BAER RINGS OF GENERALIZED POWER SERIES*

LIU ZHONGKUI
Department of Mathematics, Northwest Normal University, Lanzhou, 730070, P. R. China e-mail: liuzk@nwnu.edu.cn

(Received 22 January, 2001; accepted 23 July, 2001)

Abstract

We show that if R is a commutative ring and (S, \leq) a strictly totally ordered monoid, then the ring [$\left.\left[R^{S, \leq}\right]\right]$ of generalized power series is Baer if and only if R is Baer.

2000 Mathematics Subject Classification. 13F25, 16W60.

A ring R is called Baer if the right annihilator of every nonempty subset of R is generated by an idempotent. Baer rings were studied in $[\mathbf{1 , ~ 2 , ~ 3 , ~ 5 , ~ 6 , ~ 7 , ~ 1 1] . ~ B y ~}[\mathbf{5}$, Theorem 3] the Baer condition is left-right symmetric. Semisimple artinian rings, domains and the rings of $n \times n$ upper triangular matrices over division rings are Baer, where $n=1,2, \ldots$.

A ring R is called a right pp-ring if each principal right ideal of R is projective, or equivalently, if the right annihilator of each element of R is generated by an idempotent. Baer rings are clearly right pp-rings. It was proved in [9] that if R is a commutative ring and (S, \leq) a strictly totally ordered monoid then the ring $\left[\left[R^{S, \leq}\right]\right]$ of generalized power series is a pp-ring if and only if R is a pp-ring and every S-indexed subset C of the set $B(R)$ of all idempotents of R has a least upper bound in $B(R)$. In this paper we show that if R is a commutative ring and (S, \leq) a strictly totally ordered monoid, then the ring $\left[\left[R^{S, \leq]]}\right.\right.$ of generalized power series is Baer if and only if R is Baer.

All rings considered here are associative with identity. Any concept and notation not defined here can be found in $[\mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}, 15]$.

Let (S, \leq) be an ordered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S will be denoted additively, and the neutral element by 0 . The following definition is due to P. Ribenboim. See $[12,13,14,15]$.

Let (S, \leq) be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s^{\prime}, t \in S$ and $s<s^{\prime}$, then $s+t<s^{\prime}+t$), and R a commutative ring. Let $A=\left[\left[R^{S, \leq}\right]\right]$ be the set of all maps $f: S \longrightarrow R$ such that $\operatorname{supp}(f)=\{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. With pointwise addition, A is an abelian additive group. For every $s \in S$ and $f, g \in A$, let $X_{s}(f, g)=\{(u, v) \in S \times S \mid$ $s=u+v, f(u) \neq 0, g(v) \neq 0\}$. It follows from $[14,1.16]$ that $X_{s}(f, g)$ is finite. This fact allows us to define the operation of convolution

[^0]$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) g(v) .
$$

With this operation, and pointwise addition, A becomes a commutative ring, called the ring of generalized power series. The elements of A are called generalized power series with coefficients in R and exponents in S.
 the usual ring of power series. If S is a commutative monoid and \leq is the trivial order, then $\left[\left[R^{S, \leq]]}=R[S]\right.\right.$, the monoid-ring of S over R. Further examples are given in $[10,13]$.

We shall use the following notations introduced by Ribenboim in [13].
Let $f, f^{\prime} \in A$. We say f is a section of f^{\prime} (denoted $f \leq f^{\prime}$) if $s<s^{\prime}$ for every $s \in \operatorname{supp}(f)$ and every $s^{\prime} \in \operatorname{supp}\left(f^{\prime}-f\right)$.

Let $r \in R$. Define a mapping $c_{r} \in A$ as follows:

$$
c_{r}(0)=r, \quad c_{r}(s)=0, \quad \text { for all } 0 \neq s \in S
$$

Let $s \in S$. Define a mapping $e_{s} \in A$ as follows:

$$
e_{s}(s)=1, \quad e_{s}(t)=0, \quad \text { for all } s \neq t \in S
$$

Lemma 1. ([8, Lemma 3]) If $f \preceq f^{\prime}$, then $f c_{r} \preceq f^{\prime} c_{r}$.
Recall that a monoid S is torsion-free if the following property holds: if $s, t \in S$, if k is an integer, $k \geq 1$ and $k s=k t$, then $s=t$.

Lemma 2. ([9, Lemma 2.2]) Let R be a reduced commutative ring and S a cancellative and torsion-free monoid. If $\phi^{2}=\phi \in\left[\left[R^{S, \leq}\right]\right]$, then there exists an idempotent $e \in R$ such that $\phi=c_{e}$.

Lemma 3. ([4]) A ring R is a reduced right pp-ring if and only if R is a right ppring with every idempotent central.

Lemma 4. Let R be a commutative ring and S a cancellative and torsion-free
 Baer.

Proof. Suppose that $\varnothing \neq X \subseteq R$. Then $C=\left\{c_{x} \mid x \in X\right\} \subseteq A$ and $C \neq \varnothing$. Since A is Baer, there exists an idempotent $\phi \in A$ such that $r_{A}(C)=\phi A$. Clearly A is a ppring. Thus, by Lemma 3, A is a reduced ring. Hence it is easy to see that R is reduced. Now, by Lemma 2, there exists an idempotent $e \in R$ such that $\phi=c_{e}$. For any $x \in X$, xe $=\left(c_{x} c_{e}\right)(0)=0$, and so $e \in r_{R}(X)$. Now, suppose that $p \in r_{R}(X)$. Then $x p=0$ for any $x \in X$. Thus $c_{x} c_{p}=0$ for any $x \in X$. This means that $c_{p} \in r_{A}(C)$, and so $c_{p}=c_{e} f$, for some $f \in A$. Now, $p=c_{p}(0)=\left(c_{e} f\right)(0)=e f(0) \in e R$. Thus $r_{R}(X)=e R$, where e is an idempotent of R. Hence R is Baer.

Lemma 5. Let R be a commutative ring and S a cancellative and torsion-free monoid such that (S, \leq) is narrow. If R is Baer, then A is Baer.

Proof. By [13, 3.3], there exists a compatible strict total order \leq^{\prime} on S that is
 a subring of A^{\prime} by $[\mathbf{1 3}, 4.4]$. Since (S, \leq) is narrow, $A=A^{\prime}$ by $[\mathbf{1 3}, 4.4]$, and so there is no loss of generality in assuming that (S, \leq) is totally ordered. We may assume that $S \neq 0$.

It is enough to show that the right annihilator of every nonempty ideal of A is generated by an idempotent. Let L be an ideal of A. We shall show that $r(L)=\phi A$ for an idempotent $\phi^{2}=\phi \in A$. For every $f \in A, f \neq 0, \operatorname{supp}(f)$ is a nonempty wellordered subset of S. We denote by $\pi(f)$ the smallest element of the support of f.

For every $s \in S$, set

$$
I_{s}=\{f(s) \mid f \in L, \pi(f)=s\},
$$

and $I=\cup_{s \in S} I_{s}$.
Since R is a Baer ring, there exists an idempotent $e^{2}=e \in R$ such that $r(I)=e R$. We shall show that $r(L)=c_{e} A$.

Let $g \in L$. Suppose that $g c_{e} \neq 0$, and $\pi\left(g c_{e}\right)=t$. Then $\left(g c_{e}\right)(t) \neq 0$. Since $g(t) e=\left(g c_{e}\right)(t) \in I_{t} \subseteq I$, it follows that $g(t) e=(g(t) e) e=0$, a contradiction. Thus, $g c_{e}=0$, for every $g \in L$. This means that $c_{e} A \leq r(L)$.

Assume $0 \neq g \in r(L)-c_{e} A$. Set $\pi(g)=s$. For every $a \in I$, there exist $u \in S$, $f \in L$, such that $a=f(u)$, and $\pi(f)=u$. Since $g \in r(L), f g=0$. Thus, by [15, 1.17], we have $f(u) g(s)=0$. Hence $a g(s)=0$. This means that $g(s) \in r(I)=e R$. Thus $g-c_{g(s)} e_{s} \in r(L)-c_{e} A$. Set $\pi\left(g-c_{g(s)} e_{s}\right)=t$. Then $\left(g-c_{g(s)} e_{s}\right)(t) \neq 0$. Since

$$
\left(g-c_{g(s)} e_{s}\right)(s)=g(s)-g(s) e_{s}(s)=0
$$

we have $s \neq t$. Thus $g(t)=\left(g-c_{g(s)} e_{s}\right)(t) \neq 0$, which implies that $s<t$.
Let α be an ordinal with cardinal greater than the cardinal $|S|$ of S, and Γ the set of all ordinals $\lambda<\alpha$. We shall show that for each $\lambda \in \Gamma$, there exists an element $f_{\lambda} \in A$ such that the following properties hold:

$$
\begin{aligned}
& f_{\mu} \preceq f_{v} \text { and } f_{\mu} \neq f_{v} \text { when } \mu<\nu, \\
& g-f_{\mu} c_{e} \in r(L), \\
& \pi\left(g-f_{\mu} c_{e}\right)<\pi\left(g-f_{\nu} c_{e}\right) \text { when } \mu<\nu, \\
& u<\pi\left(g-f_{\mu} c_{e}\right) \text { for any } u \in \operatorname{supp}\left(f_{\mu}\right) .
\end{aligned}
$$

First we set $f_{1}=c_{g(s)} e_{s}$.
Let $\lambda \in \Gamma$ and assume that we have already found the elements $f_{\mu} \in A$, for every $\mu<\lambda$, satisfying the above properties (for ordinals $\mu<\nu<\lambda$). We shall construct an element $f_{\lambda} \in A$ such that the properties above are satisfied for $\mu<v \leq \lambda$.

Suppose that there exists an ordinal η such that $\lambda=\eta+1$. If $g-f_{\eta} c_{e}=0$, then $g=f_{\eta} c_{e} \in c_{e} A$, a contradiction. Thus $g-f_{\eta} c_{e} \neq 0$. Set $g_{\eta}=g-f_{\eta} c_{e}$, and $t_{\eta}=\pi\left(g_{\eta}\right)$. Let $f_{\lambda}: S \longrightarrow R$ be defined by

$$
f_{\lambda}=f_{\eta}+c_{g_{\eta}\left(t_{\eta}\right)} e_{t_{n}} .
$$

Then $f_{\lambda} \in A$. We show that $f_{\eta} \leq f_{\lambda}$ and this implies that $f_{\mu} \preceq f_{\lambda}$ for any $\mu<\lambda$. Since $g_{\eta}\left(t_{\eta}\right) \neq 0$, it follows that

$$
\operatorname{supp}\left(f_{\lambda}-f_{\eta}\right)=\operatorname{supp}\left(c_{g_{n}\left(t_{\eta}\right)} e_{t_{\eta}}\right)=\left\{t_{\eta}\right\} .
$$

Suppose that $s \in \operatorname{supp}\left(f_{\eta}\right)$. Then, by hypothesis,

$$
s<\pi\left(g-f_{\eta} c_{e}\right)=t_{\eta} \in \operatorname{supp}\left(f_{\lambda}-f_{\eta}\right)
$$

Thus $f_{\eta} \preceq f_{\lambda}$. If $f_{\eta}=f_{\lambda}$, then $c_{g_{\eta}\left(t_{\eta}\right)} e_{t_{\eta}}=0$, and so $g_{\eta}\left(t_{\eta}\right)=\left(c_{g_{\eta}\left(t_{\eta}\right)} e_{t_{\eta}}\right)\left(t_{\eta}\right)=0$, which is a contradiction. If $f_{\mu}=f_{\lambda}$, where $\mu<\eta$, then $f_{\mu} \preceq f_{\eta} \preceq f_{\lambda}=f_{\mu}$. Thus, by [13, 5.3], $f_{\eta}=f_{\lambda}$, also a contradiction. Hence $f_{\mu} \neq f_{\nu}$ when $\mu<\nu \leq \lambda$.

It is easy to see that $g_{\lambda}=g-f_{\lambda} c_{e} \in r(L)$.
For every $a \in I$, there exist $u \in S, f \in L$, such that $a=f(u)$, and $\pi(f)=u$. Since $g_{\eta} \in r(L), f g_{\eta}=0$. Thus, by [15, 1.17], we have $f(u) g_{\eta}\left(t_{\eta}\right)=0$. Hence $a g_{\eta}\left(t_{\eta}\right)=0$. This means that $g_{\eta}\left(t_{\eta}\right) \in r(I)=e R$. Denote $\pi\left(g-f_{\lambda} c_{e}\right)=t_{\lambda}$. Since

$$
\begin{gathered}
\left(g-f_{\lambda} c_{e}\right)\left(t_{\eta}\right)=\left(\left(g-f_{\eta} c_{e}-c_{g_{\eta}\left(t_{\eta}\right)} e_{t_{\eta}} c_{e}\right)\left(t_{\eta}\right)\right. \\
=g_{\eta}\left(t_{\eta}\right)-g_{\eta}\left(t_{\eta}\right) e e_{t_{\eta}}\left(t_{\eta}\right)=0,
\end{gathered}
$$

it follows that $t_{\lambda} \neq t_{\eta}$. Thus

$$
\begin{aligned}
& \left(g-f_{\eta} c_{e}\right)\left(t_{\lambda}\right)=\left(g-f_{\eta} c_{e}\right)\left(t_{\lambda}\right)-g_{\eta}\left(t_{\eta}\right) e_{t_{\eta}}\left(t_{\lambda}\right) e \\
= & \left(g-f_{\eta} c_{e}-c_{g_{\eta}\left(t_{\eta}\right)} e_{t_{n}} c_{e}\right)\left(t_{\lambda}\right)=\left(g-f_{\lambda} c_{e}\right)\left(t_{\lambda}\right) \neq 0,
\end{aligned}
$$

and so $t_{\lambda} \in \operatorname{supp}\left(g-f_{\eta} c_{e}\right)$. Hence $t_{\eta}<t_{\lambda}$; that is, $\pi\left(g-f_{\eta} c_{e}\right)<\pi\left(g-f_{\lambda} c_{e}\right)$, which implies that $\pi\left(g-f_{\mu} c_{e}\right)<\pi\left(g-f_{\lambda} c_{e}\right)$, for any $\mu<\lambda$.

We now show that $u<\pi\left(g-f_{\lambda} c_{e}\right)$, for any $u \in \operatorname{supp}\left(f_{\lambda}\right)$. It is clear that

$$
\operatorname{supp}\left(f_{\lambda}\right)=\operatorname{supp}\left(f_{\eta}+c_{g_{\eta}\left(t_{\eta}\right)} e_{t_{\eta}}\right) \subseteq \operatorname{supp}\left(f_{\eta}\right) \cup \operatorname{supp}\left(c_{g_{\eta}\left(t_{\eta}\right)} e_{t_{\eta}}\right) .
$$

If $u \in \operatorname{supp}\left(f_{\eta}\right)$, then $u<\pi\left(g-f_{\eta} c_{e}\right)<\pi\left(g-f_{\lambda} c_{e}\right)$. If $u \in \operatorname{supp}\left(c_{g_{\eta}\left(t_{\eta}\right)} e_{t_{\eta}}\right)=\left\{t_{\eta}\right\}$, then $u=t_{\eta}=\pi\left(g-f_{\eta} c_{e}\right)<\pi\left(g-f_{\lambda} c_{e}\right)$.

Now let λ be a limit ordinal. For the family $\left\{f_{\mu} \mid \mu<\lambda\right\}$ of elements $f_{\mu} \in A$, it was proved, in [13, 5.4], that there exists an element $b=\preceq-\sup \left(f_{\mu}\right)_{\mu<\lambda} \in A$ such that
(i) $f_{\mu} \preceq b$ for every $\mu<\lambda$:
(ii) if $b^{\prime} \in A$ and $f_{\mu} \preceq b^{\prime}$ for every $\mu<\lambda$, then $b \preceq b^{\prime}$.

Let $f_{\lambda}=b=\preceq-\sup \left(f_{\mu}\right)_{\mu<\lambda}$. By (i), we know that $f_{\mu} \preceq f_{\lambda}$, for every $\mu<\lambda$, and that $g_{\lambda}=g-f_{\lambda} c_{e} \in r(L)$. If $f_{\mu}=f_{\lambda}$, then $f_{\mu} \preceq f_{\mu+1} \preceq f_{\lambda}=f_{\mu}$, and thus $f_{\mu}=f_{\mu+1}$, a contradiction. Hence $f_{\mu} \neq f_{\lambda}$ for every $\mu<\lambda$.

For every $\mu<\lambda$,

$$
g-f_{\lambda} c_{e}=g-f_{\mu} c_{e}-\left(f_{\lambda}-f_{\mu}\right) c_{e}
$$

Thus, by [13, 4.2], we have

$$
\begin{equation*}
\pi\left(g-f_{\lambda} c_{e}\right) \geq \min \left\{\pi\left(g-f_{\mu} c_{e}\right), \pi\left(\left(f_{\lambda}-f_{\mu}\right) c_{e}\right)\right\} . \tag{*}
\end{equation*}
$$

Let $\pi\left(g-f_{\mu} c_{e}\right)=t_{\mu}$. Since $f_{\mu} \preceq f_{\mu+1} \preceq f_{\lambda}$, by Lemma 1, we have

$$
f_{\mu} c_{e} \preceq f_{\mu+1} c_{e} \preceq f_{\lambda} c_{e}
$$

If $f_{\mu} c_{e}=f_{\mu+1} c_{e}$, then $t_{\mu}=t_{\mu+1}$, a contradiction. Thus $f_{\mu} c_{e} \neq f_{\mu+1} c_{e}$. If $f_{\mu+1} c_{e}=f_{\lambda} c_{e}$, then

$$
f_{\mu+1} c_{e} \preceq f_{\mu+2} c_{e} \preceq f_{\lambda} c_{e}=f_{\mu+1} c_{e} .
$$

Thus, by [13, 5.3], $f_{\mu+1} c_{e}=f_{\mu+2} c_{e}$, and so $t_{\mu+1}=t_{\mu+2}$, which is a contradiction. Hence $f_{\mu+1} c_{e} \neq f_{\lambda} c_{e}$. Thus, by [13, 5.4], it follows that

$$
\begin{gathered}
\pi\left(\left(f_{\lambda}-f_{\mu}\right) c_{e}\right)=\pi\left(\left(f_{\mu+1}-f_{\mu}\right) c_{e}\right)=\pi\left(\left(g-f_{\mu} c_{e}\right)-\left(g-f_{\mu+1} c_{e}\right)\right) \\
\geq \min \left\{\pi\left(g-f_{\mu} c_{e}\right), \pi\left(g-f_{\mu+1} c_{e}\right)\right\}=\min \left\{t_{\mu}, t_{\mu+1}\right\}=t_{\mu} .
\end{gathered}
$$

Thus, by (*),

$$
t_{\lambda}=\pi\left(g-f_{\lambda} c_{e}\right) \geq t_{\mu}
$$

Hence, $t_{\mu} \leq t_{\lambda}$ for all $\mu<\lambda$ so that $t_{\mu}<t_{\mu+1} \leq t_{\lambda}$ and $t_{\mu} \neq t_{\lambda}$. Thus $t_{\mu}<t_{\lambda}$.
We now show that $u<\pi\left(g-f_{\lambda} c_{e}\right)$, for any $u \in \operatorname{supp}\left(f_{\lambda}\right)$. Since

$$
\operatorname{supp}\left(f_{\lambda}\right)=\cup_{\mu<\lambda} \operatorname{supp}\left(f_{\mu}\right)
$$

by [13, 5.4], there exists an ordinal $\mu<\lambda$ such that $u \in \operatorname{supp}\left(f_{\mu}\right)$. Thus $u<t_{\mu}<t_{\lambda}$.
Now, we deduce that if $\mu<\nu, \mu, \nu \in \Gamma$ then $t_{\mu}<t_{\nu}$. Thus $\left|\left\{t_{\lambda} \mid \lambda \in \Gamma\right\}\right|=$ $|\Gamma|>|S|$, and this is impossible.

Thus, we have $r(L)=c_{e} A$. Now the result follows.
Theorem 6. Let R be a commutative ring and S a cancellative and torsion-free
 ies. Then A is Baer if and only if R is Baer.

Corollary 7. Let R be a commutative ring and (S, \leq) a strictly totally ordered monoid. Then A is Baer if and only if R is Baer.

Proof. By [13, 3.2], S is cancellative and torsion-free. Now the result follows from Theorem 6.

The following corollaries will give more examples of Baer rings.
Corollary 8. Let $\mathbb{Q}^{+}=\{a \in \mathbb{Q} \mid a \geq 0\}$, $\mathbb{R}^{+}=\{a \in \mathbb{R} \mid a \geq 0\}$. Then the rings
 the usual order.

Corollary 9. Let R be a commutative ring. Set $R((X))=\left[\left[R^{\mathbb{Z}, \leq]] \text {, the ring of }}\right.\right.$ Laurent series over R where \leq is the usual order on \mathbb{Z}. Then $R((X))$ is Baer if and only if R is Baer.

Note. See [16, p. 335] for the definition of the ring of Laurent series over R.
It was shown in [3, Corollary 1.10] that for a reduced ring R, the ring $R((X))$ of Laurent series over R is Baer if and only if R is Baer. Since a commutative Baer ring
is reduced, it is natural to ask if some of the results of this paper remain true in the more general case of R being reduced rather than commutative.

Corollary 10. Let $\left(S_{1}, \leq_{1}\right), \ldots \ldots,\left(S_{n}, \leq_{n}\right)$ be totally strictly ordered monoids. Denote by $($ lex $\leq)$ and (revlex \leq) the lexicographic order, the reverse lexicographic order, respectively, on the monoid $S_{1} \times \ldots \times S_{n}$. Let R be a commutative ring. Then the following statements are equivalent.
(1) The ring $\left[\left[R^{\left.S_{1} \times \ldots \times S_{n},(l e x \leq)\right]}\right]\right.$ is Baer.
(2) The ring $\left[\left[R^{S_{1} \times \ldots \times S_{n},(\text { revlex } \leq)}\right]\right]$ is Baer.
(3) R is Baer.

Proof. (1) $\Longleftrightarrow(3)$. It is easy to see that $\left(S_{1} \times \ldots \times S_{n},(\right.$ lex $\left.\leq)\right)$ is a totally strictly ordered monoid. Thus, by Corollary $7,\left[\left[R^{S_{1} \times \ldots \times S_{n},(l e x \leq)}\right]\right]$ is Baer if and only if R is Baer.

The proof of $(2) \Longleftrightarrow(3)$ is similar.
Let R be a commutative ring, and consider the multiplicative monoid $\mathbb{N}_{\geq 1}$, endowed with the usual order \leq. Then $A=\left[\left[R^{\mathbb{N}} \geq_{1}, \leq\right]\right]$ is the ring of arithmetical functions with values in R, endowed with the Dirichlet convolution

$$
(f g)(n)=\sum_{d \mid n} f(d) g(n / d), \quad \text { for each } \quad n \geq 1 .
$$

Corollary 11. Let R be a commutative ring. Then $A=\left[\left[R^{\mathbb{N}} \geq 1, \leq\right]\right]$ is Baer if and only if R is Baer.

Let (S, \leq) be a strictly totally ordered monoid that is also artinian. For any $s \in S$, set $X_{s}=\{(u, v) \mid u+v=s, u, v \in S\}$. Then from [16, 4.1], it follows that X_{s} is a finite set. Let V be a free abelian additive group with the base consisting of elements of S. Then V is a coalgebra over \mathbb{Z} with the comultiplication map and counit map as follows:

$$
\begin{aligned}
& \Delta(s)=\sum_{(u, v) \in X_{s}} u \otimes v, \\
& \epsilon(s)= \begin{cases}1 & s=0 \\
0 & s \neq 0\end{cases}
\end{aligned}
$$

Corollary 12. Let R be a commutative ring. Then, using the notations above, the dual algebra $\operatorname{Hom}(V, R)$ is a Baer ring if and only if R is a Baer ring.

Acknowledgements. It is a pleasure to thank the referee for the careful reading of the paper and his/her helpful suggestions.

REFERENCES

1. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. Ser A, 18 (1974), 470-473.
2. G. F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hungar. 59 (1992), 319-326.
3. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25-42.
4. J. A. Fraser and W. K. Nicholson, Reduced PP-rings, Math. Japonica 34 (1989), 715-725.
5. I. Kaplansky, Rings of operaters (W. A. Benjamin. Inc., New York, 1968).
6. Y. Lee and C. Hun, Counterexamples on PP-rings, Kyungpook Math. J. 38 (1998), 421-427.
7. Y. Lee, N. K. Kim and C. Y. Hong, Counterexamples on Baer rings, Comm. Algebra 25 (1997), 497-507.
8. Liu Zhongkui and Li Fang, PS-rings of generalized power series, Comm. Algebra 26 (1998), 2283-2291.
9. Liu Zhongkui and J. Ahsan, PP-rings of generalized power series, Acta Mathematica Sinica 16 (2000), 573-578.
10. Liu Zhongkui, Endomorphism rings of modules of generalized inverse polynomials, Comm. Algebra 28 (2000), 803-814.
11. A. C. Mewborn, Regular rings and Baer rings, Math. Z. 121 (1971), 211-219.
12. P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg 61 (1991), 15-33.
13. P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra 79 (1992), 293-312.
14. P. Ribenboim, Rings of generalized power series II: units and zero-divisors, J. Algebra 168 (1994), 71-89.
15. P. Ribenboim, Special properties of generalized power series, J. Algebra 173 (1995), 566-586.
16. P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), 327-338.

[^0]: *Research supported by the NSF of China (10171082) and by the Foundation for University Key Teachers of the Ministry of Education.

