BULL. AUSTRAL. MATH. SOC. VOL. 9 (1973), 267-274.

Finite groups which are the product of two nilpotent subgroups

Fletcher Gross

Suppose G = AB where G is a finite group and A and B are nilpotent subgroups. It is proved that the derived length of G modulo its Frattini subgroup is at most the sum of the classes of A and B. An upper bound for the derived length of G in terms of the derived lengths of A and B also is obtained.

1. Introduction

Suppose G is a finite group which is the product of two nilpotent subgroups A and B. That G must be solvable was proved by Kegel [5]. It has been conjectured that d(G), the derived length of G, is at most c(A) + c(B) where c(A) and c(B) denote the class of A and B, respectively. This conjecture has been verified only in two special cases:

- (1) when A and B are both abelian ($|+\hat{o}[4]$), and
- (2) when A and B have relatively prime orders (Hall and Higman [3]).

One of the principal theorems of the present paper is that if D(G) is the Frattini subgroup of G, then $d(G/D(G)) \leq c(A) + c(B)$. As a result, the problem of finding some upper bound for d(G) in terms of c(A) and c(B)is reduced to finding a bound on d(D(G)). But D(G) is nilpotent, and, if P and Q are Sylow p-subgroups of A and B, respectively, a theorem of Wielandt [6] implies that PQ is a Sylow p-subgroup of G. Hence, if f(x, y) were some function such that whenever S = PQ, where

Received 8 May 1973. The research was supported in part by a grant from the National Science Foundation of the USA.

S is a p-group and P and Q are subgroups, it followed that $d(A) \leq f(c(P), c(Q))$, then it would be true that $d(G) \leq f(c(A), c(B)) + c(A) + c(B)$. Thus one consequence of this paper is that the original problem is reduced to a problem concerning p-groups. Unfortunately, G/D(G) is abelian if G is a p-group, and so the results of this paper are trivial for p-groups.

It is also possible to bound d(G/D(G)) in terms of other invariants of A and B. For example, if the Sylow 2-subgroups of both A and Bhave class at most 2, then $d(G/D(G)) \leq d(A)d(B) + 1$. Under a similar hypothesis, the nilpotent length of G is at most d(A) + d(B). In comparing these results with the previous one, it should be remembered that, in general, d(A) is much smaller than c(A) (to be more specific, $d(A) \leq 1 + \log_2(c(A))$). I conjecture that the requirement on the Sylow 2-subgroups of A and B in these theorems is unnecessary.

2. Preliminaries

All groups considered in this paper are finite and solvable. F(G)and D(G) denote the Fitting and Frattini subgroups of G, respectively. G' is the derived group of G and $G^{(n)}$ is defined inductively by $G^{(0)} = G$ and $G^{(n+1)} = (G^{(n)})'$. d(G) and l(G) are the derived length and nilpotent length, respectively, of G. If G is nilpotent, c(G) is the class of G. If p is a prime, then $l_p(G)$ is the p-length of Gand $\mathcal{O}_p(G)$ and $\mathcal{O}_p(G)$ are the largest normal p-subgroup and p'-subgroup of G, respectively. $\mathcal{O}_{pp'}(G)$ is defined by $\mathcal{O}_{p'}(G/\mathcal{O}_p(G)) = \mathcal{O}_{pp'}(G)/\mathcal{O}_p(G)$. If A and B are subsets of G, then [A, B] is the subgroup of G generated by all elements of the form $x^{-1}y^{-1}xy$ where $x \in A$ and $y \in B$. If C is a third subset, then [A, B, C] = [[A, B], C]. $\mathcal{C}_G(A)$ is the centralizer of A in G and Z(G) is the center of G. |S| denotes the number of elements in the set S.

If *n* is a positive integer, F_n denotes the collection of all groups *G* satisfying $d(G/D(G)) \leq n$. It is an easy exercise to verify

268

that the group G belongs to F_n if, and only if, $G^{(n-1)}$ is nilpotent. It is immediate from this that F_n is a saturated formation in the sense of Gaschütz [1]. N_n is the collection of all groups G of nilpotent length at most n. N_n is also a saturated formation.

LEMMA 1. Suppose G is a group and F is a saturated formation such that G \notin F but F contains every proper homomorphic image of G. Then D(G) = 1 and G has only one minimal normal subgroup.

This follows directly from the definition of a saturated formation.

LEMMA 2. Let G be a group, p a prime, and P a Sylow p-subgroup of G. Assume that $O_p(G) = 1$ and that either p > 2 or $c(P) \le 2$. Then $d(P/O_p(G)) \le d(P) - 1$.

This follows from [3, Theorem 3.2.1] if p > 3, from [3, Theorem 3.2.2] if p = 3, and from [3, Lemma 1.2.3] if p = 2.

LEMMA 3. Let P be a Sylow 2-subgroup of G and assume that c(P) = 3. Then d(P) = 2 and $l_2(G) \le 2$.

Proof. Without loss of generality, we may assume that $O_{2^{\prime}}(G) = 1$. P is not abelian and $P^{(2)} \subseteq [P, P, P, P] = 1$. Hence d(P) = 2. Let Vbe $O_2(G)/D(O_2(G))$ written additively. Since [y, x, x, x] = 1 for all x and y in P, it follows that if we represent $G/O_2(G)$ as a linear group operating on V, then $G/O_2(G)$ satisfies the hypothesis of Theorem 3.1 of [2]. Hence $l_2(G/O_2(G)) \leq 1$ by that theorem. Lemma 3 now follows.

THEOREM 1. Assume that A and B are proper nilpotent subgroups of the group G such that G = AB. Assume that D(G) = 1 and that G has only one minimal normal subgroup M. Let p be a prime dividing |M|. Then $M = O_p(G) = F(G) \neq G$ and one of A and B is a Sylow p-subgroup of G while the other is a Hall p'-subgroup of G.

Proof. Since G is solvable, M is an elementary abelian p-group. Due to the uniqueness of M, $F(G) = O_p(G) \supseteq M$. Let J and K be the

Hall p'-subgroups of A and B, respectively. Let P and Q be the Sylow p-subgroups of A and B, respectively. Then by a theorem of Wielandt [6], PQ is a Sylow p-subgroup of G and JK is a Hall p'-subgroup of G. Since D(G) = 1, there is a maximal subgroup Hwhich does not contain M. Then MH = G, and, since M is abelian, $M \cap H$ is normal in MH. Hence $M \cap H = 1$, and so H is a complement to M in G. Then |H| = |G/M| which implies that H contains a Hall p'-subgroup of G. Replacing H by a conjugate if necessary, we may assume that H contains JK.

Since $C_H(M)$ is normal in MH = G and $M \cap H = 1$, we must have $C_H(M) = 1$. Hence $C_G(M) = MC_H(M) = M$. Next, $M \cap Z(F(G))$ is a nonidentity normal subgroup of G. The minimality of M implies that $M \subseteq Z(F(G))$. Then $F(G) \subseteq C_G(M) = M$. Hence M = F(G). If G = M, then G can have no proper non-identity subgroup which would imply that |G| = p. Since A and B are both proper and G = AB, this is impossible. Thus $G \neq M$.

Since $M \subseteq PQ$ and $[PQ, J \cap K] = 1$, $J \cap K \subseteq C_G(M) = M$. Therefore $J \cap K = 1$. Now let $R = O_{p'}(H)$. H is isomorphic to G/M and $M = O_p(G)$. Hence $O_p(H) = 1$. It follows from this that $C_H(R) = Z(R)$. Now $C_M(R)$ is normal in MH = G and M is a minimal normal subgroup of G. Thus $C_M(R)$ is either 1 or M. But $C_M(R) = M$ would imply that $R \subseteq C_G(M) = M$, an impossibility. Thus $C_M(R) = 1$. Since $C_G(R) \subseteq C_H(R)M = Z(R)M$ and $C_M(R) = 1$, we must have $C_G(R) = Z(R)$. But $R \subseteq JK$ and $[JK, P \cap Q] = 1$. Hence $P \cap Q = 1$, which implies that $A \cap B = 1$. Therefore |G| = |A| |B|.

Now let $A_1 = AM \cap H$ and $B_1 = BM \cap H$. Since $AM = M(AM \cap H)$ and $A_1 \cap M = H \cap M = 1$, A_1 is isomorphic to AM/M which is isomorphic to the nilpotent group $A/(A \cap M)$. Similarly, B_1 is isomorphic to $B/(B \cap M)$. Clearly J and K are Hall p-subgroups of A_1 and B_1 , respectively. Thus if L is a p-subgroup of $A_1 \cap B_1$, then $[R, L] \subseteq [JK, L] = 1$. Since $C_G(R)$ is a p'-group, it follows that $A_1 \cap B_1$ is a p'-group. Then $A_1 \cap B_1 \subseteq J \cap K = 1$. Hence

$$\begin{split} |A_{1}B_{1}| &= |A_{1}||B_{1}| = |A||B|/(|A \cap M||B \cap M|) \\ &= |G|/|(A \cap M)(B \cap M)| \geq |G|/|M| = |H| . \end{split}$$

Since $A_1B_1 \subseteq H$, this implies that $A_1B_1 = H$ and $M = (A \cap M)(B \cap M)$.

Now $A \cap M \subseteq C_M(J)$. Therefore $C_M(J) = (A \cap M) (B \cap M \cap C_M(J))$. But $C_M(J) \cap B \cap M \subseteq C_M(JK) \subseteq C_M(R) = 1$. Thus $C_M(J) = A \cap M$. Similarly $C_M(K) = B \cap M$.

Suppose now that [J, K] = 1. Then $C_M(J)$ and $C_M(K)$ are both normalized by JK. Since $C_M(J) \cap C_M(K) = 1$, $C_M(J) = [C_M(J), K] \subseteq [M, K]$. Since $M = [M, K] \times C_M(K)$ and $M = C_M(J) \times C_M(K)$, we must have $[M, K] = C_M(J)$. Similarly. $[M, J] = C_M(K)$. Since P normalizes J and Q normalizes K, it follows that PQ normalizes both $C_M(J)$ and $C_M(K)$. Thus $C_M(J)$ and $C_M(K)$ are normal in (JP)(KQ) = AB = G. Due to the minimality of M, one of $C_M(J)$ and $C_M(K)$ is 1. Assume, say, that $C_M(J) = 1$. Then $C_M(K) = M$. Hence $K \subseteq C_G(M) = M$ and so K = 1. Then $P \subseteq C_G(J) = C_G(JK) \subseteq C_G(R) = Z(R)$ which implies that P = 1. It now follows that A is a Hall p'-subgroup and B is a Sylow p-subgroup.

We now assume that $[J, K] \neq 1$ and derive a contradiction. Let T = [J, K]. Since T is a p'-group; $[M, T] \neq 1$. From Maschke's Theorem, there is a subgroup N in M such that N is a minimal normal subgroup in MJK and $[N, T] \neq 1$. If $x \in N$, then x = yz for some $y \in C_M(J)$ and $z \in C_M(K)$. Then $N \supseteq [x, J] = [z, J]$. It follows from this that $Nz \in C_M(JK) = C_M(JK)N/N = N/N$. Hence $z \in C_N(K)$. Similarly, $y \in C_N(J)$. It now follows that $N = C_N(J) \times C_N(K)$.

Suppose that $C_N(J) = 1$. Then [N, K] = 1. In that case

[N, K, J] = 1 and [N, J, K] = [N, K] = 1. The three subgroups lemma yields [T, N] = 1. Hence $C_N(J) \neq 1$. Similarly $C_N(K) \neq 1$. Then both [N, J] and [N, K] are proper subgroups of N.

Let S be a maximal subgroup of N containing [N, J]. Then J normalizes S and so $(S \cap C_N(K))^{MKJ} = (S \cap C_N(K))^J \subseteq S$. Due to the minimality of N, we must have $S \cap C_N(K) = 1$. Since |N/S| = p, we must have $|C_N(K)| = p$. Similarly $|C_N(J)| = p$ and so $|N| = p^2$.

Then |[N, J]| = p. Since the automorphism group of a group of order p is abelian, $J/C_J(N)$ must be abelian. Similarly $K/C_K(N)$ is abelian. Now let $U = JK/C_{JK}(N)$, $J_1 = JC_{JK}(N)/C_{JK}(N)$, and $K_1 = KC_{JK}(N)/C_{JK}(N)$. Then J_1 and K_1 are abelian and $U = J_1K_1$. A theorem of |+6|[4] implies that there is a non-identity normal subgroup of U contained in either J_1 or K_1 . Assume then that L is a non-identity normal subgroup of U and $L \subseteq J_1$. Then $C_N(L)$ is normal in MJK and $C_N(L) \neq N$. The minimality of N implies that $C_N(L) = 1$ which contradicts $C_N(L) \supseteq C_N(J_1) = C_N(J) \neq 1$. This contradiction finishes the proof of the theorem.

3. The main theorems

For the rest of the paper, we assume that A and B are nilpotent subgroups of the group G such that G = AB.

THEOREM 2. $d(G/D(G)) \leq c(A) + c(B)$.

Proof. Let G be a minimal counter-example and let n = c(A) + c(B). If N is a non-identity normal subgroup of G, then due to the minimality of G we must have $d((G/N)/D(G/N)) \leq n$. Hence $G/N \in F_n$ but $G \notin F_n$. Since the theorem is certainly true if G is nilpotent, A and B must be proper. Applying Lemma 1 and Theorem 1, we find that (|A|, |B|) = 1 and D(G) = 1. The theorem now follows from [3, Theorem 1.2.4].

THEOREM 3. Assume that the Sylow 2-subgroups of both A and B

have class at most 2. Then

 $d\{G/D(G)\} \leq d(A)d(B) + 1$

Proof. Let G be a minimal counter-example and let n = d(A)d(B) + 1. Then F_n does not contain G but does contain every proper homomorphic image of G. By Lemma 1, D(G) = 1 and G has exactly one minimal normal subgroup M. A and B must be proper and so the hypothesis of Theorem 1 is satisfied. Thus, without loss of generality, we may assume that A is a Sylow p-subgroup of G, that $M = O_p(G) = F(G)$, and that B is a Hall p'-subgroup of G. Lemma 2 implies that d(A/M) = d(A) - 1. Then

$$d((G/M)/D(G/M)) \leq (d(A)-1)d(B) + 1$$

Hence, if m = n - d(B) and H = G/M, then $H \in F_m$. As pointed out earlier, $H \in F_m$ if, and only if, $H^{(m-1)}$ is nilpotent. Thus $d(H/F(H)) \leq m - 1$. Since $O_p(H) = 1$, $d(F(H)) \leq d(B)$. Thus $d(H) \leq m - 1 + d(B)$. This implies that $d(G) \leq d(H) + 1 \leq n$.

THEOREM 4. Assume that the Sylow 2-subgroups of both A and B have class at most 3. Then $l(G) \leq d(A) + d(B)$.

Proof. Let G be a minimal counter-example and let r = d(A) + d(B). Then N_p contains every proper homomorphic image of G but does not contain G. Therefore, as in the proof of Theorem 3, we may assume that $F(G) = O_p(G)$, that A is a Sylow p-subgroup of G, and that B is a Hall p'-subgroup of G. Let H = G/F(G). Then $l(G) = l(H) + 1 \leq d(B) + d(A/F(G)) + 1$. Since G is a counter-example, we must have d(A/F(G)) = d(A). It follows from Lemma 2 that p = 2 and c(A) = 3. Then Lemma 3 implies that $l_2(G) \leq 2$. From this, we obtain $l(G) \leq 4$. Since l(G) > d(A) + d(B), we must have d(B) = 1. Since F(H) is a 2'-group and $C_H(F(H)) \subseteq F(H)$, it follows that H/F(H) is a 2-group. Therefore $l(H) \leq 2$. Then $l(G) \leq 3 = d(A) + d(B)$ and the theorem is proved.

Fletcher Gross

References

- [1] Wolfgang Gaschütz, "Zur Theorie der endlichen auflösbaren Gruppen", Math. Z. 80 (1963), 300-305.
- [2] Fletcher Gross, "The 2-length of groups whose Sylow 2-groups are of exponent 4 ", J. Algebra 2 (1965), 312-314.
- [3] P. Hall and Graham Higman, "On the p-length of p-soluble groups and reduction theorems for Burnside's problem", Proc. London Math. Soc. (3) 6 (1956), 1-42.
- [4] Noboru Itô, "Über das Produkt von zwei abelschen Gruppen", Math. Z. 62 (1955), 400-401.
- [5] Otto H. Kegel, "Produkte nilpotenter Gruppen", Arch. Math. 12 (1961), 90-93.
- [6] Helmut Wielandt, "Über das Produkt paarweise vertauschbarer nilpotenter Gruppen", Math. Z. 55 (1951), 1-7.

Department of Mathematics, The University of Utah, Salt Lake City, Utah, USA.