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Abstract. We show that if R is a commutative ring and (S, <) a strictly totally
ordered monoid, then the ring [[RS=]] of generalized power series is Baer if and only
if R is Baer.
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A ring R is called Baer if the right annihilator of every nonempty subset of R is
generated by an idempotent. Baer rings were studied in [1, 2, 3, 5, 6, 7, 11]. By [5,
Theorem 3] the Baer condition is left-right symmetric. Semisimple artinian rings,
domains and the rings of n x n upper triangular matrices over division rings are
Baer, where n=1,2, .. ..

A ring R is called a right pp-ring if each principal right ideal of R is projective, or
equivalently, if the right annihilator of each element of R is generated by an idempo-
tent. Baer rings are clearly right pp-rings. It was proved in [9] that if R is a commutative
ring and (S, <) a strictly totally ordered monoid then the ring [[R5=]] of generalized
power series is a pp-ring if and only if R is a pp-ring and every S-indexed subset C of
the set B(R) of all idempotents of R has a least upper bound in B(R). In this paper
we show that if R is a commutative ring and (S, <) a strictly totally ordered monoid,
then the ring [[RS=]] of generalized power series is Baer if and only if R is Baer.

All rings considered here are associative with identity. Any concept and nota-
tion not defined here can be found in [12, 13, 14, 15].

Let (S, <) be an ordered set. Recall that (S, <) is artinian if every strictly
decreasing sequence of elements of S is finite, and that (S, <) is narrow if every
subset of pairwise order-incomparable elements of S is finite. Let S be a commu-
tative monoid. Unless stated otherwise, the operation of S will be denoted addi-
tively, and the neutral element by 0. The following definition is due to P. Ribenboim.
See [12, 13, 14, 15].

Let (S, <) be a strictly ordered monoid (that is, (S, <) is an ordered monoid
satisfying the condition that, if 5,5, 7€ S and s <, then s+ < s +1), and R a
commutative ring. Let 4 =[[R5=]] be the set of all maps f: S—> R such that
supp(f) = {s € S| f(s) # 0} is artinian and narrow. With pointwise addition, 4 is an
abelian additive group. For every s € S and f, g € 4, let X,(f,g) ={(u,v) € S x S|
s=u+v, f(u) #0, g(v) # 0}. It follows from [14, 1.16] that X(f, g) is finite. This fact
allows us to define the operation of convolution
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&)= > fugw.

(u,v)eXs(f,2)

With this operation, and pointwise addition, 4 becomes a commutative ring, called
the ring of generalized power series. The elements of A are called generalized power
series with coefficients in R and exponents in S.

For example, if S =N U {0} and < is the usual order, then [[RNY0-=]] = R[[x]],
the usual ring of power series. If S is a commutative monoid and < is the trivial
order, then [[RS=]] = R[S], the monoid-ring of S overR. Further examples are given
in [10, 13].

We shall use the following notations introduced by Ribenboim in [13].

Let f,f" € A. We say f is a section of f’ (denoted f< () if s <’ for every
s € supp(f) and every s" € supp(f' —f).

Let r € R. Define a mapping ¢, € 4 as follows:

¢0)y=r, ¢(s)=0, forall0#£sesS.
Let s € S. Define a mapping e, € 4 as follows:

es(s) =1, e(t)=0, foralls#¢t€S.

LemMa 1. (8, Lemma 3]) If £ < [, then fe, < f'c.

Recall that a monoid S is torsion-free if the following property holds: if s, t € S,
if k is an integer, k > 1 and ks = kt, then s = t.

LEmMA 2. (|9, Lemma 2.2]) Let R be a reduced commutative ring and S a can-
cellative and torsion-free monoid. If ¢* = ¢ € [[RS=]], then there exists an idempotent
e € R such that ¢ = c,.

LEMMA 3. ([4]) A4 ring R is a reduced right pp-ring if and only if R is a right pp-
ring with every idempotent central.

LEmMMA 4. Let R be a commutative ring and S a cancellative and torsion-free
monoid. Set A = [[RS=]], the ring of generalized power series. If A is Baer, then R is
Baer.

Proof. Suppose that ¢ # X € R. Then C = {¢|x € X} € 4 and C # . Since 4
is Baer, there exists an idempotent ¢ € A such that r4(C) = ¢A4. Clearly A is a pp-
ring. Thus, by Lemma 3, A is a reduced ring. Hence it is easy to see that R is
reduced. Now, by Lemma 2, there exists an idempotent ¢ € R such that ¢ = ¢.. For
any x € X, xe = (¢y¢.)(0) = 0, and so e € rg(X). Now, suppose that p € rz(X). Then
xp =0 for any x € X. Thus c¢.c, = 0 for any x € X. This means that ¢, € r4(C), and
so ¢, =c.f, for some feA. Now, p=cy(0)=(cf)0)=ef(0) eeR. Thus
rr(X) = eR, where e is an idempotent of R. Hence R is Baer.

LEMMA 5. Let R be a commutative ring and S a cancellative and torsion-free
monoid such that (S, <) is narrow. If R is Baer, then A is Baer.
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Proof. By [13, 3.3], there exists a compatible strict total order <’ on S that is
finer than <; (that is, s < ¢ implies s <’ ¢ for all s, € S). Let 4’ = [[RS=]]. Then 4 is
a subring of A’ by [13, 4.4]. Since (S, <) is narrow, 4 = 4’ by [13, 4.4], and so there
is no loss of generality in assuming that (S, <) is totally ordered. We may assume
that S # 0.

It is enough to show that the right annihilator of every nonempty ideal of A4 is
generated by an idempotent. Let L be an ideal of A. We shall show that r(L) = ¢A
for an idempotent ¢> = ¢ € 4. For every f€ A,f# 0, supp(f) is a nonempty well-
ordered subset of S. We denote by n(f) the smallest element of the support of f.

For every s € S, set

Iy ={f9lf € L, n(f) = s},

and I = Ugegl,.

Since R is a Baer ring, there exists an idempotent ¢> = e € R such that (I) = eR.
We shall show that r(L) = ¢, 4.

Let g e L. Suppose that gc, #0, and n(ge,) =t Then (gc.)(¢) #0. Since
g(t)e = (ge.)(t) € I, C I, it follows that g(f)e = (g(¢)e)e = 0, a contradiction. Thus,
gc, = 0, for every g € L. This means that ¢, 4 < r(L).

Assume 0 # g e r(L)—c.A. Set n(g) =s. For every a € I, there exist u € S,
f € L, such that a = f(u), and (f) = u. Since g € r(L), fg = 0. Thus, by [15, 1.17], we
have f(u)g(s) =0. Hence ag(s) =0. This means that g(s) € r(Il) = eR. Thus
g — Cos)€s € F(L) — coA. Set m(g — cy(9e5) = t. Then (g — cqq)€5)(1) # 0. Since

(g — Ca9es)(s) = g(s) — g(s)es(s) = 0,

we have s # t. Thus g(f) = (g — cg(ses)(¢) # 0,which implies that s < ¢.

Let « be an ordinal with cardinal greater than the cardinal |S| of S, and I the set
of all ordinals A < «. We shall show that for each A € I, there exists an element
/5 € A such that the following properties hold:

fu=fo and f, #f, when p<v,

g —fuce € r(L),

n(g _f#«c(’) < JT(g _fvce) when n <y,
u < (g —fuc.) forany u e supp(f,).

First we set fi = cg(s)€s.

Let A € I' and assume that we have already found the elements f,, € 4, for every
u < A, satisfying the above properties (for ordinals u < v < 1). We shall construct
an element f;, € A4 such that the properties above are satisfied for u < v < A.

Suppose that there exists an ordinal 5 such that A =+ 1. If g — f,c. = 0, then
g = fyce € coA, a contradiction. Thus g — f,,c. # 0. Set g, = g — f,,¢c.. and ¢, = 7 (g,).
Let f; : S—> R be defined by

Ja :fn + Cg, 1)1,
Then f, € A. We show that f,, < f; and this implies that f,, < f; for any u < A. Since

gn(t,) # 0, it follows that
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supp(fr — fn) = supp(cg,,yer,) = {1y}
Suppose that s € supp(f;). Then, by hypothesis,

s <n(g _fnce) =1 € supp(fi. _fr])~

Thus f, < fi. If f;; = fi, then ¢g (,)e,, = 0, and so g,(2,) = (¢g,:,)€1,)(t;) = 0, which is
a contradiction. If f, = f;, where u < n, then f,, < f, < f. =/f.. Thus, by [13, 5.3],
Jfy =/, also a contradiction. Hence f,, # f, when u < v < A.

It is easy to see that g, = g — f;.c. € r(L).

For every a € I, there exist u € S, f € L, such that a = f(u), and n(f) = u. Since
gy € r(L), fg, =0. Thus, by [15, 1.17], we have f(u)g,(t,) = 0. Hence ag,(z,) =0.
This means that g,(¢,) € r(I) = eR. Denote n(g — fy.c.) = t,. Since

(g —Jrc)ty) = (& = foce = Cqya€1,Ce)1y)
= gy(ty) — gn(tyee,, (1)) =0,
it follows that #, # t,. Thus
(& —foce)(r) = (& = fyce) (1) — gn(ty)er, (12)e

= (g — foCe — g pei,ce)(tr) = (g — frce)(tr) # 0,

and so 1, € supp(g — fyc.). Hence ¢, < t,; that is, n(g — f,c.) < n(g — fic.), which
implies that n(g — f,c.) < (g — fice), for any p < A.
We now show that u < n(g — fic.), for any u € supp(f3). It is clear that

supp(f) = supp(fy + cg,ie:,) S supp(fy) U supp(cq, ,)er,)-

If u € supp(f,), then u < n(g — fyc.) < w(g — frce). If u € supp(cq,ei,) = {ty},then
u=1t, = (g _fnce) < n(g _f)»ce)-

Now let A be a limit ordinal. For the family {f,|u < A} of elements f,, € 4, it was
proved, in [13, 5.4], that there exists an element b ==<-sup(f,.), ., € 4 such that

(1) fu X bforevery u <

(i) if b’ € Aand f, < b for every u < A, then b < b'.

Let f; = b ==-sup(f,), ;- By (i), we know that f, < f;, for every u < A, and

that g, = g — fi.c. € r(L). Iffu = f1 thenfu ffu+1 </ :fua and thusfu :f,qul’ a
contradiction. Hence f,, # f, for every u < A.
For every p < A,

g —fate = & = Jfuce = (S = fu)Ce:
Thus, by [13, 4.2], we have
(g = face) Z min{r(g — fuce), w((f = fu)ce)}- ()
Let n(g — f,.c.) = t,. Since f,, < fu+1 < fo, by Lemma 1, we have

ifltce 5<fpy+lce ﬁifkce-
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If f.ce = futice, then ¢, = t,11, a contradiction. Thus fj,c. # futice. If furice = fice,
then

fqulce ffu+2ce ff/\ce :fu+lce«

Thus, by [13, 5.3], fu+1¢c =fut+2¢e, and so t,41 = t,4», which is a contradiction.
Hence f,+1¢. # fic.. Thus, by [13, 5.4], it follows that

((f. _fu)ce) = n((fu-H _fp.)ce) =n((g _fp.ce) — (g _f/L-HCe))
> min{n(g _fuce)a (g _.fu+lce)} =min{ty, typ1} =1,
Thus, by (x),
t, = JT(g —fxce) > l/l‘

Hence, t, < t, forall u < Asothatt, <t,41 <t,and 1, #1t,. Thust, <1,.
We now show that u < 7(g — fic.), for any u € supp(f,). Since

supp(f1.) = Uy asupp(f,.)

by [13, 5.4], there exists an ordinal i < A such that u € supp(f,). Thusu < t, < t,.
Now, we deduce that if uw<v,u,vel then ¢, <t, Thus |{f|r eT}| =
IT'| > |S|, and this is impossible.
Thus, we have (L) = ¢,A. Now the result follows.

THEOREM 6. Let R be a commutative ring and S a cancellative and torsion-free
monoid such that(S, <) is narrow. Set A = [[R>=]], the ring of generalized power ser-

ies. Then A is Baer if and only if R is Baer.

COROLLARY 7. Let R be a commutative ring and (S, <) a strictly totally ordered
monoid. Then A is Baer if and only if R is Baer.

Proof. By [13, 3.2], S is cancellative and torsion-free. Now the result follows
from Theorem 6.

The following corollaries will give more examples of Baer rings.

COROLLARY 8. Let @ = {a € Qla > 0}, R™ = {a € Rla>0}. Then the rings
(2= 2520 (27 =029 <0 1Z* =) and [[Z7=]) are Baer rings, where < is
the usual order.

COROLLARY 9. Let R be a commutative ring. Set R((X)) = [[R=]], the ring of
Laurent series over R where < is the usual order on Z. Then R((X)) is Baer if and only
if R is Baer.

NoOTE. See [16, p. 335] for the definition of the ring of Laurent series over R.

It was shown in [3, Corollary 1.10] that for a reduced ring R, the ring R((X)) of
Laurent series over R is Baer if and only if R is Baer. Since a commutative Baer ring
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is reduced, it is natural to ask if some of the results of this paper remain true in the
more general case of R being reduced rather than commutative.

COROLLARY 10. Let (S1, <1),...... , (S, <p) be totally strictly ordered monoids.
Denote by (lex <) and (revlex <) the lexicographic order, the reverse lexicographic
order, respectively, on the monoid Sy x ... x S,. Let R be a commutative ring. Then
the following statements are equivalent.

(1) The ring [[RS1*->SnUex2] is Baer.

(2) The ring [[RS**Sn(revlex)1] js Baer.

(3) R is Baer.

Proof. (1)<=(3). It is easy to see that (S; x ... x S, (lex <)) is a totally strictly
ordered monoid. Thus, by Corollary 7, [[RS*+*S»(ex=)]] is Baer if and only if R is
Baer.

The proof of (2)<=(3) is similar.

Let R be a commutative ring, and consider the multiplicative monoid N,
endowed with the usual order <. Then 4 = [[RN=""=]] is the ring of arithmetical
functions with values in R, endowed with the Dirichlet convolution

(fe)m) =Y _fid)g(n/d),  for each n>1.

din

COROLLARY 11. Let R be a commutative ring. Then A = [[RN=1<]] is Baer if and
only if R is Baer.

Let (S, <) be a strictly totally ordered monoid that is also artinian. For any
se S, set Xy ={(u,v)lu+v=s,u,veS} Then from [16, 4.1], it follows that Xy is a
finite set. Let V be a free abelian additive group with the base consisting of elements
of S. Then V' is a coalgebra over Z with the comultiplication map and counit map as

follows:
A(s) = Z U v,
(u!v)e)(.\
1 s=0,
€)= { 0 s#0.

Then clearly [[RS=]] = Hom(V, R), the dual algebra.

COROLLARY 12. Let R be a commutative ring. Then, using the notations above, the
dual algebra Hom(V, R) is a Baer ring if and only if R is a Baer ring.
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