v =
w(z + u)/(x + y). It follows immediately that if v = w(z + u)/(x + y) then

{ũ, z̃, x̃(ũ, z̃), ỹ(ũ, z̃), ṽ(ũ, z̃), w̃(ũ, z̃)},

computed according to Proposition 4.2, also verifies that ṽ = w̃(z̃+ũ)/(x̃+ỹ). This implies that
the MAP2s equivalent to a given two-state PH renewal process are also PH renewal processes.
Another interesting fact with regards to two-state PH renewal processes is that, since v =
w(z + u)/(x + y), it can be verified that ε3 = ε5 = ε6 (see Theorem 4.1). In the following
example, some MAP2s, equivalent to a given two-state PH distribution, are computed.

Example 4.5. Consider the two-state PH renewal process defined by (4.27). Then, in order to
find the equivalent MAP2s, the value of ε in Theorem 4.1 has to be chosen from

0 < ε < {5, 2.25, 0.1071, 4.5765, 0.1071, 0.1071}.

Note that, indeed, ε3 = ε5 = ε6. Let ε = 0.05. Then, an equivalent MAP2 is obtained as

D̃0 =
(−4.95 1.9083

0.3 −0.55

)
, D̃1 =

(
2.555 0.4867
0.21 0.04

)
,

where it can be easily seen that (4.25) holds, and, thus, the generated equivalent MAP2 is a PH
renewal process given by (η̃, T̃ ), where T̃ = D̃0 and η̃ = (0.84, 0.16). If instead ε = 0.09 is
chosen, the obtained equivalent MAP2 is

D̃0 =
(−4.9 2.2571

0.35 −0.6

)
, D̃1 =

(
2.59 0.0529

0.245 0.05

)
,

with PH representation (η̃, T̃ ), where T̃ = D̃0 and η̃ = (0.98, 0.02).
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5. Conclusions and extensions

In spite of the good properties that the MAPs present, which make them very suitable pro-
cesses for modeling nonexponential events, there exist few works dealing with the identifiability
of the MAP, which is of crucial importance when inference for the process is considered.

In this work we have provided a procedure that shows, for any fixed MAP2, how to build
another, equivalent MAP2. We have also shown that if two MAP2s have equal Laplace–
Stieltjes transform (LST) for one and two data, then their LST will be equal for any set of
points (s1, . . . , sn). Calculations have been carried out using MATLAB®, and all code utilized
in the examples is available from the authors on request.

A number of extensions are possible. Firstly, we could consider the batch MAP2, where
batch arrivals are permitted. Furthermore, we could extend this analysis to MAPs or BMAPs
with more than two states. Finally, it is of practical interest to consider what happens when
there is missing data, that is, when a full sequence of interarrival times is not considered. Work
on these problems is underway.

Appendix A. Proof of (2.3)

As φ is the unique solution to φP � = φ, we need to show that

(πD1e)
−1πD1P

� = (πD1e)
−1πD1.

Define � = diag{λ1, . . . , λm}, that is, a diagonal m × m matrix with diagonal equal to
(λ1, . . . , λm). Then D1 = �P1 and D0 = �(P0−I ). From (2.2), P � = (−�−1D0)

−1�−1D1,
and, thus,

(πD1e)
−1πD1P

� = (πD1e)
−1πD1(−�−1D0)

−1�−1D1

= −(πD1e)
−1πD1D

−1
0 D1

= −(πD1e)
−1π(D − D0)D

−1
0 D1

= −(πD1e)
−1(πD − πD0)D

−1
0 D1

= (πD1e)
−1πD1.

Appendix B. Proof of Theorem 3.1

Firstly, we provide some lemmas that will be necessary for the proof.

Lemma B.1. Let Tn and T̃n denote the times between the (n − 1)th and nth arrival in two
MAP2s, M and M̃. Then,

Tn
d= T̃n for all n ≥ 1

if and only if

θ(P �)(n−1)(sI − D0)
−1D1e = θ̃(P̃ �)(n−1)(sI − D̃0)

−1D̃1e (B.1)

for all n ≥ 1 and all s.

Proof. The variables Tn and T̃n are equally distributed if and only if their Laplace transforms
are the same. These are given by (B.1), where θ(P �)(n−1) and θ̃(P̃ �)(n−1) represent the ‘initial’
probabilities after n − 1 arrivals.

A similar result to Lemma B.1, which provides a different characterization of condition (C1)
in Theorem 3.1, is shown next.
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Lemma B.2. Let T and T̃ denote the interarrival times of two stationary MAP2s, M and M̃,
with stationary probabilities φ and φ̃. Then,

T
d= T̃

if and only if
φ(sI − D0)

−1D1e = φ̃(sI − D̃0)
−1D̃1e. (B.2)

Proof. We proceed as in the proof of Lemma B.1, but taking into account the fact that

lim
n→∞(P �)n = �, lim

n→∞(P̃ �)n = �̃,

or, equivalently, limn→∞ θ(P �)n = φ and limn→∞ θ̃(P̃ �)n = φ̃.

Lemma B.3. Let M and M̃ denote two MAP2s, and let ρ = (ρ, 1 −ρ), ρ̃ = (ρ̃, 1 − ρ̃) be any
probability vectors. If

ρ(sI − D0)
−1D1e = ρ̃(sI − D̃0)

−1D̃1e

then
cρ + c̃ρ̃ + d = 0, (B.3)

where c and c̃ are defined as in (3.4), and d = z̃ + ũ − z − u.

Proof. Substituting D0, D1, D̃0, and D̃1 expressed as in (3.1), it can be seen that

ρ(sI − D0)
−1D1e = αs + γ

s2 + βs + γ
,

where the coefficients α, β, and γ are

α = ρ(z + u − x − y) − (z + u), β = −x − u, γ = xu − yz.

Similarly,

ρ̃(sI − D0)
−1D1e = α̃s + γ̃

s2 + β̃s + γ̃
,

where

α̃ = ρ̃(z̃ + ũ − x̃ − ỹ) − (z̃ + ũ), β̃ = −x̃ − ũ, γ̃ = x̃ũ − ỹz̃.

Next, if
αs + γ

s2 + βs + γ
= α̃s + γ̃

s2 + β̃s + γ̃
(B.4)

then it can easily be seen that
α = α̃,

which is equivalent, given the definitions of α and α̃, to

cρ + c̃ρ̃ + d = 0

with c and c̃ as in (3.4), and d = z̃ + ũ − z − u.
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Lemma B.4. Let P � be the transition probability matrix in a MAP2 with vector of stationary
probabilities φ. If all the rows of P � are equal then P � = , the matrix with all rows equal
to φ.

Proof. The proof is straightforward once the equation φP � = φ is solved, where it is
assumed that all the rows of P � are equal.

Finally, if P � is a transition matrix with vector of stationary probabilities φ, where

P � =
(

p�
11 p�

12
p�

21 p�
22

)
,

and φ = (φ, 1 − φ), then it is straightforward to check that

φ = p�
21

1 − p�
11 + p�

21
. (B.5)

Proof of Theorem 3.1. Conditions (C1) and (C2) imply weak convergence. Let us first
assume that both (C1) and (C2) hold. We want to prove equivalence given by (B.1) for all
s and n ≥ 1. By Lemma B.2, condition (C1) is equivalent to (B.2). But, since (θ , θ̃) = (φ, φ̃),
θP � = φP � = φ, and θ̃ P̃ � = φ̃P̃ � = φ̃, then (B.2) becomes (B.1) and, thus, weak equivalence
is obtained.

Weak convergence implies conditions (C1) and (C2). If two given MAP2s are weakly
equivalent, (B.1) holds for all s and n ≥ 1. If n → ∞ then, from Lemma B.2, (B.2) holds,
and, thus, (C1) holds too. Let us deduce (C2) from weak equivalence; since (B.2) holds, then
the pair (φ, φ̃) verifies (B.3) (where ρ = φ and ρ̃ = φ̃), that is,

cφ + c̃φ̃ + d = 0.

Because of weak equivalence, (B.1) holds for n = 1, and, thus, the pair (θ , θ̃) also satisfies
(B.3), i.e.

cθ + c̃θ̃ + d = 0.

Both equations imply that
cφ + c̃φ̃ = cθ + c̃θ̃ ,

or, equivalently, using (B.5),

c
p�

21

1 − p�
11 + p�

21
+ c̃

p̃�
21

1 − p̃�
11 + p̃�

21
= cθ + c̃θ̃ .

Again, because of weak equivalence, and taking n = 2 in condition (B.1), then

c
p�

21

1 − p�
11 + p�

21
+ c̃

p̃�
21

1 − p̃�
11 + p̃�

21
= cθ(1) + c̃θ̃ (1),

where
θ (1) = θP � = (θ(1), 1 − θ(1)), θ̃ (1) = θ̃ P̃ � = (θ̃ (1), 1 − θ̃ (1)).

It can be checked that

θ(1) = θ(p�
11 − p�

21) + p�
21, θ̃ (1) = θ̃ (p̃�

11 − p̃�
21) + p̃�

21,
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and, thus, we need to solve for (θ, θ̃) in the following system of linear equations:

cθ + c̃θ̃ = c
p�

21

1 − p�
11 + p�

21
+ c̃

p̃�
21

1 − p̃�
11 + p̃�

21
,

c(p�
11 − p�

21)θ + c̃(p̃�
11 − p̃�

21)θ̃ = c

(
p�

21

1 − p�
11 + p�

21
− p�

21

)
+ c̃

(
p̃�

21

1 − p̃�
11 + p̃�

21
− p̃�

21

)
,

whose coefficient matrix is

C =
(

c c̃

c(p�
11 − p�

21) c̃(p̃�
11 − p̃�

21)

)
.

It can be easily seen that θ = φ, and θ̃ = φ̃ solves the system. We need to determine the
uniqueness of this solution. This comes from (A1), (A2), and Lemma B.4; since P � �= � or
P̃ � �= �̃, then, by Lemma B.4, either the rows of P � or that of P̃ � are not equal. This implies
that p�

11 − p�
21 �= 0 or p̃�

11 − p̃�
21 �= 0. In addition, since c, c̃ �= 0, the rank of C is 2, and the

solution is unique: θ = φ and θ̃ = φ̃.

Appendix C. Proof of Proposition 4.1

Let us first consider the case when n = 1. It is known from the proof of Lemma B.2
that the equality of Laplace transforms f ∗

T ;D0,D1
(s) = f ∗

T̃ ;D̃0,D̃1
(s) in the stationary version is

equivalent to (B.4), where ρ = φ and ρ̃ = φ̃. If α̃ = α, β̃ = β, and γ̃ = γ , or, equivalently,

φ̃(z̃ + ũ − x̃ − ỹ) − (z̃ + ũ) = α, (C.1)

−x̃ − ũ = β, (C.2)

x̃ũ − ỹz̃ = γ, (C.3)

then (B.4) holds, and, thus, M and M̃ are weakly equivalent.
In the two data case, it can be shown that

f ∗
T ;D0,D1

(s1, s2) = δ1s1s2 + δ2s2 + αγ s1 + γ 2

s2
1s2

2 + γ s2
1 + γ s2

2 + βs2
1s2 + βs1s

2
2 + β2s1s2 + βγ s2 + γ 2

,

where

δ1 = φ((z + u − x − y)(w − v) + (x + y)(z + u) − (z + u)2) + (z + u − x − y)v

+ (z + u)2,

δ2 = φ(x + y − z − u)(uw − yv − xv + zw) + (x + y − z − u)(xv − zw) − (u + z)γ.

If (C.1)–(C.3) are satisfied, and, in addition,

φ̃((z̃ + ũ − x̃ − ỹ)(w̃ − ṽ) + (x̃ + ỹ)(z̃ + ũ) − (z̃ + ũ)2) + (z̃ + ũ − x̃ − ỹ)ṽ + (z̃ + ũ)2

= δ1, (C.4)

φ̃(x̃ + ỹ − z̃ − ũ)(ũw̃ − ỹṽ − x̃ṽ + z̃w̃) + (x̃ + ỹ − z̃ − ũ)(x̃ṽ − z̃w̃) − (ũ + z̃)γ̃

= δ2, (C.5)

then (4.2) holds for n = 1 and n = 2.
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Appendix D. Proof of Theorem 4.1

The set F is contained in the set of solutions given by Proposition 4.2. To prove that the set
F provides feasible solutions (real MAP2s), let us first assume that x < u. Let ε be defined as
in (4.8), that is,

0 < ε < min{ε1, ε2, ε3, ε4, ε5, ε6}.
We begin by proving that min{ε1, ε2, ε3, ε4, ε5, ε6} > 0. It is easily checked that

min{ε1, ε2, ε3, ε4} > 0.

In addition, ε5 = −(z/v)(z + u + v) > 0, since z, v > 0 and −z − u − v > 0. Finally, ε6 > 0
since −z/2v < 0 and −w − y − x > 0, and, therefore,

(u + v + z + w)2 < (u + v + z + w)2 + 4v(−w − y − x).

Then,
ũ = u − ε < 0 and z̃ = z + ε > 0.

Moreover, since ε < ε2 = (u − x)/2, this assures that x̃ < ũ, and, thus, the parameterization
of M̃ is different from that of M with permuted states. Next,

(u − x) − √
(x − u)2 + 4zy

2
< 0 < ε <

(u − x) + √
(x − u)2 + 4zy

2

implies that

ỹ(ũ, z̃) ≡ −(ε2 + (x − u)ε − zy)

z + ε
> 0.

In addition,

w̃(ũ, z̃) ≡ wz + vε

z
> 0, ṽ ≡ v(z + ε)

z
> 0,

and, since ε < z(1 − φ)/φ,

φ̃ ≡ (z + ε)φ

z
∈ [0, 1].

It remains to prove that −z̃ − ũ − ṽ > 0 and −x̃ − ỹ − w̃ > 0. It is easy to check that

−z̃ − ũ − ṽ = −z − u − v(z + ε)

z
,

which is positive if and only if ε < ε5 = −(z/v)(z + u + v). Finally, an easy computation
shows that −x̃ − ỹ − w̃ > 0 is equivalent to

−ε − x >
−(ε2 + (x − u)ε − zy)

z + ε
+ wz + vε

z
,

which holds if and only if ε ∈ (r1, r2), where

r1 = − z

2v
[(u + v + z + w) +

√
(u + v + z + w)2 + 4v(−w − y − x)] < 0,

r2 = − z

2v
[(u + v + z + w) −

√
(u + v + z + w)2 + 4v(−w − y − x)] = ε6 > 0.

https://doi.org/10.1239/jap/1285335400 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335400


648 P. RAMÍREZ-COBO ET AL.

Now, let us assume that x = u. Then, let ε be defined as in (4.9), where in this case, ε3 ≡ √
zy.

Then,
ũ = u − ε < 0,

z̃ = z + ε > 0,

x̃ = x + ε < 0 (since ε < −x),

ỹ = zy − ε2

z + ε
> 0 (since ε <

√
zy),

w̃ = wz + vε

v
> 0,

ṽ = v(z + ε)

z
> 0,

and φ̃ ∈ [0, 1], −z̃ − ũ − ṽ > 0, and −x̃ − ỹ − w̃ > 0 follow from the assumptions ε < ε4,
ε < ε5, and ε < ε6, respectively.

Appendix E. Proof of Proposition 4.4

Let us assume that

G =
(

a b

c d

)
, H =

(
α β

γ δ

)
, and GH =

(
A B

C D

)
.

Now it is straightforward to verify that if G̃ and H̃ are defined by (4.19)–(4.22) (with respect
to the elements of G and H , respectively), then

G̃H̃ =

⎛
⎜⎜⎜⎝

φ(A − C) + φ̃C

φ

φφ̃(D + 2C − A) + φ2(A − D + B − C) − φ̃2C

φφ̃

φ̃C

φ

φ(C + D) − φ̃C

φ

⎞
⎟⎟⎟⎠ .
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