SEPARATION AXIOMS AND DIRECT LIMITS

Horst Herrlich

A topological space X is called a direct limit of a family (X_{α}) of subspaces of X if and only if

- (1) $\cup \mathbf{X}_{\alpha} = \mathbf{X}$
- (2) a subset of X is closed in X provided that its intersection with each X_{α} is closed in X_{α} .

If X is a direct limit of an increasing sequence (X_n) of closed subspaces then it is well known and easy to prove that X is a T_1 -space resp. a T_4 -space provided all X_n are T_1 -spaces resp. T_4 -spaces. The following example shows that the corresponding statement is false for any of the properties T_2 , Urysohn (i.e., for any two different points there exist disjoint closed neighbourhoods); T_3 , or completely regular.

All spaces considered in this paper are assumed to be T_4 -spaces.

Example. Let (C_n) be a sequence of pairwise disjoint, completely regular, non-normal spaces and let (A_n, B_n) be a pair of disjoint closed subsets of C_n which cannot be separated by open sets in C_n . Add to the union of all C_n two points a and b and topologize this set X in the following manner:

 $U \subset X \text{ open} \Rightarrow \begin{cases} 1. \quad U \cap C_n \text{ is open in } C_n \text{ for all } n; \\\\ 2. \quad a \in U \Rightarrow A_n \subset U \text{ for all but a finite number of} \\\\ 3. \quad b \in U \Rightarrow B_n \subset U \text{ for all but a finite number of} \end{cases}$

Then X is not a T_2 -space but is a direct limit of the increasing sequence of completely regular, closed subspaces

$$X_{n} = \{a, b\} \cup \bigcup_{1}^{\infty} A_{m} \cup \bigcup_{1}^{\infty} B_{m} \cup \bigcup_{1}^{n} C_{m}.$$

337

 $\begin{array}{c} \underline{Remark} \text{. (B. Banaschewski), } X \times X \text{ is not a direct limit of} \\ (X_n \times \overline{X_n}) \text{ since the diagonal } \Delta X \text{ of } X \times X \text{ is not closed in } X \times X \text{ but,} \\ \text{for all } n, \ \Delta X \cap (X_n \times \overline{X_n}) = \Delta X_n \text{ is closed in } X_n \times \overline{X_n}. \end{array}$

II. Math. Institut Freie Universität Berlin 1 Berlin 33