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IDEALS AND SUBALGEBRAS OF A FUNCTION ALGEBRA 

BRUCE LUND 

Introduction. Let X be a compact Hausdorff space and C(X) the set of all 
continuous complex-valued functions on X. A function algebra A on X is a 
uniformly closed, point separating subalgebra of C(X) which contains the 
constants. Equipped with the sup-norm, A becomes a Banach algebra. We let 
MA denote the maximal ideal space and SA the Shilov boundary. 

The set of finite, regular complex Borel measures on X will be denoted by 
M(X). We define 

AL = {M G M(X): Jfd/JL = 0 for a l l / G A} 

and call A1- the set of annihilating measures for A. 
Suppose A and B are function algebras on X with 5 C i and assume that 

there is a nonzero ideal J oi A contained in B which has countable hull with 
respect to A. In §2 we determine MB and SB given MA and SA. We show 
in §3 that if A1- contains no nonzero completely singular annihilating measure 
(see definition in §1), then neither does B-1. In §4 examples are given which 
show that in certain directions the results of §2 and §3 are sharp. 

1. Definitions and preliminaries. We give MA the weak-star topology 
induced from A*, the dual space of A. If/ G A, t hen / G C(MA) is the Gelfand 
transform of/. If <£ G MA, then there is a non-void set of probability measures 
M*(A) C M(X) such that a G M*(A) satisfies $ ( / ) = J /A* for a l l / 6 ^4. 
We call M$(A) the set of representing measures for <i>. We say that JJL G ̂ 4-L is 
completely singular if for every $ G ikf̂ , we have fx J_ a for all a G M$(A). 
Let supp /x denote the support of /* G M(X). 

Let E be a closed set in X. U A\E = C(E) and if there is F G A such that 
FJE = 1 and |F| < 1 on X\E, then £ is a peak interpolation set. It follows that 
n\E = 0 if M G ^4-L. We say F peaks on £ . 

We will need to use the abstract F. and M. Riesz theorem (see [13] for this 
result and historical background) and the fact that SA is either uncountable or 
A = C(X) = C{SA) [13, p. 119]. 
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2. Maximal ideal space and Shilov boundary. If A is a function algebra 
on X and S C - 4 , let the hull of S with respect to A be given by huilas = 
{$ G MA:$(f) = 0 for all / G 5}. Let B be a function algebra on X with 
B C A. Define the restriction map r\MA —» MB by r(<î>) = $\B. Then r is a 
continuous map of MA into MB. 

2.1 PROPOSITION. Let A and B be function algebras on X with B C A. If there 
is a nonzero ideal J of A contained in B with hullAJ countable, then MB = r (MA). 

Proof, If 6 G JkfAhuUBJ, then there is / G / such that 0 ( / ) = 1. Define 
$ G M A by $(g) = 6(gf) for g f 4 . Then r ($ ) = 6 and $ G MAhulUJ . 
Therefore, r maps AfA onto (Jkfs\hullB/) W r (hulUJ). Since r(hullAJ) C 
hullB/, we have 

(MB\hul\BJ) yJr(hu\\AJ) = MA(hu l l £ JV(hu lUJ) ) . 

We show hull^J = r(hullA / ) . The canonical map cA:A —+A/J induces a 
homeomorphism cA*:MA/J —> hulU^ defined by cA* (<£)(/ ) = $(f + J) for 
f Ç A and $ G MA/J [13, p. 27]. Similarly MB/J and hul l^ /are homeomorphic 
by the map cB*. We note that MA/J is countable. 

Let i'.B/J —-> ^4/J" be the injection map and let r':MA/J —> MB/J be defined 
by r'($)CF) = $ ( ^ ) ) where $ G M 4 / ^ and F G B/J. Let "\B/J-+ (B/J)" 
be the Gelfand transform of 5 / J . Then (B/J)" is a point separating sub-
algebra of C(MB/J) which contains the constants. It follows that (B/J)" has 
a Shilov boundary SB, j and that r'(MAj j) D SB/J [11, p. 147]. Consequently, 
5 B / J is countable. 

Also, 5 s U is compact and so (B/J)" is uniformly dense in C(SB/J) [13, p. 
119]. Hence, each ï> G MB/J extends to a multiplicative linear functional on 
C(SB/J). In particular, I B / / = SB/J, and so r'(MA,j) = I 5 / ; . 

Noting that r = cB*or' o (cA*)~\ we see that r(hullA /) = hull^J as 
desired. 

If B C A, then we have B C C(MA). lî B also separates points on MA, 
then r is a 1-1 map of MA into MB. Since r is continuous, MA is homeomorphic 
to r(MA). In this case, we write MA C ^TB and thereby identify a point of 
MA with its restriction to B. 

2.2 COROLLARY. 7/ 4̂ and B satisfy the conditions of the proposition and, in 
addition, MA C MB, then MB = MA. 

Proof. In this case, r is 1-1. 

As above, let A and B be function algebras on X with B C A and suppose 
that B contains a nonzero ideal J of A. We always have 5 A D 5 B D 5A\hulUJ r 

[13, p. 44]. 

2.3. PROPOSITION. Let A and B be function algebras on X with B C. A and 
MA C MB- If there is a nonzero ideal J of A contained in B with \i\x\\AJ countable, 
then SA = 5 B . 
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Proof. By Corollary 2.2, MA = MB. Let E = SA\SB. Then E is open in 5 4 . 
Moreover, since SB D SAVIUIIA/, it follows that E C hull^J. If z G £ is 
isolated in £ , then 2 is isolated in 5^. Hence, z is a peak point for A. Using the 
peak function for z and the fact that bf(MA) C f(SA) for a n y / £ 4 ([13, p. 10; 
bf(MA) is the topological boundary of f(MA) in C), we conclude that z is 
isolated in MA = MB. By Shilov's idempotent theorem, z is a peak point for B, 
and so, z G 5B- Therefore, J3 contains no isolated points. But Ë C hullA/ , 
and Ë cannot be both countable and perfect [7, p. 87]. Therefore, E = <j>. 

Simple examples show that MB D MA is necessary in Proposition 2.3. 

3. Annihilating measures. We consider a function algebra A on X which 
has no nonzero completely singular annihilating measures in A1-, the set of 
annihilating measures for A supported on X. One well-known example of such 
an algebra is R(X), the uniform closure on X C C of the rational functions 
with poles off X. 

Let E be a compact set in S2, the Riemann sphere, and let AE = {/£ C(S2):f 
is analytic on S2\E}. If AE contains a nonconstant function, then MAE = S2 

[3,fp. 28], and AE
L has no nonzero completely singular elements [3, p. 63, 

Exercise 1(c)]. 

3.1 PROPOSITION. Let A and B be function algebras on X with B C A. Suppose 
there is a nonzero ideal J of A contained in B with hullA / countable. If there are 
no nonzero completely singular measures in A1-, then there are none in B±. 

Proof. If fj, £ BL
y then by the abstract F. and M. Riesz theorem, M = Ma + Ms 

where \xa and \is G BL, fxa ± ns, and /JLS is completely singular but jia is not. 
Let j G / • Then jns G A1-. Since any representing measure for a point in MA 

is a representing measure for a point in MB, it follows that jfis is a completely 
singular measure in AL. Hence, jn8 = 0 for all j G / . Therefore, supp ns C 
hu\lAJ r\ X. The countability of hu\\AJ implies that B\suppfxs is uniformly 
dense in C(supp ns). Consequently, Ms = 0. 

Example 4.1 will show that the countability of hull^J is necessary in 
Proposition 3.1. 

3.2 PROPOSITION. Let A and B be function algebras on X with B C A. Suppose 
there is a nonzero ideal J of A contained in B with hull^J countable. Assume there 
is j G / such that {z G X:j(z) = 0} = hu\\AJ C\ X. Let K = h\A\AJ C\X. 
If y, G B-1-, then there is v G A1- with v\K = 0 and /*0 G M(K) such that 

M = ( l / / > + Mo-

Moreover, if v = 0, then \i = 0. 

Proof. If M G BL, then by the abstract F. and M. Riesz theorem, \i = na + vs 

where [ia and M* G £-S Ma JL Ms, and Ms is completely singular but fia is not. 
Just as in the proof of Proposition 3.1 we conclude that fxs = 0. Also, 
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]\ia £ AL. If v = jna, then v\K = 0. By the assumption that 

K = {zeX:j(z) = 0}, 

we conclude that /x = /za = (1/i)^ + MO where JU0 € M(K). 
If v = 0, then supp ju C hull A / ^ -X". Again, as in the proof of Proposition 

3.1, it follows that /x = 0. 

In Example 4.2 we show there are cases where /z0 is not the zero measure. 
The assumptions of Proposition 3.1 do not necessarily provide j Ç / such 

that j\X vanishes precisely on K. This is seen by the following example. Let E 
be a set with no interior in 52 such that A E separates points on S2. Let z0 G S2\E 
and / = {/ 6 AE:f(z0) = 0}. Then h u l l ^ J = {z0}, but any j Ç / also 
vanishes somewhere on £ [13, p. 41]. 

Glicksberg [5] gives a description of the closed ideals contained in a function 
algebra having no nonzero completely singular annihilating measures. 

4. Examples. If X and F are compact Hausdorff spaces and / : X —-> F is 
a continuous map, then given JJL £ ikf (X), there is ẑ  = fx of _ 1 Ç ikf (F) defined 
by*tfO = »(f-l(K)) for KC Y. 

4.1 Example. There is a compact Hausdorff space X ' and function algebras 
A' and i o o n l ' with AQ C Af which have the following properties. There is a 
nonzero ideal J of A' contained in A0 with hu lU ' / uncountable, and ^40

x con­
tains nonzero completely singular measures while Af± does not. 

Proof. Let X be an uncountable compact metric space and suppose A is a 
function algebra on X. Pelczynski [10] has shown that there is a Cantor set 
E C X which is a peak interpolation set for A. We also suppose that A1- con­
tains no nonzero completely singular measures. 

Let F be an uncountable compact metric space and let B be a function 
algebra on F such that B1- contains nonzero completely singular measures 
([5, p. 113, Footnote 6] together with [8, p. 281, Example 5]). There is a 
continuous map p of E onto F [7, p. 127]. Let X' be the set obtained from X 
by identifying the points of E which are identified by p. Give X' the quotient 
topology and let q:X -^ X' be the quotient map. It follows easily that X' is 
compact Hausdorff. 

Let A' = {/ 6 C(X'):foq <E A}. We show that A' is a function algebra 
on X ' and that £ ' = q(E) is a peak interpolation set for A'. Let h £ C(Er). 
Since 4 | E = C(E), there is i J G -4 with J?|E = h o q. Let 

(Hoq-lonX\Ef 

o n £ ' . 

Then if o (p1 is continuous and belongs to A'. If F £ 4̂ peaks on E, then 

i g"1 on X\E' 
0 9 = \ l o n £ ' 

peaks on E'. Hence, E' is a peak interpolation set for A'. 
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If a and b G X'\E' and a ^ b, then there is G G A so that G{q~l(a)) ^ 
G{q~l(b)) and G|£ = 0. Then G o q~l G ^4' separates a and b. This proves -4' 
separates points on X'. I t is clear that A' is uniformly closed. 

If v G ^ / J-, then v\Ef = 0 since E' is a peak interpolation set. Since g is a 
homeomorphism when restricted to X\E, we can define a Borel measure M on X 
given by /*(!£) = v(q(K)) for Borel sets K C X. 

Let i7 peak on E and set j = 1 — F. Then j is zero precisely on E. We now 
argue thatj/z G ^4±. Let K = X \ £ . Since n\E = 0, we must show 

j fjdfx = 0 for a l l / 6 4 . 

For each f (z A there is & G ̂ 4 ' such that k o q = fj. Therefore 

I fjdfi = J kdv = \ kdv = 0 for a l l / 6 4 . 

Hence, jn G AL. 
U v ?£ 0, then ii 9^ 0 and also j/z 7̂  0. Since JJJL is not completely singular, 

there is some <£ G M^ and a G M$ (̂ 4 ) such that a and M are not singular. But 
a = a o g - 1 is a representing measure for a point of MA>, and a/ and v are not 
singular. We conclude that A' has no nonzero completely singular annihilating 
measures. 

There is a homeomorphism h of E' onto F such that h o q = p. Define 
AQ = { f G A':f o hr1 G -S}. Then ^40 is a function algebra on X ' with MAo 

obtained by joining MB to MA> along £ ' by means of h (Glicksberg [4]). We 
write MAo = Mi W M2 where Mi is identified with MA\E' and M2 is identi­
fied with MB. 

Let /x be a nonzero completely singular measure in B1-. We will show that 
v = jji o h is a nonzero completely singular measure in ^o-1- Clearly, 0 9^ v G ^o"1" 
and supp *> C -E'. Suppose $ G Mi and a G M$(^40). Then a(E/) = 0 since 
there is G G A0 satisfying G\E' = 1 and |G| < 1 on X'\E', and 

0 = lim ($(G))n = lim ($(Gn)) = lim f Gnda = «(£ ' ) . 

Therefore, a _L v. 
Suppose <ï> G M2 and a G M *C40). Then a(X'VE') = 0 since H = 1-G£A0 

satisfies H\M2 = 0 and Re if > 0 on Mi. We now see that a o h~l is a measure 
representing a point of M s . Thus a o &_1 J_ v o A-1 and consequently, a ± v. 
We conclude that ^ is a completely singular measure in Ao3-. 

Finally, we note that J = { f G Ar :f \Ef = 0} is a nonzero ideal of A' 
which is contained in A0, and hull^'J is uncountable. 

Since MAQ properly contains MA>, we also have shown that Proposition 2.1 
is false without the assumption that hullAJ is countable. 

Let D be the closed unit disk in C, T the unit circle, and U the open unit 
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disk. Let A (D) = { / G C(D):f is analytic on £/}. By the maximum modulus 
principle we can consider A(D) as a function algebra on T. In the examples 
that follow, we consider function algebras B on T with B C A(D). Let m be 
normalized Lebesgue measure on 2". 

4.2 Example. Let 

5 = | / ( s ) exp £ ± i ) + * : / G 4(Z>),/(1) = 0, and k G C | . 

Then J = j / G 5 : / ( l ) = 0} C B and J is an ideal in A (D) with hullA(D)J = 
{1}. By Proposition 3.2 and using A (D)1- = {hm'.h G H0

1(D)} it follows that 
if M 6 B1-, then there is h G H0

l(D)y j G J, and A5i where X G C and 5i is the 
point mass at z = 1 such that ju = (h/j)m + \<5i. 

We show there is /x G -B-1- with M({1}) ^ 0. Suppose M ( U } ) = 0 for every 
/x G 2?-1. By the Glicksberg peak set theorem [3, p. 58], z = 1 is a peak point 
for 5 . If F G 5 peaks at z = 1, then Re (F(z) - 1) < 0 for s G £/. This 
implies F(z) — 1 is an outer function [2], but 

F(z) - 1 = g(z) exp ( J - ^ l J 

for some g G A(D) with g(l) = 0. The right side of this equation has a singular 
part while the left side is outer. Therefore, z = 1 is not a peak point for B. In 
connection with this example, see [6, Example 1.8]. 

4.3 Example. Let \zk) C U be a Blaschke sequence with the z^s distinct and 
suppose the zk

Js accumulate to a closed uncountable set K C T of measure 
zero. Let £ = { / G ̂  (£>) :/ ' (zk) = 0 for all k}. If b(z) is the Blaschke product 
corresponding to {zk} and g(z) G 4̂ (D) is zero precisely on K} then 

£ 0 = IffC*) :iï(s) = J h(w)g(w)b(w)dwforh £ A(D)Î CB. 

It is easy to show that 5 0 | r C Cl(T) and that ^ 0 separates points on D [9]. 
Using these properties of B0l an application of Theorem 2.1 of Bjork [1] 
implies MB = D. 

Also, B\I is dense in C(I) for any closed interval I C T since ^ | 7 contains 
a set of smooth generators [12]. Using this result and the fact that 

J = { / G A(D) :f(zk) = / r(zk) = 0 for all k and / |2E = 0} C B, 

we find that if M G BL, then there is h G H0
1(D)J G / , and MO G M(K) such 

that /z = (h/j)m + /x0. Moreover, if h = 0 on a set of positive measure, then 
M = 0. 

We note huilez»*/ is uncountable and / is the largest ideal of A (D) in B. 
Hence, one form of converse to Corollary 2.2 is false. We also have the same 
representation for elements of B1- as in Proposition 3.2. 
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