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Abstract. We show that if R is a commutative ring and ðS;�Þ a strictly totally
ordered monoid, then the ring ½½RS;��� of generalized power series is Baer if and only
if R is Baer.

2000 Mathematics Subject Classification. 13F25, 16W60.

A ring R is called Baer if the right annihilator of every nonempty subset of R is
generated by an idempotent. Baer rings were studied in [1, 2, 3, 5, 6, 7, 11]. By [5,
Theorem 3] the Baer condition is left-right symmetric. Semisimple artinian rings,
domains and the rings of n� n upper triangular matrices over division rings are
Baer, where n ¼ 1; 2; . . ..

A ring R is called a right pp-ring if each principal right ideal of R is projective, or
equivalently, if the right annihilator of each element of R is generated by an idempo-
tent. Baer rings are clearly right pp-rings. It was proved in [9] that ifR is a commutative
ring and ðS;�Þ a strictly totally ordered monoid then the ring ½½RS;��� of generalized
power series is a pp-ring if and only if R is a pp-ring and every S-indexed subset C of
the set BðRÞ of all idempotents of R has a least upper bound in BðRÞ. In this paper
we show that if R is a commutative ring and ðS;�Þ a strictly totally ordered monoid,
then the ring ½½RS;��� of generalized power series is Baer if and only if R is Baer.

All rings considered here are associative with identity. Any concept and nota-
tion not defined here can be found in [12, 13, 14, 15].

Let ðS;�Þ be an ordered set. Recall that ðS;�Þ is artinian if every strictly
decreasing sequence of elements of S is finite, and that ðS;�Þ is narrow if every
subset of pairwise order-incomparable elements of S is finite. Let S be a commu-
tative monoid. Unless stated otherwise, the operation of S will be denoted addi-
tively, and the neutral element by 0. The following definition is due to P. Ribenboim.
See [12, 13, 14, 15].

Let ðS;�Þ be a strictly ordered monoid (that is, ðS;�Þ is an ordered monoid
satisfying the condition that, if s; s0; t 2 S and s < s0, then sþ t < s0 þ t), and R a
commutative ring. Let A ¼ ½½RS;��� be the set of all maps f : S�!R such that
suppð f Þ ¼ fs 2 Sj fðsÞ 6¼ 0g is artinian and narrow. With pointwise addition, A is an
abelian additive group. For every s 2 S and f; g 2 A, let Xsð f; gÞ ¼ fðu; vÞ 2 S� Sj
s ¼ uþ v; fðuÞ 6¼ 0; gðvÞ 6¼ 0g. It follows from [14, 1.16] that Xsð f; gÞ is finite. This fact
allows us to define the operation of convolution
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ð fgÞðsÞ ¼
X

ðu;vÞ2Xsð f;gÞ

fðuÞgðvÞ:

With this operation, and pointwise addition, A becomes a commutative ring, called
the ring of generalized power series. The elements of A are called generalized power
series with coefficients in R and exponents in S.

For example, if S ¼ N [ f0g and � is the usual order, then ½½RN[f0g;��� ffi R½½x��,
the usual ring of power series. If S is a commutative monoid and � is the trivial
order, then ½½RS;��� ¼ R½S�, the monoid-ring of S overR. Further examples are given
in [10, 13].

We shall use the following notations introduced by Ribenboim in [13].
Let f; f 0 2 A. We say f is a section of f 0 (denoted f � f 0) if s < s0 for every

s 2 suppð f Þ and every s0 2 suppð f 0 � f Þ.
Let r 2 R. Define a mapping cr 2 A as follows:

crð0Þ ¼ r; crðsÞ ¼ 0; for all 0 6¼ s 2 S:

Let s 2 S. Define a mapping es 2 A as follows:

esðsÞ ¼ 1; esðtÞ ¼ 0; for all s 6¼ t 2 S:

Lemma 1. ([8, Lemma 3]) If f � f 0, then fcr � f 0cr.

Recall that a monoid S is torsion-free if the following property holds: if s; t 2 S,
if k is an integer, k � 1 and ks ¼ kt, then s ¼ t.

Lemma 2. ([9, Lemma 2.2]) Let R be a reduced commutative ring and S a can-
cellative and torsion-free monoid. If �2 ¼ � 2 ½½RS;���, then there exists an idempotent
e 2 R such that � ¼ ce.

Lemma 3. ([4]) A ring R is a reduced right pp-ring if and only if R is a right pp-
ring with every idempotent central.

Lemma 4. Let R be a commutative ring and S a cancellative and torsion-free
monoid. Set A ¼ ½½RS;���, the ring of generalized power series. If A is Baer, then R is
Baer.

Proof. Suppose that 1 6¼ X � R. Then C ¼ fcxjx 2 Xg � A and C 6¼ 1. Since A
is Baer, there exists an idempotent � 2 A such that rAðCÞ ¼ �A. Clearly A is a pp-
ring. Thus, by Lemma 3, A is a reduced ring. Hence it is easy to see that R is
reduced. Now, by Lemma 2, there exists an idempotent e 2 R such that � ¼ ce. For
any x 2 X, xe ¼ ðcxceÞð0Þ ¼ 0, and so e 2 rRðXÞ. Now, suppose that p 2 rRðXÞ. Then
xp ¼ 0 for any x 2 X. Thus cxcp ¼ 0 for any x 2 X. This means that cp 2 rAðCÞ, and
so cp ¼ ce f, for some f 2 A. Now, p ¼ cpð0Þ ¼ ðcef Þð0Þ ¼ efð0Þ 2 eR. Thus
rRðXÞ ¼ eR, where e is an idempotent of R. Hence R is Baer.

Lemma 5. Let R be a commutative ring and S a cancellative and torsion-free
monoid such that ðS;�Þ is narrow. If R is Baer, then A is Baer.
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Proof. By [13, 3.3], there exists a compatible strict total order �0 on S that is
finer than �; (that is, s � t implies s �0 t for all s; t 2 S). Let A0 ¼ ½½RS;�

0

��. Then A is
a subring of A0 by [13, 4.4]. Since ðS;�Þ is narrow, A ¼ A0 by [13, 4.4], and so there
is no loss of generality in assuming that ðS;�Þ is totally ordered. We may assume
that S 6¼ 0.

It is enough to show that the right annihilator of every nonempty ideal of A is
generated by an idempotent. Let L be an ideal of A. We shall show that rðLÞ ¼ �A
for an idempotent �2 ¼ � 2 A. For every f 2 A; f 6¼ 0, suppð f Þ is a nonempty well-
ordered subset of S. We denote by �ð f Þ the smallest element of the support of f.

For every s 2 S, set

Is ¼ f fðsÞj f 2 L; �ð f Þ ¼ sg;

and I ¼ [s2SIs.
Since R is a Baer ring, there exists an idempotent e2 ¼ e 2 R such that rðIÞ ¼ eR:

We shall show that rðLÞ ¼ ceA.
Let g 2 L. Suppose that gce 6¼ 0, and �ðgceÞ ¼ t. Then ðgceÞðtÞ 6¼ 0. Since

gðtÞe ¼ ðgceÞðtÞ 2 It � I, it follows that gðtÞe ¼ ðgðtÞeÞe ¼ 0, a contradiction. Thus,
gce ¼ 0, for every g 2 L. This means that ceA � rðLÞ.

Assume 0 6¼ g 2 rðLÞ � ceA. Set �ðgÞ ¼ s. For every a 2 I, there exist u 2 S,
f 2 L, such that a ¼ fðuÞ, and �ð f Þ ¼ u. Since g 2 rðLÞ, fg ¼ 0. Thus, by [15, 1.17], we
have fðuÞgðsÞ ¼ 0. Hence agðsÞ ¼ 0. This means that gðsÞ 2 rðIÞ ¼ eR. Thus
g� cgðsÞes 2 rðLÞ � ceA. Set �ðg� cgðsÞesÞ ¼ t. Then ðg� cgðsÞesÞðtÞ 6¼ 0. Since

ðg� cgðsÞesÞðsÞ ¼ gðsÞ � gðsÞesðsÞ ¼ 0;

we have s 6¼ t. Thus gðtÞ ¼ ðg� cgðsÞesÞðtÞ 6¼ 0,which implies that s < t.
Let � be an ordinal with cardinal greater than the cardinal jSj of S, and � the set

of all ordinals � < �. We shall show that for each � 2 �, there exists an element
f� 2 A such that the following properties hold:

f� � f	 and f� 6¼ f	 when � < 	;

g� f�ce 2 rðLÞ;

�ðg� f�ceÞ < �ðg� f	ceÞ when � < 	;

u < �ðg� f�ceÞ for any u 2 suppð f�Þ:

First we set f1 ¼ cgðsÞes.
Let � 2 � and assume that we have already found the elements f� 2 A, for every

� < �, satisfying the above properties (for ordinals � < 	 < �). We shall construct
an element f� 2 A such that the properties above are satisfied for � < 	 � �.

Suppose that there exists an ordinal 
 such that � ¼ 
þ 1. If g� f
ce ¼ 0, then
g ¼ f
ce 2 ceA, a contradiction. Thus g� f
ce 6¼ 0. Set g
 ¼ g� f
ce, and t
 ¼ �ðg
Þ.
Let f� : S�!R be defined by

f� ¼ f
 þ cg
ðt
Þet
 :

Then f� 2 A. We show that f
 � f� and this implies that f� � f� for any � < �. Since
g
ðt
Þ 6¼ 0, it follows that
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suppð f� � f
Þ ¼ suppðcg
ðt
Þet
 Þ ¼ ft
g:

Suppose that s 2 suppð f
Þ. Then, by hypothesis,

s < �ðg� f
ceÞ ¼ t
 2 suppð f� � f
Þ:

Thus f
 � f�. If f
 ¼ f�, then cg
ðt
Þet
 ¼ 0, and so g
ðt
Þ ¼ ðcg
ðt
Þet
 Þðt
Þ ¼ 0, which is
a contradiction. If f� ¼ f�, where � < 
, then f� � f
 � f� ¼ f�. Thus, by [13, 5.3],
f
 ¼ f�, also a contradiction. Hence f� 6¼ f	 when � < 	 � �.

It is easy to see that g� ¼ g� f�ce 2 rðLÞ.
For every a 2 I, there exist u 2 S; f 2 L, such that a ¼ fðuÞ, and �ð f Þ ¼ u. Since

g
 2 rðLÞ, fg
 ¼ 0. Thus, by [15, 1.17], we have fðuÞg
ðt
Þ ¼ 0. Hence ag
ðt
Þ ¼ 0.
This means that g
ðt
Þ 2 rðIÞ ¼ eR. Denote �ðg� f�ceÞ ¼ t�. Since

ðg� f�ceÞðt
Þ ¼ ððg� f
ce � cg
ðt
Þet
ceÞðt
Þ

¼ g
ðt
Þ � g
ðt
Þeet
 ðt
Þ ¼ 0;

it follows that t� 6¼ t
. Thus

ðg� f
ceÞðt�Þ ¼ ðg� f
ceÞðt�Þ � g
ðt
Þet
ðt�Þe

¼ ðg� f
ce � cg
ðt
Þet
ceÞðt�Þ ¼ ðg� f�ceÞðt�Þ 6¼ 0;

and so t� 2 suppðg� f
ceÞ. Hence t
 < t�; that is, �ðg� f
ceÞ < �ðg� f�ceÞ, which
implies that �ðg� f�ceÞ < �ðg� f�ceÞ, for any � < �.

We now show that u < �ðg� f�ceÞ, for any u 2 suppð f�Þ. It is clear that

suppð f�Þ ¼ suppð f
 þ cg
ðt
Þet
Þ � suppð f
Þ [ suppðcg
ðt
Þet
Þ:

If u 2 suppð f
Þ, then u < �ðg� f
ceÞ < �ðg� f�ceÞ. If u 2 suppðcg
ðt
Þet
Þ ¼ ft
g,then
u ¼ t
 ¼ �ðg� f
ceÞ < �ðg� f�ceÞ.

Now let � be a limit ordinal. For the family ff�j� < �g of elements f� 2 A, it was
proved, in [13, 5.4], that there exists an element b ¼�-supð f�Þ�<� 2 A such that

(i) f� � b for every � < �:
(ii) if b0 2 A and f� � b0 for every � < �, then b � b0.
Let f� ¼ b ¼�-supð f�Þ�<�: By (i), we know that f� � f�, for every � < �, and

that g� ¼ g� f�ce 2 rðLÞ. If f� ¼ f�, then f� � f�þ1 � f� ¼ f�, and thus f� ¼ f�þ1, a
contradiction. Hence f� 6¼ f� for every � < �.

For every � < �,

g� f�ce ¼ g� f�ce � ð f� � f�Þce:

Thus, by [13, 4.2], we have

�ðg� f�ceÞ � minf�ðg� f�ceÞ; �ðð f� � f�ÞceÞg: ð�Þ

Let �ðg� f�ceÞ ¼ t�. Since f� � f�þ1 � f�, by Lemma 1, we have

f�ce � f�þ1ce � f�ce:
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If f�ce ¼ f�þ1ce, then t� ¼ t�þ1, a contradiction. Thus f�ce 6¼ f�þ1ce. If f�þ1ce ¼ f�ce,
then

f�þ1ce � f�þ2ce � f�ce ¼ f�þ1ce:

Thus, by [13, 5.3], f�þ1ce ¼ f�þ2ce, and so t�þ1 ¼ t�þ2, which is a contradiction.
Hence f�þ1ce 6¼ f�ce: Thus, by [13, 5.4], it follows that

�ðð f� � f�ÞceÞ ¼ �ðð f�þ1 � f�ÞceÞ ¼ �ððg� f�ceÞ � ðg� f�þ1ceÞÞ

� minf�ðg� f�ceÞ; �ðg� f�þ1ceÞg ¼ minft�; t�þ1g ¼ t�:

Thus, by ð�Þ,

t� ¼ �ðg� f�ceÞ � t�:

Hence, t� � t� for all � < � so that t� < t�þ1 � t� and t� 6¼ t�: Thus t� < t�.
We now show that u < �ðg� f�ceÞ, for any u 2 suppð f�Þ. Since

suppð f�Þ ¼ [�<�suppð f�Þ

by [13, 5.4], there exists an ordinal � < � such that u 2 suppð f�Þ. Thus u < t� < t�.
Now, we deduce that if � < 	;�; 	 2 � then t� < t	. Thus jft�j� 2 �gj ¼

j�j > jSj, and this is impossible.
Thus, we have rðLÞ ¼ ceA. Now the result follows.

Theorem 6. Let R be a commutative ring and S a cancellative and torsion-free
monoid such thatðS;�Þ is narrow. Set A ¼ ½½RS;���, the ring of generalized power ser-
ies. Then A is Baer if and only if R is Baer.

Corollary 7. Let R be a commutative ring and ðS;�Þ a strictly totally ordered
monoid. Then A is Baer if and only if R is Baer.

Proof. By [13, 3.2], S is cancellative and torsion-free. Now the result follows
from Theorem 6.

The following corollaries will give more examples of Baer rings.

Corollary 8. Let Qþ ¼ fa 2 Qja � 0g;Rþ
¼ fa 2 Rja � 0g. Then the rings

½½ZN[f0g;�
��;½½ZZ;�

��; ½½ZQþ;�
��;½½ZQ;���; ½½ZRþ;�

�� and ½½ZR;�
�� are Baer rings, where � is

the usual order.

Corollary 9. Let R be a commutative ring. Set RððXÞÞ ¼ ½½RZ;���, the ring of
Laurent series over R where � is the usual order on Z. Then RððXÞÞ is Baer if and only
if R is Baer.

Note. See [16, p. 335] for the definition of the ring of Laurent series over R.

It was shown in [3, Corollary 1.10] that for a reduced ring R, the ring RððXÞÞ of
Laurent series over R is Baer if and only if R is Baer. Since a commutative Baer ring
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is reduced, it is natural to ask if some of the results of this paper remain true in the
more general case of R being reduced rather than commutative.

Corollary 10. Let ðS1;�1Þ; . . . . . . ; ðSn;�nÞ be totally strictly ordered monoids.
Denote by ðlex �Þ and ðrevlex �Þ the lexicographic order, the reverse lexicographic
order, respectively, on the monoid S1 � . . .� Sn. Let R be a commutative ring. Then
the following statements are equivalent.

(1) The ring ½½RS1�...�Sn;ðlex�Þ�� is Baer.
(2) The ring ½½RS1�...�Sn;ðrevlex�Þ�� is Baer.
(3) R is Baer.

Proof. (1)()(3). It is easy to see that ðS1 � . . .� Sn; ðlex �ÞÞ is a totally strictly
ordered monoid. Thus, by Corollary 7, ½½RS1�...�Sn;ðlex�Þ�� is Baer if and only if R is
Baer.

The proof of (2)()(3) is similar.
Let R be a commutative ring, and consider the multiplicative monoid N�1,

endowed with the usual order �. Then A ¼ ½½RN�1;��� is the ring of arithmetical
functions with values in R, endowed with the Dirichlet convolution

ð fgÞðnÞ ¼
X
djn

fðdÞgðn=dÞ; for each n � 1:

Corollary 11. Let R be a commutative ring. Then A ¼ ½½RN�1;� �� is Baer if and
only if R is Baer.

Let ðS;�Þ be a strictly totally ordered monoid that is also artinian. For any
s 2 S, set Xs ¼ fðu; vÞjuþ v ¼ s; u; v 2 Sg. Then from [16, 4.1], it follows that Xs is a
finite set. Let V be a free abelian additive group with the base consisting of elements
of S. Then V is a coalgebra over Z with the comultiplication map and counit map as
follows:

�ðsÞ ¼
X

ðu;vÞ2Xs

u� v;

ðsÞ ¼
1 s ¼ 0;
0 s 6¼ 0.

�

Then clearly ½½RS;��� ffi HomðV;RÞ, the dual algebra.

Corollary 12. Let R be a commutative ring. Then, using the notations above, the
dual algebra HomðV;RÞ is a Baer ring if and only if R is a Baer ring.
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