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On the classification of

just-non-Cross varieties

of groups

J. M. Brady

Apart from some (insoluble) subvarieties of JC5 , the jnC

(just-non-Cross) varieties known so far comprise the following

list: |L , A A , A T , A A A , where p, q and r are

any three distinct primes. In a recent paper I gave a partial

confirmation of the conjecture that the soluble jnC varieties

all appear in this list. Here I show that a jnC variety is

reducible if and only if it is soluble of finite exponent; this

reduces the problem of classifying jnC varieties to finding

the irreducibles of finite exponent. I observe that these fall

into three distinct classes, and show that the questions of

whether or not two of these classes are empty have some bearing

on some apparently difficult problems of group theory.

1. Introduction

It is convenient for our purposes to call a variety (of groups) Cross

if it can be generated by a single finite group; we shall not need the

celebrated Theorem of Shei la Oates and M.B. PowelI [7Z] that this

definition is equivalent to the usual one. L.G. Kovacs and M.F. Newman

[70, Theorem 1] have pointed out that a variety is non-Cross if and only
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if it contains a non-Cross variety whose proper subvarieties are all

Cross: a so-called just-non-Cross variety. From now on, we abbreviate

"just-non-Cross" to "jnC" , for as our title indicates, this paper is a

contribution to the problem of classifying all jnC varieties.

In [9], Kovacs and Newman point out that the only JnC variety of

infinite exponent is the variety A. of all abelian groups (it is of

course also the only abelian JnC variety), and they show that the

decomposable (that is, nontrivially factorisable) jnC varieties are

precisely the A A , A T and A A A , where p, q and r are any

three distinct primes. In a recent paper [2], I have reduced their

conjecture [9, p. 222] that every soluble JnC variety of finite exponent

is decomposable by showing that if there exists a soluble jnC variety Y

of finite exponent which is not decomposable, then one can find (distinct)

primes p and q and an integer n (all three depending on X.) , such

that V is a subvariety of iL,(X A 2, n) > where X A £ n is nilpotent
^ q q

of class at least three. The main result of the present paper stems from

the observation that a crucial property of soluble jnC varieties of

finite exponent is that they are all reducible; that is, each is

contained in a product of proper subvarieties.

THEOREM 1.1. A jnC variety is reducible if and only if it is

soluble of finite exponent.

Thus, apart from my inability to decide Conjecture 1.3 of [2],

Theorem 1.2 of [2] and Theorem 1.1 reduce the classification problem to

finding the irreducible jnC varieties. In this direction, I merely

state the following result, as a proof of it may be obtained by routinely

amending the proof of (3) of L.G. Kovacs [7, p. 13].

THEOREM 1.2. A jnC variety is irreducible if and only if either

(a) it is not locally finite, or

(b) it is locally finite and locally nilpotent but insoluble, or

(c) it is locally finite and contains infinitely many (isomorphism

classes of) finite simple groups.

The recently announced insolubility of K5 [J] implies the

existence of irreducible jnC varieties of type (b); but I have so far
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made little progress towards their classification. The existence of

irreducible jnC varieties of type (a) would simultaneously falsify the

conjectures that there are only a finite number of finite simple groups of

given exponent, and that there is a bound to the number of elements

necessary to generate a finite simple group. The existence of a non

locally finite jnC variety V. of finite exponent n would have one of

two interesting consequences. If V̂  were generated by its finite groups,

then the restricted Burnside conjecture for exponent n would be false;

in the other case, ^ would have only finitely many subvarieties,

contrary to the conjecture that a variety has this property if and only if

it is Cross.

2. Some technical lemmas

Throughout this paper, "group" means "finite group", except in

certain places, when its meaning will always be clear from the context.

We shall follow as far as possible the notation of Hanna Neumann's book

[77]; however, if G is a group and if K 2 H £ G , we shall prefer to

call the quotient H/K a section of G . The socle M{G) of a group G

is the product of the minimal normal subgroups of G , and a group is

called monolithic if it has only one minimal normal subgroup. The letters

p and q will always denote prime numbers. Recall that a subgroup T

of a group B is intravariant in B if the image of T under every

automorphism of B is conjugate to T in B .

LEMMA 2.1. A nonabelian simple group has a non-nilpotent

intravariant proper subgroup.

Proof. Let 5 be a nonabelian simple group, and let q be any odd

prime dividing \B\ . Sylow's Theorems assert that a Sylow cj-subgroup Q

of B is intravariant in B . Then CB(Z(Q)} and N (J(Q)) are

intravariant (necessarily proper) subgroups of B , where J(Q) denotes

the Thompson subgroup of Q (see [6, IV, 6.1]). By a theorem of J.G.

Thompson [6, IV, 6.2], at least one of CB{z{Q)) and NB(j{Q)) is not

even q'-nilpotent. //

LEMMA 2.2. Let B be a p'-subgroup of a group G , and let T be

an intravariant subgroup of B . If P is a p-subgroup of NG{B) , then
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P also normalises some B-conjugate of T .

Proof. Let the distinct B-conjugates of T be T = T , . . . , T .

Since n = \B : NAT) \ , p does not divide n . Now P normalises B ,

and T is intravariant in B , and so P permutes (by conjugation)

{T , . . . , T } . Since the orbits of P have cardinality a power of p ,

there is a fixed point, say T. , in {T , . . . , T } ; that i s ,
1r X Yl

P 5 ffc(2\) . //

The proof of Theorem 1.1 essentially depends upon a close analysis of

the following situation. Let G be a group, and let N be a minimal

normal subgroup of G . Conjugation by elements of G induces

automorphisms of N ; in this way G is represented as a subgroup of

AutN with kernel CAN) . If J is abelian, say of exponent p , we can

think of it as a vector space over the field F(p) of p elements; thus

the representation of G is a group representation in the sense of Curtis

and Reiner [4]. If, on the other hand, N is nonabelian, there is a

nonabelian simple group, say B , such that N is isomorphic to a direct

power of B . We shall show as Corollary 2.U that in this case we are led

to consider permutation representations of G .

LEMMA 2.3. Let B be a group with trivial centre, and let K be a

normal subgroup of the direct product B * .. . * B , where each B. is

isomorphic to B . Then K n B- is nontrivial if and only if the image

of K under its projection into B. is nontrivial. In particular, if B

is a nonabelian simple group, K is the direct product of some subset of

Proof. Denote the projection of K into B. by TT . . If KIT. is

nontrivial, there is an element, say k , in K with ku. ? e . Since

Z(B.) is trivial, there is an element, say b. , of B. which fails to

commute with &TT. . Then \k, b •"] is a nonidentity element of

K n B. . II
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COROLLARY 2.4. Let the simple direat factors of the nondbelian

minimal normal subgroup N of G be B., . .. , B . Then if g i G ,

and 1 S £ 5 n , B? € {B , ..., B } . Thus G is represented by

conjugation as a transitive permutation group on {B , ..., B } . //

As fax as permutation representations by conjugation are concerned,

ve shall need a corollary to the following theorem.

THEOREM 2.5. Let G be a group, and suppose that the subgroup M

of G is the direct product of its subgroups B , ..., B , . Let P be
l ~c

P
a p-subgroup of G , and suppose that conjugation by elements of P
transitively permutes •iB., — , B , i . If P n Bj is nontrivial, P

1 P '
has class at least t + 1 .

Proof. The claim is t r i v i a l for t = 0 , so suppose t > 0 . Put

X, . . . , B V , and denote rKtfpfB^) : 1 < i < pt\ by N and
p ' >• '

*p(Sl) t y Po ' T h e n F^N a c t s ^ty conJuS^1011) as a transitive

permutation group on ft , the stabiliser of the "point" Bl being PQ/N •

By [J4, 3-2], \P : P \ = p , and so we can choose subgroups P., ..., P.

of P such that .

PQ <» P1 <J ... « P = P .

Since \P. : P | = pv , an orbit of P. has cardinality pv . If S is

a subset of P , y £ j is the direct product of the elements of

•JB"j : g € 5> , and so we may assume that the points of ft have been

numbered so that

Pi/N

0 5 t < t , Let x. be an element of P. - P. , 0 < i < t . Observe
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. v P./N P.x. N/N
that since P^.+1 = UV., ̂ + 1 ) , B^ n B ^ t is empty. Let a;

o

be an element of Sj , e # x . We shall prove by induction on i that

. P./N,
(for 0 5 i 5 t) e ? [xQ, x , ... , x.] 6 \B^ \ . In case i = 0 , this

claim reduces to e * x € S . Suppose that i < i , and that

i l / • S i n c e Yv xi+i) = pi+i » J t f o l l o w s

P. , /

x. . P.x. N/N, P./N P.x. N/N
and e ^ L?Y)» • • • , x.J € \B ) . Since B. n B is

empty, the claim is established. In particular, if P n Si is nontrivial,

we can choose xQ € P . Since [x , . . . , x,] t e , i t follows that P has

class at least t + 1 . / /

COROLLARY 2.6. Let the minimal normal subgroup M of G be

isomorphic to a direct product of p copies of a nonabelian simple group.

If P is a Sulow p-subgroup of G , and M n P is nontrivial, then P

has class at least t + 1 .

Proof. By Corollary 2.k and Theorem 2.5. / /

We shal l need a lemma and two theorems about group representations.

THEOREM 2.7. Let B be a nonabelian group, E a field, and V a

faithful EB-module. In case E has (nonzero) characteristic p , suppose

that B' is not a p-group. Then there is an abelian-by-cyclic subgroup

S of B such that V~ has an irreducible submodule of dimension at

least tuio.

Proof. Suppose E has characteristic p , and choose any prime q

unequal to p which divides \B\ . (Thus if p is zero, q may be any

prime dividing | fl | .) Let Q be any abelian ^-subgroup of B , and let

g € NB{Q) . Denote (Q, g)' by R ; then R < Q , and so by Maschke's
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Theorem. V is completely reducible; say
n

is a decomposition of V into irreducible submodules. Let Wi be the
ri

sum of those V. that axe trivial, and W2 the sum of those that are
Is

not. Observe that both Vj and Wi admit (Q, g) , and hence that

If W2 is nonzero for some choice of Q and g , let U be any

irreducible E(<2, g) -submodule of it. Now no nonzero element of U is

fixed by the whole of R , and so R is nontrivial and the kernel N of

U avoids R . It follows that (Q, g)/N is nonabelian and is faithfully

and irreducibly represented on U ; thus U has E-dimension at least

two. In this case, therefore, we can choose 5 equal to (Q, g) .

Suppose on the other hand, that for all possible choices of Q and

g , W2 i s zero. Since V is faithful, it follows that R is always

trivial, and hence that NAQ) = CD(S) for all abelian q-subgroups Q
D D

of G . But in any q-group, the subgroups maximal with respect to being

abelian and normal are self-centralising [6, III, 7.3]. Since we could

have chosen g to be a tj'-element, we must conclude that every

(^-subgroup of B is abelian. By a theorem of Burnside [6, IV, 2.6], B

is q-nilpotent for all q unequal to p . If p is zero, it follows

that B is nilpotent, and hence abelian, a contradiction. If p is not

zero, then since the normal q-complement B(q) of B is complemented in

B by an abelian Sylow ^-subgroup of B , B(q) > B' . It follows that

B' £ D{B(q) : q + p} , and hence that B' is a p-group. Again we have a

contradiction, and the Theorem is proved. //

In Section 4 we shall need to use a rather detailed version of

Clifford's Theorem [6, V, 17.3], and so we shall find it useful to have

available the following abbreviation: if G is a group, N is a normal

subgroup of G , and V is an irreducible EC-module, for some field E ,

we shall say

k I
VN ~ .® Vi > V i ~ ® Vi' is a cUff°rd decomposition of V^
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to indicate that V , . . . , V, are the homogeneous components of V , and

that

I
v- = © v..

is a direct decomposition of V. into (isomorphic) irreducible submodules.

LEMMA 2.8. Let G be a group, E a field, and V an irreducible

EG-module. Let N be a normal subgroup of G , and suppose that V^ has

k homogeneous components. If Q is a Sylow q-subgroup of G , and U

is an irreducible submodule of V»Q J then the number of homogeneous

components of !]„ is at least the q-share of k . In particular, the

^.-dimension of U is at least the q-share of k .

Proof. Suppose that V , ..., V, are the homogeneous components of

V., . Let H. be the ine r t i a group of V. , 1 5 i £ k , and denote

k
D H. by H . By Clifford 's Theorem, G/H acts as a t rans i t ive

i=X %

permutation group on {V. , . . . . V-,} , the stabiliser of V. being H./H .
- L / C tr X>

Since N < NQ , i t follows from Clifford's Theorem that UN is completely

reducible, and that

UN= (U
N

 n \ ) ® ••• ® (UN n Vk)

is the decomposition of Uj, into its homogeneous components (although we

allow for the possibility that some of the [u^ n V^) will be zero). We

may suppose without loss of generality that the V. have been numbered so

that (£/„ n V.) is not zero; then since U is irreducible it is spanned

by (pN n V.)Q . Hence the number of homogeneous components of £/„ is

the cardinality of the orbit of QH/H containing 7j , and this is at

least the <j-share of k 114, 3.1*]. //

The "outer tensor product theorem" (16, V, 10.3] or better still [3,

1.3.15]) is usually stated for direct products. The statement of it which
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we give here without proof incorporates the observation that i t remains

true when "direct" is replaced by "central".

THEOREM 2.9. Let G be a finite group given as a central product

of its subgroups G. , . . . , G ; let H. be a subgroup of G.

(i = 1 n) , and H the (central) product of H , . . . , H in G .

Let E be a field and U an irreducible EG-module. If, for each i ,

W. is an absolutely irreducible submodule of £/„ , then £/ has an
%

(absolutely) irreducible submodule W- isomorphic to W # . .. # W . //

We conclude this section by recalling Kovacs and Newman's version of

the Oates-Powell Theorem, as it is the more convenient for our purposes.

For positive integers e, m and c , denote by ^(e, m, c) the class of

all (not necessarily finite) groups of exponent dividing e whose

chief-sections have order (at most) m , and whose nilpotent sections have

class (at most) c . They prove [$]:

THEOREM 2.10. For all positive integers e, m and a , £(e, m, c)

is a Cross variety. Furthermore, a variety V. is Cross if and only if

there exist positive integers e, m and c such that V. is a subclass

of C{e, m, c) . //

3. Various varietal results

In this section we deduce a number of facts about varieties which

will later be used in the proof of Theorem 1.1. The most substantial of

these, Theorem 3.1, arose from attempts to generalise Lemma 5 of [73]. I

am indebted to Dr L.G. Kovacs for suggesting it to me. The statement of

Theorem 3.1 which we give here serves also to introduce some notation.

THEOREM 3.1. Let V_ be a variety of finite exponent n in which

the nilpotent groups have class at most c , and let B be a nonabelian

simple group. Suppose that V_ contains an infinite set Y of

pairwise nonisomorphic monolithic groups, such that the monolith M(G) of

each group G in V is isomorphic to a direct power, say B , of

B . (In this way we define a function a from T to the set P of

positive integers.) Then V̂  is non-Cross, and it has a non-Cross
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subvariety to which B does not belong.

The proof of Theorem 3.1 falls naturally into three steps, the first

two of which we isolate as lemmas. First, the claim that V. is non-Cross

is easily established.

LEMMA 3.2. a(F) is an infinite subset of P , and varr is a

non-Cross subvariety of V̂  . In particular, V_ is non-Cross.

Proof. Suppose to the contrary that ot(F) is a finite subset of

P , say a(T) < a for all G £ F . Then {\M(G)\ : G i T] is bounded by

|B|a . Now G/cJM(G)) is isomorphic to a subgroup of AutM(G) , and

CG{M(G)} is trivial for G i V . Hence {|c| : G € F} is bounded by

[\B\ )l , and so F is a finite set. This contradiction establishes the

first claim; all the others follow from it and Theorem 2.10. //

LEMMA 3.3. There is a prime p and an infinite set A of

monolithic groups in ^ , such that

(i) varA is a non-Cross subvariety of V. ;

(ii) the monolith of each group H in A is isomorphic to

B^ , and 0(A) is an infinite subset of P ;

(Hi) if H € A j M{H) is supplemented in H by a Sylou

p-subgroup.

Proof. Let G € T , and suppose that the direct factors of M{G)

are B±, ..., 5 , ^ , . Denote ^(S^) by N£ , and R { ^ : 1 5 i < a(G)}

by if . By Corollary 2.1*, G is represented (by conjugation) as a

transitive permutation group on {B , ..., B /^\J with kernel N ; the

stabiliser of 5. being N./N . Since \G : N.\ = a(G) , 1 5 i 5 a(G) ,

the prime divisors of a(G) all divide n . But n is finite, and, by

Lemma 3.2, a(F) is an infinite subset of P ; hence there is a prime,

say p , such that a (F) is an infinite subset of P , where a (G) is

the p-share of a(G) . If P is a Sylow p-subgroup of G , the orbits

ft (G)
of PN/N have cardinality a power, say p , of p , and
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> a (G) [J4, 3.U]. Denote p^G' by y(G) , and suppose that the

B. have been numbered so that the orbit of PN/N containing Bj is

{B , ..., B, }} . Put (Bj, P> equal to 4 , and choose

A = {A/ZJA) : G € T} .

If X is the normal closure of Bj in A , K = B * ... x B ,ffv .

By Lemma 2.3, # is a minimal normal subgroup of A ; but A need not

be monolithic, as there may be (necessarily central) minimal normal

subgroups of A contained in P . Thus A/Z^(A) is monolithic, and

since Z^(A) avoids K , the monolith of AlZj^A) is isomorphic to K .

An application of Theorem 2.10 completes the proof. //

COROLLARY 3.4. B is a p'-group.

Proof. Since 3(A) is an infinite subset of P , there is a group,

say Ci , in A with &{Gi) > a . Let P\ be a Sylow p-subgroup of

G\ , and suppose Bj is a simple direct factor of M(Gi) . If p divides

\B\ , Pj n B\ is nontrivial, and so by Corollary 2.6, P\ has class

greater than a . //

We are now ready to prove that V. has a non-Cross subvariety to

which B does not belong.

Let G ( A , and let P be a Sylow p-subgroup of G ; by Lemma 3.3

and Corollary 3.1*, G is a split-extension of M(G) by P . Denote the

simple direct factors of U(G) by B^, ..., B /_> (where, as before,

y(G) = p B ( G ) ) , ^(S.) by N. and f1{ff. : 1 < i < Y ( C ) } by ^ . By

Lemmas 2.1 and 2.2, B\ has a non-nilpotent, proper, intravariant

subgroup, say T\ , such that N \T ) contains (and hence equals)

PnJfi . Denote <Tls P> by fl , and the normal closure of Tx in B

by 21 . If 21 n B^ is 2"̂  , 21 = ^ x ... x r . Suppose that ZJ.T)

is y and Zoo(2
1-) is Y. ; then 7 = ^ x ... x y , and since 2\

is non-nilpotent, y. < T. , 1 £ i < y(<?) . Observe that y is normal in

H , being characteristic in T . Denote E/Y by "5 , T/y by T ,
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by F. , PY/X by P and (5 : H i A} by A . Then I is a

split-extension of F by P , and T = T x . . . x y . . Since Z(r.)

is t r i v i a l , and P connects {2". : 1 5 t 5 Y(G)} transitively, Lemma 2.3

implies that a minimal normal subgroup L of H contained in T
of u \

intersects each T. nontrivially. Thus \L\ 2 y{G) = P » and so by

Theorem 2.10, varA is a non-Cross subvariety of V_ .

Observe that varA is a subvariety of (yaxTi) .1^ , where I£ is the

variety of nilpotent groups in V. . Since B is critical [77, 51.31*], it

does not belong to varTi . Hence B does not belong to varA . //

COROLLARY 3.5. Let V be a jnC variety of finite exponent in

which the nilpotent groups form a subvariety, and let B be a nonabelian

simple group. Then V_ contains only finitely many (isomorphism classes

of) monolithic groups whose monoliths have a direct factor isomorphic to

B . //

We conclude this section with two lemmas which describe some

important properties of reducible jnC varieties.

LEMMA 3.6. (i) A reducible jnC variety is locally finite, and

contains only finitely many (isomorphism classes of) finite simple groups.

(ii) A jnC variety is reducible and locally nilpotent if and only

if it is A A for some prime p .

Proof. (i) Suppose that V is a reducible jnC variety, say £

is a subvariety of V_iZ2 » where the V. are proper (and hence Cross)

subvarieties of V_ . Since Cross varieties are locally finite, the first

part of (i) follows from [7 7, 21.lit], A simple group in X belongs

either to V^ or to X2 • B u t simple groups are critical [7 7, 51.3^],

and Cross varieties contain only finitely many (isomorphism classes of)

critical groups.

(ii) If V_ is also locally nilpotent, the Oates-Powell Theorem

shows that both V^ and V^ are nilpotent, and hence that ^ is

soluble. It then follows from [70, Theorem 5] that V is A A for some
— =p=p

prime p . The "if" part of (ii) is trivial. //
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LEMMA 3.7. Let Z be a locally finite jnC variety which contains

only finitely many (isomorphism classes of) simple groups. If V̂  is not

locally nilpotent, there is a prime p and a (countably) infinite set T

of monolithic groups in V , such that

(i) V = varr ;

(ii) the monolith of each group in T is complemented,

self-centralising and has exponent p ;

(Hi) {|W(G)| : G i T} is an infinite set.

In particular, the conclusions follow when ^ is a reducible jnC

variety.

Proof. Since _V is locally finite and not locally nilpotent, there

is a bound on the class of the nilpotent groups in V̂  . Now a locally

finite variety has finite exponent, and is generated by its finite groups

[ H , 15.63], and so by Theorem 2.10, the orders of the chief-sections of

the finite groups in V̂  form an infinite set. Hence there is a countably

infinite set, say A , of finite groups in V. such that the orders of the

chief-sections of the groups in A form an infinite set. Since V_ is

closed under the operation of taking homomorphic images, we may as well

suppose that the orders of the minimal normal subgroups of the groups in

A form an infinite set. From each 5 ^ 4 , select a minimal normal

subgroup N(G) of G , so that {|tf(G)| : G € A} is infinite. Let fi be

a (finite) set containing one copy of each of the simple groups in V_ ;

then each G € A determines uniquely an element B(G) in Q , and a

natural number m(G) , such that N{G) = B(G)m^G' . Since ft is a finite

set, it contains an element, say B , such that

MG) : B{G) = B, G i A} is infinite.

Put Ai = {G : B{G) = B, G € A} ; since £ is JnC , it follows from

Theorem 2.10 that _V = varAi . In case B is nonabelian, put

A2 = <G/C (il/(G)) : G € A A . Observe that every group in A2 is

monolithic with monolith isomorphic to a direct power of B . By our

choice of B , {\M(G)\ : G € A2J is an infinite set, and we have a

contradiction to Corollary 3-5-

https://doi.org/10.1017/S0004972700046001 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046001


306 J.M. Brady

Hence B is abelian, say of order p . Applying [2, 2.2], we

replace each group G in Aj by G* , and put F = {G* : G € Aj} .

Since N(G*) is similar to N(G) , the lemma follows from Theorem 2.10. //

4. The proof of Theorem 1.1

The "if" part of Theorem 1.1 is easy to prove. For if i is a jnC

variety of finite exponent n which is also soluble of length I , then

V is a subvariety of (V A A ) . It follows that V is reducible.

Conversely, let V be a reducible jnC variety. Then by Lemma 3.6,

V, is locally finite, say V̂  has (finite) exponent n . Moreover, by the

same result, V_ contains only finitely many simple groups; let A be a

(finite) set containing one copy of each of them. If .V is locally

nilpotent, then by Lemma 3-6 (ii), V_ is an A A , and so it is soluble

of finite exponent. Suppose, therefore, that V_ is not locally

nilpotent, and consequently that there is a bound, say a , on the class

of nilpotent groups in V_ . Then by Lemma 3-7 (and implicitly Corollary

3.5)5 there is a prime, say p , and an infinite set F of

pairwise-nonisomorphic monolithic groups in ^ such that

(i) V = varr ;

(ii) {\M[E)\ : H 6 T} is an infinite set, and

(iii) the monolith of each group in F is complemented,

self-centralising, and has exponent p .

By [5, 1.2.2], a soluble group in V. has solubility length at most

2 , where n\ denotes the number of primes dividing n . Hence the

no2
soluble groups in ^ form a subvariety, namely ^ A k_ . For a proof

nc2
of Theorem 1.1 by contradiction, we assume that .V A jl is a proper,

and hence Cross, subvariety of .V . Using Theorem 2.10, we may restate

this as follows:

(4.1). The orders of the chief-sections of the soluble groups in V̂

are bounded, say by d .

Now let H i. V , denote M(H) by V , and let G be a complement

for V in E . By [ H , 52.24], and properties (ii) and (iii) of V ,
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{\G\ : E d D is an infinite set. If we think of V as a faithful

irreducible F(p)G-module, we have as a consequence of (U.l):

(4.2). If A S G , and U is an irreducible submodule of Vk , and

A/kerU is soluble, then U has order at most d .

Let 5 be the soluble radical of G , and suppose that

a(H) b{H)

b i=X % * J=l %3

is a Clifford decomposition of V~ ; let K. be the kernel of U. .

LEMMA 4.3. The sets {a(H) : H d T} and {\s\ : H d T] are

finite.

Proof. Suppose that {a(H} : H 6 T} is an infinite set. By

Clifford's Theorem, a{H) is the index of the inertia group of U\ in

G , and so the prime divisors of a{H) all divide n . But n is

finite, and so there is a prime, say q (which may be p) , such that

iaAH) : H € T} is infinite, where a (H) is the q-share of a{H) . In

particular, there is an element, say H\ , of V such that a (ff,) > d .

Then if Q\ is a Sylow q-subgroup of G\ , Lemma 2.8 implies that the

F(p)-dimension of an irreducible submodule of V is at least

a (ff,) . Since SlQl is a soluble subgroup of Gx , this contradicts

Hence {a(ff) : fl € T} is finite, say a(H) < a for all H d T .

Since S is irreducibly represented on U.. , it follows from (U.2) that

Itf. I < d , and hence that Is : X.l < il . But V is faithful, and so
1s -L 'Z-

n{i^. : 1 < i 2 a(#)} is trivial. It follows that |s| < (d\)a . //

Suppose that \s\ < b , for all I f f , and denote CAS) by C ;

then {\G : C\ : H d T] is bounded by b\ , and {\c\ : H d V} is an

infinite set. Let M /CnS M /H\/CnS be the minimal normal

subgroups of G/CnS contained in C/CnS , and denote M^M^ ... M,.. by

M . Since CnS is simultaneously the centre of S , the soluble

https://doi.org/10.1017/S0004972700046001 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046001


308 J.M. Brady

radical of C , and the centre of C , M./CnS is nonabellan,

l < t < y(#) , and so there is a nonabelian simple group, say B{i, H) ,

in A such that M./CnS is isomorphic to a direct power of B(i, ft) .

Observe that M/CnS = M(C/CnS) .

LEMMA 4.4. {|ftf̂| : 1 £ i < u(#), H d T} is a finite set, whereas

{\M\ : H € D is infinite. In particular, {u(fl) : H € T} is an

infinite set.

Proof. By Lemma k.3, {\c n S\ : H € T} is a finite set, whereas

{\C\ : H € D is infinite; consequently {\C : C n s\ : H € T} is

infinite. Now M/Cr>S is the socle of C/CnS and is isomorphic to a

direct product of nonatelian simple groups; hence C_,_ q{M/CnS) is

trivial. Thus {\M ; C n S| : ff € T] is infinite.

If {|Af. I : 1 S i 5 u(#), fl € T} is an infinite set, then so is
is

{\M^ : C n S\ : 1 < £ < \l{H), HIT}. But A i s a f i n i t e s e t , and so i t

con ta ins an e lement , say B , such t h a t

JJ = {\M. : C n S\ : B{i, S) = B, 1 S t 5 y(ff), H i T}

is an infinite set. (Observe that B is nonabelian.) Then if

Cc,CnS(Mi/CnS) is denoted by D. ,

A = {(C/CnS)/D. : B{i, H) = B, 1 < i < u(#), # f V}

is a set of monolithic groups in V. , and the monolith of each group in A

is isomorphic to a direct power of B . Since fi is infinite, we

contradict Corollary 3.5. Hence {\M.\ : 1 < i 5 u(#), J ( D is a

finite set. / /

Using Lemma k.k, we choose H d V such that ^H' > d .

LEMMA 4.5. Each of M' and M'. , 1 < i s u(ff) ore perfect.

Furthermore, M' is a central product of M' , ..., M'/u\ •

Proof. The proof that M' and the Ml are perfect is easy, and is

omitted. For the second part, we have to show that if i i- j , then
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M' £ CM, [M\) , and also that M' = M'^M'2 ... Af',fl) . Let g f M\ , and

observe that the map a(g) : Af'. •*• S n C defined by ha(g) =.[h, g] is a

homomorphi sm (since 2(C) = S n c) . But M'. is perfect, and C n S is

abelian, and so Afl is the kernel of a(g) ; that is, g centralises

M\ . Since M = M.Mn ... M ,„* , and M. = Af'.£ n C , it follows that
t- 1 c: Uln; V V

Now Af1 is normal in G , and V is a faithful irreducible

F(p)G-module, and so by Clifford's Theorem, if L is the kernel of an

irreducible submodule X of 7^, , n{L9 : g € G> is trivial. Since M^

is also normal in G , L $. M'. , l £ i S U ( S ) . Let E be the field
tr

obtained from F(p) by adjoining to it all the primitive n-th roots of

unity. Since the exponent of G divides n , it follows from 14, 70.2k]

that E is a splitting field for G . Moreover, E is a finite normal

extension of (the perfect field) F(p) , and so by [4, 70.15], X is

completely reducible, and the irreducible components of X are all

Galois conjugate. Thus if U is an irreducible component of X , the

kernel of U is L . By Theorem 2.9, U = U± # V^ ... # UV(H) » where

U. is an irreducible submodule of Uu, . Since L \ U\. , the kernel L.

of U- is a proper normal subgroup of Af'. and so M'./L. is nontrivial
%> Is U I,

perfect. In particular, M^/L^ is not a p-group, 1 2 % < \i(H) . It

follows from Theorem 2.7 that there is a subgroup, say A. , of Af'.

containing L. , and an irreducible submodule, say W. , of (U.}, , such

that A./L. is soluble and P/. has E-dimension at least two. Since the
i ^ x.

kernel N. of V. contains L. , A./N. is soluble also. If

A = \A. : 1 5 i 5 u(ff)\ , then it follows from Theorem 2.9 that

W tf ... # ^u(H) ^s isomorP':1ic to an irreducible submodule, say W , of

J/ . Observe that the E-dimension of W is at least 2^H' , and that
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the kernel N of W contains U^ : 1 < i £ u (#) \ . But

A/\N. : 1 £ i £ y(ff)\ i s a homomorphic image of

| \{A^/Ni : 1 £ i < u(fl)} , and so 4/tf is soluble. Now W i s an

irreducible submodule of / . , which is the same thing as V , and so

by the Jordan-Holder Theorem, there i s a composition factor, say W\ , of

V. such that W i s isomorphic to a composition factor of f/T . By [4 ,

TO.15] though, f/T i s completely reducible, and i t s irreducible

components are a l l Galois conjugate; hence N i s also the kernel of

W . But

Iff] I 2 \W\ i 2HV"; > d ,

and 4/iV is soluble. This contradicts (.k.2), and the proof of Theorem

1.1 is complete.
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