REVIEW ARTICLE

Global Meningococcal Initiative: guidelines for diagnosis and confirmation of invasive meningococcal disease

J. A. VÁZQUEZ1*†, M. K. TAHA2†, J. FINDLOW3†, S. GUPTA4 AND R. BORROW3

1 National Reference Laboratory for Meningococci, Institute of Health Carlos III, Majadahonda Spain
2 Institut Pasteur, Invasive Bacterial Infections Unit and National Reference Centre for Meningococci, Paris, France
3 Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
4 Department of Microbiology, National Centre for Disease Control, New Delhi, India

Received 11 February 2016; Final revision 26 May 2016; Accepted 1 June 2016; first published online 30 June 2016

SUMMARY

The Global Meningococcal Initiative (GMI) is an international group of scientists and clinicians with recognized expertise in meningococcal disease including microbiology, immunology, epidemiology, public health and vaccinology. The GMI was established to promote the global prevention of meningococcal disease through education, research and international cooperation. The GMI held its second summit meeting in 2013 to discuss the different aspects of existing meningococcal immunization programmes and surveillance systems. Laboratory confirmation and characterization were identified as essential for informing evidence-based vaccine implementation decisions. The relative merits of different confirmatory methodologies and their applications in different resource settings were a key component of the discussions. This paper summarizes the salient issues discussed, with special emphasis on the recommendations made and any deficiencies that were identified.

Key words: Diagnosis, GMI, meningitis, meningococcal disease.

INTRODUCTION

The Global Meningococcal Initiative (GMI) is an independent, expert forum of scientists, clinicians and public health officials from across the world. GMI members have recognized expertise in meningococcal disease (MD), including aspects related to microbiology, immunology, epidemiology, public health and vaccinology. The Initiative aims to promote the global prevention of MD through education, research and international cooperation [1].

From data presented at a GMI summit meeting in 2010, it was apparent that meningococcal epidemiology is continuously changing and that there are significant regional and temporal differences. It was therefore recommended that country-region-specific vaccination recommendations – as opposed to global guidelines – should be developed [1]. Consequently, subsequent GMI meetings have been regionally focused [2, 3], but the GMI has maintained its general principles regarding the promotion of laboratory-based surveillance as the main tool for understanding the true burden of the disease, as well as evaluating meningococcal immunization programmes, particularly for resource-poor countries [1].

The GMI held its second summit meeting in 2013 to discuss various aspects of existing meningococcal
immunization surveillance programmes, with a focus on the areas where knowledge and experience are lacking. The relative merits of different confirmatory and characterization methodologies, and their application into different resource settings, were a key component of the discussions. This paper summarizes the salient issues discussed at this meeting and the subsequent discussions.

SAFETY CONSIDERATIONS WHEN HANDLING MENINGOCOCCI IN THE LABORATORY

Neisseria meningitidis is classified as a hazard group 2 organism and should be handled under containment level 2 or higher. Laboratory staff will be at risk when handling live meningococcal cultures and clinical samples containing viable meningococci if the appropriate safety controls are not maintained [4].

Laboratory staff

Staff must be informed and trained on the biological risks of working with meningococci and informed on the signs and symptoms of MD. It is of paramount importance that all standard operating procedures and risk assessments are implemented and followed. Vaccination of staff with available meningococcal vaccines is strongly recommended and vaccinations against other agents (including hepatitis B) should be kept up to date.

Laboratory

The main safety risk is exposure to aerosols containing viable meningococci. It is therefore of paramount importance that any procedure that could result in the production of aerosols (e.g. handling liquid suspensions) is undertaken with appropriate containment and, where possible, the risk of aerosol production should be engineered out of the processes (by replacing liquid culture with solid culture, for example).

CURRENT DIAGNOSIS, CONFIRMATION AND CHARACTERIZATION OF INVASIVE MENINGOCOCCAL DISEASE (IMD)

Although immediate antibiotic treatment should not be delayed upon suspicion of IMD, diagnosis requires rapid confirmation to enable reliable antibiotic treatment of patient and chemophrophylaxis among contacts. This should be followed by characterization to further inform contact management; for example, through immunization if the pathogen is found to be vaccine preventable.

Diagnosis: clinical criteria

Early signs and symptoms are usually unspecific. Patients may present with headache, neck stiffness, fever, projectile vomiting and photophobia, also with lethargy or altered consciousness in more advanced disease [5]. Presence of a non-blanching haemorrhagic rash (purpura fulminans) is distinctive for IMD and usually prompts immediate antibiotic treatment. Although meningitis and sepsis are the two most frequent symptoms, other presentations may also be observed (e.g. arthritis and pericarditis). For example, the US Centers for Disease Control and Prevention (CDC) lists clinical purpura fulminans as the clinical criterion for suspected IMD [6], while the European Centre for Disease Prevention and Control (ECDC) clinical criteria include any person with at least one of the following: meningeal signs, haemorrhagic rash, septic shock or septic arthritis [7]. Australian guidance similarly gives the absence of evidence for other causes of clinical symptoms, combined with either clinically compatible disease including haemorrhagic rash or compatible disease, plus close contact with a confirmed case within the previous 60 days [8].

Case confirmation

Meningococci are Gram-negative diplococci and are found extracellularly or intracellularly in peripheral mononuclear leukocytes. The initial laboratory screening of a potential IMD case can incorporate a number of widely available and well-established laboratory evaluations; samples may be taken from cerebrospinal fluid (CSF), peripheral blood or skin lesions or, when symptoms indicate, from synovial, pleural or pericardial fluid [6]. For example, cytology using CSF or peripheral blood smears, detection of bacterial polysaccharides, as well as detection of blood markers such as C-reactive protein, are methods available in most hospital laboratories and often enable differentiation between viral or bacterial meningitis.

Recommendations for the use of specific methods for diagnosis and confirmation will depend largely on the case definition employed. For example, in
some countries, the presence of Gram-negative diplo-
cocci in a CSF or blood smear – or from another nor-
mally sterile site – is considered confirmatory, while in
others, blood smears from skin lesions are also noted
as confirmatory [6–8]. Antigen detection by immuno-
histochemistry is also considered confirmatory in
some countries [6, 7].

Microbiological methods

The timing of specimen collection is crucial for suc-
cessful processing of N. meningitidis culture [9].
False-negative results may result from early antibiotic
treatment and incorrect handling or culturing of sam-
ple [9]. Growth is optimal at 35–37 °C in ~5% CO₂,
on blood agar or chocolate agar plates [9, 10].

Detection of soluble bacterial polysaccharides in
CSF by latex agglutination is widely used to confirm
N. meningitidis infection and can provide some typing
information. It requires no specialized facilities or
training (apart of centrifugation and reagents refriger-
ation), although timing of specimen collection is an
issue and has been associated with false negatives;
moreover, results are variable when used for direct
detection in clinical samples such as CSF, with sen-
sitivities ranging between 32% and 96% [11], particu-
larly in capsular group B cases. Latex agglutination
is also very effective in identifying capsular groups
A, B, C, W and Y from culture.

N. meningitidis meningococci show a positive result
in Kovac’s oxidase test. This test determines the pres-
ence of cytochrome oxidase, i.e. presence of an organ-
ism containing cytochrome c as part of its respiratory
chain – this could be N. meningitidis but also other
bacterial organisms. As such, carbohydrate utilization
tests are then used to validate the presence of N. me-
ningitidis further [10]. Gram staining costs relatively
little and interpretation of the test results requires only
minimal resources and staff training. It is usually con-
sidered to be highly specific, but is of low sensitivity,
particularly in cases with low bacterial load or where
early antibiotic treatment has been instigated; it must
also be performed in a relatively short period after col-
lection, which is not always feasible where hospitals
lack 24-h laboratory facilities. Matrix-assisted laser
desorption ionization–time-of-flight mass spectrom-
etry has also been described for the routine identifica-
tion of microorganisms; however, improvement of
meningococcal identification is required [12].

In cases with clinically suspicious and negative cul-
ture (including in close contacts), nasopharyngeal
swabs can be utilized as they can yield meningococci
in up to 50% of instances [13] and can be used to iden-
tify and characterize the organism [14]. Although the
isolation of meningococci from the nasopharynx in
a patient is not considered confirmatory, concordance
between nasopharyngeal and invasive isolates has
been found in 97% of cases [13].

Rapid diagnostic tests

Rapid testing using dipstick diagnostic tests is now be-
coming available and preliminary in-field data appear
to be promising [15]. Test kits are designed to be used
by non-specialized staff with minimal training in basic
facilities. Thus far, tests have been developed for cap-
sular groups A, C, W, Y and X [16, 17], and the GMI
recommends that tests for additional capsular groups
are developed.

Polymerase chain reaction (PCR) methods

Compared to conventional culture-based methods,
PCR-based methods are not at risk from loss of viable
organisms through early antibiotic treatment and
sample processing [18, 19]. The production of false
positives due to contamination, however, should be
avoided by strict adherence to procedural guidelines.
The general trend has been to include PCR as con-
firmatory in case definition globally, although there
is still some level of divergence on this point. For ex-
ample, in the European Union, 25% of cases are
confirmed by PCR alone, and in the UK and
Ireland, this rises to ~50% [20]; while in the United
States, the CDC only recently included PCR as con-
firmatory in its case definition [6]. There is as yet no
international consensus on their use, although PCR
methods incorporating a number of targets have been
developed (such as ctrA, porA, crgA, 16S rDNA,
sodC and enl) [21–25].

The GMI noted that either regional/provincial or
centralized reference facilities could be suitable for
implementing PCR, providing that results are rapidly
available (i.e. within hours). However, although the
cost of PCR has been decreasing, its introduction in
many countries is still hindered by resource con-
straints and lack of trained staff; to date, many coun-
tries still have not implemented PCR. Finally, despite
adoption of PCR, culture is still required to recover vi-
able strains for further characterization and to aid
vaccine formulation. Hence, the GMI recommends
that confirmatory PCR be instituted wherever pos-
sible, but without replacing culture or other methods.
This is likely to result in a more detailed understanding of the real burden of disease in many countries.

Characterization and surveillance

Serogrouping

Cultured isolates should be systematically serogrouped. The ability of reference laboratories to serogroup *N. meningitidis* is important as it enables public health authorities to identify outbreaks that are controllable by vaccination campaigns, recognize which serogroups are the cause of sporadic disease and detect the emergence of new serogroups. However, detecting the emergence of new outbreak strains does require additional characterization [10].

PCR and molecular genetic methods

Although PCR may be unavailable in remote areas or resource-poor settings, shipping samples to a central laboratory with PCR facilities could enhance surveillance compared to microbiological and serogrouping techniques alone.

In recent years, new PCR and DNA sequencing methodologies have enhanced the characterization of *N. meningitidis* strains [26]. Multilocus sequence typing (MLST), involving characterization of short fragments of several microbial genes, has been utilized in numerous laboratories for successful characterization of isolates and particularly in global surveillance [27]. DNA sequencing methodologies have been used for molecular determination of sensitivity to antimicrobials through identification of allelic variants of specific genes and sensitivity/resistance to the corresponding antibiotics [28]. Specific antigen-sequence typing (AST) to characterize the variable regions of *N. meningitidis*, such as the antigen-encoding genes *PorA* and *fetA*, can enable rapid investigation and characterization of antigenic variants as an aid for vaccine development or selection [29]. As whole-genome sequencing (WGS) technology becomes more widely available it is likely to supersede MLST and AST, enabling even more detailed strain characterization [26].

Levels of characterization

There was a consensus that characterization of meningococcal isolates should begin as soon as a case has been confirmed. Basic and advanced levels of characterization can be defined as follows:

1. **Basic characterization information:**
 - Capsular group identification (e.g. by dipstick testing, latex agglutination or PCR).
 - *PorA* and *fetA* typing data (e.g. by PCR, AST or WGS) [29].
 - Antibiotic susceptibility testing, including a minimum of antimicrobial agents to be tested: two of those used in chemoprophylaxis (rifampicin and quinolones) and two for clinical treatment (penicillin and ceftriaxone), with chloramphenicol included where other agents are not readily available.

2. **Advanced characterization information:**
 - Vaccine antigen variant definition (*Hbp*, *NHBA* and *NadA*) (e.g. by AST or WGS) [30].
 - Molecular population biology – MLST is currently utilized for this, although WGS will most probably become the established method [31].
 - Vaccine antigen expression evaluation using Meningococcal Antigen Typing System [32, 33] or flow cytometry [34] or other similar methodology developed in house.
 - Antibiotic susceptibility analysis (e.g. by PCR or WGS) for *penA* (penicillin G), *rpoB* (rifampicin) and *gyrA* (ciprofloxacin) [27, 35–37].

Most of the methodologies listed were of significant value when assessing the impact of interventions of conjugate vaccine against capsular group C and subsequently with quadrivalent conjugate vaccines or conjugate vaccine against capsular group A in the African meningitis belt [38]. The GMI therefore considered that it would be of great interest to use such tools to evaluate the impact of new sub-capsular vaccines for the prevention of capsular group B and recommends that a laboratory or regional laboratories with facilities able to undertake these methods be identified.

SUMMARY AND CONCLUSIONS

Globally, infrastructure and facilities dictate how MD is confirmed and the level of surveillance undertaken. Laboratory confirmation is essential for informing evidence-based vaccine implementation decisions and many techniques are available, including microscopy, latex agglutination and PCR. The sensitivity and specificity of confirmation techniques can be affected by sample type, sampling procedures and antibiotic use. Most of the confirmation techniques provide results that form the basis of surveillance techniques.
and are critical in aiding decisions about vaccine interventions. There was a general agreement, therefore, that, regardless of the approach employed for confirmation and further characterization, regular participation in internal–external quality-assurance schemes was essential to ensure optimal performance of these methods. Dipstick tests specific for A, C, W, Y and X capsular groups show promise for rapid diagnosis and DNA-based technologies, such as WGS, are likely to gain in importance for surveillance. Culture, however, remains the gold standard in confirmation and characterization, as it maintains the isolate for further characterization.

ACKNOWLEDGEMENTS

The authors thank Dr T. Jacob John and Dr Godwin Enwere for their review of this manuscript.

Editorial assistance was provided by Shelley Maria Lindley, PhD, at PAREXEL, which was funded by Sanofi Pasteur. This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

DECLARATION OF INTEREST

J.A.V. has acted as a consultant for and received travel support from GlaxoSmithKline and Sanofi Pasteur, and has undertaken contract research on behalf of the National Institute of Health Carlos III, Madrid, Spain, for GlaxoSmithKline, Merck, Novartis, Pfizer and Sanofi Pasteur. J.F. and R.B. performed contract research on behalf of Public Health England for GlaxoSmithKline, Novartis, Pfizer and Sanofi Pasteur. J.F. has also acted as a consultant on behalf of Public Health England and received travel support for meeting attendance and subsistence from GlaxoSmithKline, Novartis, Pfizer and Sanofi Pasteur. M.K.T. performs contract research and expertise on behalf of the Institut Pasteur for GlaxoSmithKline, Novartis, Pfizer and Sanofi Pasteur. S.G. has no conflict of interest to declare.

REFERENCES

14. Cartwright KA, Stuart JM, Robinson PM. Meningococcal carriage in close contacts of cases. Epidemiology and Infection 1991; 106: 133–141.
